A Complement to Laurent expansion of harmonic zeta functions
Résumé
We complement an earlier article dedicated to harmonic zeta functions by outlining a method for obtaining closed-form expressions of the Laurent series coefficients of the harmonic zeta function ζ_H about its pole at s = 1. These coefficients are named harmonic Stieltjes constants by analogy with the classical case.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|