A Complement to Laurent expansion of harmonic zeta functions - Université Côte d'Azur
Preprints, Working Papers, ... Year : 2022

A Complement to Laurent expansion of harmonic zeta functions

Bernard Candelpergher
  • Function : Author

Abstract

We complement an earlier article dedicated to harmonic zeta functions by outlining a method for obtaining closed-form expressions of the Laurent series coefficients of the harmonic zeta function ζ_H about its pole at s = 1. These coefficients are named harmonic Stieltjes constants by analogy with the classical case.
Fichier principal
Vignette du fichier
AppendiceV1.pdf (264.4 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03602568 , version 1 (09-03-2022)
hal-03602568 , version 2 (19-05-2024)
hal-03602568 , version 3 (28-05-2024)
hal-03602568 , version 4 (01-10-2024)
hal-03602568 , version 5 (08-10-2024)

Identifiers

  • HAL Id : hal-03602568 , version 1

Cite

Marc-Antoine Coppo, Bernard Candelpergher. A Complement to Laurent expansion of harmonic zeta functions. 2022. ⟨hal-03602568v1⟩
91 View
95 Download

Share

More