The fundamental group of compact Kähler threefolds
Sur le groupe fondamental des variétés kählériennes compactes de dimension 3
Abstract
Let $X$ be a compact Kähler manifold of dimension three. We prove that there exists a projective manifold $Y$ such that $\pi_1(X)\simeq \pi_1(Y)$. We also prove the bimeromorphic existence of algebraic approximations for compact Kähler manifolds of algebraic dimension $\dim(X)-1$. Together with the work of Graf and the third author, this settles in particular the bimeromorphic Kodaira problem for compact Kähler threefolds.
Soit $X$ une variété kählérienne compacte de dimension 3. Nous montrons qu'il existe une variété projective $Y$ telle que $\pi_1(X)\simeq \pi_1(Y)$. Nous établissons également l'existence (au sens biméromorphe) d'approximations algébriques pour les variétés kählériennes compactes de dimension algébrique $\dim(X)-1$. Conjugué aux travaux de Graf et du troisième auteur, cela répond au problème de Kodaira biméromorphe pour les variétés kählériennes compactes de dimension 3.
Origin | Files produced by the author(s) |
---|