A codimension 2 Bifurcation for reversible Vector Fields - Université Côte d'Azur
Article Dans Une Revue Fields Institute Communications Année : 1995

A codimension 2 Bifurcation for reversible Vector Fields

Résumé

For a family of reversible vector fields having a fixed point at the origin, we present the problem where , at criticality, the derivative at the origin has a multiple 0 eigenvalue with a 4 x 4 Jordan block. This is a codimension 2 singularity for reversible vector fields. This case happens in the water-wave problem for Bond number 1/3 and Froude number 1. We study the persistence of all known phenomena on the codimension one curves (in the parameter plane), especially concerning homoclinic orbits. One of these unfoldings is the 1:1 resonance Hopf bifurcation. The study strongly relies upon the knowledge of the reversible normal forms associated with the 4 X 4 Jordan block, and the unfolded situations , together with appropriate scalings.
Fichier non déposé

Dates et versions

hal-01271013 , version 1 (09-02-2016)

Identifiants

  • HAL Id : hal-01271013 , version 1

Citer

Gérard Iooss. A codimension 2 Bifurcation for reversible Vector Fields. Fields Institute Communications, 1995, 4, pp.17. ⟨hal-01271013⟩
189 Consultations
2 Téléchargements

Partager

More