Inverse binomial series and a constant of Ramanujan - Université Côte d'Azur
Pré-Publication, Document De Travail Année : 2014

Inverse binomial series and a constant of Ramanujan

Résumé

In this article, we use a binomial transformation to link, through Bell's polynomials, certain "odd" harmonic series with the inverse binomial series studied by Kalmykov and Davydychev in relation with the Feynman diagrams. Surprisingly, this connection allows us to deduce some new and remarkable identities for the constant $C= \sum_{n\geq 1} \frac{1}{(2n)^3}(1+\frac13 + \dots + \frac{1}{2n-1})$ considered by S. Ramanujan in his notebooks.
Fichier principal
Vignette du fichier
CentralbinomialSeriesVFinale.pdf (149.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00995770 , version 1 (26-05-2014)
hal-00995770 , version 2 (01-09-2014)
hal-00995770 , version 3 (10-09-2014)
hal-00995770 , version 4 (22-09-2014)
hal-00995770 , version 5 (12-12-2014)

Identifiants

  • HAL Id : hal-00995770 , version 1

Citer

Marc-Antoine Coppo, Bernard Candelpergher. Inverse binomial series and a constant of Ramanujan. 2014. ⟨hal-00995770v1⟩
301 Consultations
331 Téléchargements

Partager

More