On the smoothness of the potential function in Riemannian optimal transport - Université Côte d'Azur
Pré-Publication, Document De Travail Année : 2014

On the smoothness of the potential function in Riemannian optimal transport

Philippe Delanoë

Résumé

On a closed Riemannian manifold, McCann proved the existence of a unique Borel map pushing a given smooth positive probability mea- sure to another one while minimizing a related quadratic cost func- tional. The optimal map is obtained as the exponential of the gradient of a c-convex function u. The question of the smoothness of u has been intensively investigated. We present a self-contained PDE approach to this problem. The smoothness question is reduced to a couple of a priori estimates, namely: a positive lower bound on the Jacobian of the exponential map (meant at each fixed tangent space) restricted to the graph of grad u; and an upper bound on the c-Hessian of u. By the Ma-Trudinger-Wang device, the former estimate implies the latter on manifolds satisfying the so-called A3 condition. On such manifolds, it only remains to get the Jacobian lower bound. We get it on simply con- nected positively curved manifolds which are, either locally symmetric, or 2-dimensional with Gauss curvature C2 close to 1.
Fichier principal
Vignette du fichier
Delanoe_CAG-2014.pdf (514.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00957161 , version 1 (09-03-2014)
hal-00957161 , version 2 (15-03-2014)

Identifiants

  • HAL Id : hal-00957161 , version 1

Citer

Philippe Delanoë. On the smoothness of the potential function in Riemannian optimal transport. 2014. ⟨hal-00957161v1⟩
190 Consultations
324 Téléchargements

Partager

More