SECOND ORDER VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON COMPACT MANIFOLDS - Université Côte d'Azur
Pré-Publication, Document De Travail Année : 2011

SECOND ORDER VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON COMPACT MANIFOLDS

Philippe Delanoe

Résumé

We consider Monge's optimal transport problem posed on compact manifolds (possibly with boundary) for a lower semi-continuous cost function $c$. When all data are smooth and the given measures, positive, we restrict the total cost ${\cal C}$ to diffeomorphisms. If a diffeomorphism is stationary for ${\cal C}$, we know that it admits a potential function. If it realizes a local minimum of ${\cal C}$, we prove that the $c$-Hessian of its potential function must be non-negative, positive if the cost function $c$ is non degenerate. If $c$ is generating non-degenerate, we reduce the existence of a local minimizer of ${\cal C}$ to that of an elliptic solution of the Monge--Ampére equation expressing the measure transport; moreover, the local minimizer is unique. It is global, thus solving Monge's problem, provided $c$ is superdifferentiable with respect to one of its arguments.
Fichier principal
Vignette du fichier
Delanoe_HeuristMonge.pdf (176.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00613698 , version 1 (28-09-2011)
hal-00613698 , version 2 (28-09-2011)

Identifiants

  • HAL Id : hal-00613698 , version 1

Citer

Philippe Delanoe. SECOND ORDER VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON COMPACT MANIFOLDS. 2011. ⟨hal-00613698v1⟩
108 Consultations
224 Téléchargements

Partager

More