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Glasser-Manna integrals and the harmonic zeta
function

Marc-Antoine Coppo∗

Bernard Candelpergher
Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract Using a new representation of the harmonic zeta function ζH , we estab-
lish a link between this function and a certain type of complex integral previously
introduced by Glasser and Manna in relation with the study of the Laplace trans-
form of the digamma function.
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1 Introduction
The harmonic zeta function ζH is defined for Re(s) > 1 by

ζH(s) :=
∞∑
n=1

Hn

ns
,

where, for all integers n ≥ 1,

Hn = 1 + 1
2 + · · ·+ 1

n

are the classical harmonic numbers. Four decades ago, Apostol and Vu [2] and
Matsuoka [15], completing original research of Euler [11], showed that this function
could be continued as a meromorphic function with a double pole at s = 1, and
simple poles at s = 0 and at odd negative integers. The special values of ζH at
positive integers are given by Euler’s formula [2, 11, 15]:

2ζH(p) = (p+ 2)ζ(p+ 1)−
p−2∑
k=1

ζ(k + 1)ζ(p− k) (p ≥ 2) ,
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whereas the special values at even negative integers are given by Matsuoka’s for-
mula [5, Equation (16)], [15]:

2ζH(−2p) = (1− 2p)ζ(1− 2p) = (2p− 1)B2p

2p (p ≥ 1) ,

where the B2p are the Bernoulli numbers.
The Laurent expansion of the harmonic zeta function ζH around its double

pole can be written as

ζH(s) = 1
(s− 1)2 + γ

s− 1 +
∞∑
k=0

(−1)k
k! γH,k(s− 1)k (0 < |s− 1| < 1) ,

where γ = −Γ ′(1) is Euler’s constant, and the coefficents γH,k are called harmonic
Stieltjes constants by analogy with the classical Stieltjes constants. A common
définition of the classical Stieltjes constants γk for arbitrary k is

γk = lim
s→1

{
(−1)kζ(k)(s)− k!

(s− 1)k+1

}
(k ≥ 0) ,

where ζ(k)(s) is the kth derivative of the Riemann zeta function [3, 8]. In particular,
γ0 is Euler’s constant γ. An explicit expression of the constant γH,0 is given by
the following formula [6, Equation (6)]:

γH,0 = 1
2γ

2 + 1
2ζ(2) = 1

2 Γ(2)(1) = 0.989055 . . . (1)

This nice expression arises from a special case of a general formula which applies
to height one multiple zeta functions ζ(s, 1, . . . , 1) of arbitrary depth [16, Equation
(28)].

In the next section, we give a new representation of ζH (see Theorem 1) which
is a subtle improvement of an earlier formula due to Boyadzhiev et al. [5, Theorem
1]. We use this representation to derive a new expression of the harmonic Stieltjes
constant γH,k (see Proposition 1) to be compared with the unwieldy one given by
Kargin et al. [13, Equation (21)]. Furthermore, thanks to this representation of
ζH(s), we also derive new integral representations of ζ(n) and ζ ′(n) (see Corollary
1).

Another remarkable consequence of the representation of ζH given by Theo-
rem 1 is that it allows us to establish a link between this function and a certain
type of complex integral introduced earlier by Glasser and Manna [1, 10, 12] that
proved to be useful in the study of the Laplace transform of the digamma function
(see Definition 1 and Remark 5). To our knowledge, this unexpected connection
between the special values of ζH and these integrals had never been noticed before.
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2 New representation of ζH(s)
In this section, we give a new expression of the harmonic zeta function which is a
subtle improvement of [5, Theorem 1].
Theorem 1. For all complex numbers s in Cr Z, we have

ζH(s) = π cot(πs) ζ(s) + ζ(s+ 1) + Γ(1− s)Φ(s) (2)
with

Φ(s) := 1
2π

∫ π

−π
ix
(
Log(1 + eix)

)s−1
dx , (3)

where Log denotes the principal value of the complex logarithm.
Proof. Let z = Log(1+eix) = ln

(
2 cos(x2 )

)
+ ix

2 , −π < x < π. When x varies from
−π to π, the variable z travels the path L defined by the parametric equations
Re z = ln(2 cos(x/2)) and Im z = x/2. This path extends from −∞ below the line
Im z = 0, passes through the point (ln 2, 0), then extends back to −∞ above the
line Im z = 0. The path L is homotopic to the Hankel contour used in [4] and [5].
Differentiation of the integral representation

ζ(s) = Γ(1− s)
2iπ

∫
L

zs−1ez

1− ez dz

leads to the following identity:

ψ(1− s)ζ(s) + ζ ′(s) = Γ(1− s)
2iπ

∫
L

zs−1ezLog(z)
1− ez dz (s 6= 1, 2, 3, . . .),

where ψ = Γ′/Γ is the digamma function [4, Equation (2.7)]. Writing
1

2iπ

∫
L

zs−1ezLog(z)
1− ez dz = φ(s)− Φ(s) ,

with
φ(s) = 1

2iπ

∫
L

zs−1ez

ez − 1Log
(
ez − 1
z

)
dz

and
Φ(s) = 1

2iπ

∫
L

zs−1ez

ez − 1Log(ez − 1) dz ,

we deduce the following identity:
Γ(1− s)φ(s)− ψ(1− s)ζ(s)− ζ ′(s) = Γ(1− s)Φ(s) . (4)

By means of the relation [5, Equation (25)]:
ζH(s) = π cot(πs) ζ(s) + ζ(s+ 1) + Γ(1− s)φ(s)− ψ(1− s)ζ(s)− ζ ′(s)

we then derive formula (2) from (4) with the expression of Φ(s) given by formula
(3).
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3 Some remarkable consequences

3.1 New expression of γH,k

We can deduce from Theorem 1 an expression of γH,k in terms of integrals Lk =
Φ(k)(1). More precisely, we have the following result:

Proposition 1. For any integer k ≥ 0, if Lk, ξk and ωk are respectively defined
by

Lk := Φ(k)(1) = 1
2π

∫ π

−π
ixLogk(Log(1 + eix)) dx ,

ξk := (−1)k Γ(k)(1) = (−1)k
∫ +∞

0
e−x lnk(x) dx ,

ωk := (−1)kζ(k)(2) =
∞∑
n=1

lnk n
n2 ,

then we have

L1 = Φ′(1) = −3
2ζ(2)− 1

2γ
2 − γ1 = −2.561174 . . . (5)

and, for each positive integer n, the following general relations hold true:

γH,2n−1 = ω2n−1 −
γ2n

2n + 1
2n

2n−1∑
k=0

(
2n
k

)
ξk L2n−k

+
n∑
k=1

2(2n− 1)!
(2n− 2k)! γ2n−2k ζ(2k) , (6)

and

γH,2n = ω2n −
γ2n+1

2n+ 1 −
1

2n+ 1

2n∑
k=0

(
2n+ 1
k

)
ξk L2n+1−k

+
n∑
k=1

2(2n)!
(2n+ 1− 2k)! γ2n+1−2k ζ(2k)− 2(2n)! ζ(2n+ 2) . (7)

Example 1. Applying formulas (6) and (7) to the simplest case n = 1 and using
(5), we then obtain

γH,1 = ω1 −
1
2γ

3 − 1
2γ2 + 1

2L2 + 1
2γζ(2)− γγ1 ,

and

γH,2 = ω2 + 1
2γ

4 − 1
3γ3 −

1
3L3 − γL2 + (2γ2 + 5γ1)ζ(2) + γ2γ1 −

1
4ζ(4) .
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Numerical evaluations of L2 and L3 are

L2 = −1.924491 . . . , and L3 = 7.158075 . . .

This leads to the following numerical evaluations:

γH,1 = 0.400761 . . . , and γH,2 = 0.971304 . . .

Proof of Proposition 1. The key formula to derive the relations (5)–(7) is the split-
ting of ζH(s) given by formula (2). Fortunately, the Laurent series expansion of
each component in (2) can be written explicitly.
a) The Laurent expansions of π cot(πs) and ζ(s) at s = 1 are respectively

π cot(πs) = 1
s− 1 −

∞∑
k=1

2ζ(2k)(s− 1)2k−1 ,

and
ζ(s) = 1

s− 1 + γ +
∞∑
k=1

(−1)k γk
k! (s− 1)k ,

where the coefficents γk are the Stieltjes constants. The expansion of π cot(πs) ζ(s)
is then obtained by Cauchy product:

π cot(πs) ζ(s) = 1
(s− 1)2 + γ

s− 1 − γ1 − 2ζ(2)−
(
−1

2γ2 + 2γζ(2)
)

(s− 1)

+ 1
2

(
−1

3γ3 + 4ζ(2)γ1 − 4ζ(4)
)

(s− 1)2

− 1
6

(
−1

4γ4 + 6ζ(2)γ2 + 12γζ(4)
)

(s− 1)3 + · · · (8)

b) It follows from the definition of ξk that the Laurent expansion of Γ(1 − s) at
s = 1 is given by

Γ(1− s) = − 1
s− 1 − γ −

∞∑
k=2

ξk
k! (s− 1)k−1 (|s− 1| < 1) ,

On the other hand, the function Φ defined by (3) is an entire function of s with
Φ(1) = L0 = 0, and the definition of Lk as Φ(k)(1) implies that the Taylor expansion
of Φ(s) at s = 1 is given by

Φ(s) =
∞∑
k=1

Lk
k! (s− 1)k .
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The Laurent expansion of Γ(1− s)Φ(s) then follows by Cauchy product:

Γ(1− s)Φ(s) = −L1 −
(1

2L2 + γL1

)
(s− 1)

+ 1
2

(
−1

3L3 − γL2 − ξ2L1

)
(s− 1)2

− 1
6

(1
4L4 + γL3 + 3

2ξ2L2 + (2ζ(3) + 3γζ(2) + γ3)L1

)
(s− 1)3 + · · · (9)

c) The Taylor expansion of ζ(s+ 1) at s = 1 can be written as follows:

ζ(s+ 1) = ζ(2) +
∞∑
k=1

(−1)k ωk
k! (s− 1)k . (10)

By assembling equations (8)–(10) above, we first obtain (by identifying the con-
stant term) the relation γH,0 = −γ1 − ζ(2) − L1 which, thanks to (1), gives (5).
In the same way, the general formulae (6) and (7) are easily derived by identifying
the coefficients of higher degree.

Remark 1. For 2 ≤ k ≤ n, the constants ξn involved in formulae (6)–(7) have
a polynomial expression in terms of Euler’s constant γ and ζ(k) [3, 7]. More
precisely, we have

ξn = n!Pn(γ, ζ(2), . . . , ζ(n)) (n ≥ 2) ,

where, for arbitrary n, the polynomials Pn are defined by the generating function
∞∑
n=0

Pn(x1, x2, . . . , xn) tn = exp
( ∞∑
k=1

xk
tk

k

)
= 1 + x1t+ 1

2(x2
1 + x2) t2 + · · · . .

In particular, ξ1 = γ, and

ξ2 = γ2+ζ(2), ξ3 = γ3+3γζ(2)+2ζ(3), ξ4 = γ4+6γ2ζ(2)+8γζ(3)+3 (ζ(2))2+6ζ(4).

Remark 2. Using the notations of [16], if γ[2]
k denotes the kth Stieltjes constant

of the height one double zeta function ζ(s, 1) =
∑

n>m>0

1
nsm

then, in view of the

relation ζ(s, 1) + ζ(s+ 1) = ζH(s), we have the simple relation [16, Equation (14)]:

γ
[2]
k + ωk = γH,k (k ≥ 0) .

Hence formulas (6) and (7) also apply to γ
[2]
k with only a slight modification.

Moreover, from a theorem of Ramanujan [8, Theorem 4], we have the identity

ωk = k! +
∞∑
n=0

(−1)n
n! γk+n (k ≥ 1) .
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Remark 3. The constants ξn involved in formulae (6)–(7) have a polynomial ex-
pression in terms of Euler’s constant γ and ζ(k) for 2 ≤ k ≤ n [3, 7]. More
precisely,

ξn = n!Pn(γ, ζ(2), . . . , ζ(n)) (n ≥ 2) ,

where, for arbitrary n, the polynomials Pn are defined by the generating function
∞∑
n=0

Pn(x1, x2, . . . , xn) tn = exp
( ∞∑
k=1

xk
tk

k

)
.

In particular, we have

ξ2 = γ2+ζ(2), ξ3 = γ3+3γζ(2)+2ζ(3), ξ4 = γ4+6γ2ζ(2)+8γζ(3)+3 (ζ(2))2+6ζ(4).

3.2 New integral representations of ζ(n) and ζ ′(n)
Applied in a neighborhood of s = n (for an integer n ≥ 2), formula (2) provides
a relation between Φ(s) and ζH(s) which allows us to derive nice evaluations of
Φ(n) and Φ′(n).

Proposition 2. For any integer n ≥ 2, we have

Φ(n) = (−1)n−1(n− 1)! ζ(n) , (11)

and

Φ ′(n) = (−1)n−1(n− 1)!

×
{
ζ ′(n) + ζ(n)ψ(n)− 1

2 n ζ(n+ 1) + 1
2

n−2∑
k=1

ζ(n− k) ζ(k + 1)
}
. (12)

Proof of Proposition 2. For n ≥ 2, we can write

π cot(πs) ζ(s) = ζ(n)
s− n

+ ζ ′(n) + O(s− n) ,

Γ(1− s) = (−1)n
(n− 1)!

( 1
s− n

+ (γ −Hn−1)
)

+ O(s− n) ,

and

Γ(1− s) Φ(s) = (−1)n
(n− 1)!

Φ(n)
s− n

+ (−1)n
(n− 1)! (Φ′(n) + Φ(n)(γ −Hn−1)) + O(s− n) .
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By applying formula (2) around s = n, we obtain the equation

ζH(n) + O(s− n) =
(
ζ(n) + (−1)n

(n− 1)!Φ(n)
)

1
s− n

+ (−1)n
(n− 1)! (Φ′(n) + Φ(n)(γ −Hn−1)) + ζ ′(n) + ζ(n+ 1) + O(s− n) ,

which allows us to derive the identities ζ(n) = (−1)n+1

(n− 1)! Φ(n), and

ζH(n) = (−1)n
(n− 1)! (Φ′(n)− Φ(n)ψ(n)) + ζ ′(n) + ζ(n+ 1) .

Formulae (11) and (12) then follow using Euler’s formula for ζH(n).

We deduce from Proposition 2, the following corollary:

Corollary 1. For any integer n ≥ 2, we have

ζ(n) = (−1)n−1

(n− 1)! ×
1

2π

∫ π

−π
ix
(
Log(1 + eix)

)n−1
dx . (13)

and

ζ ′(n) = 1
2 n ζ(n+ 1)− ζ(n)ψ(n)− 1

2

n−2∑
k=1

ζ(n− k) ζ(k + 1)

+ (−1)n−1

(n− 1)! ×
1

2π

∫ π

−π
ixLog

(
Log(1 + eix)

) (
Log(1 + eix)

)n−1
dx . (14)

Remark 4. It should be noted that our formula (13) for ζ(n) is similar to but
simpler than the one given by Boyadzhiev [4, Equation (2.6)] which, after the
substitution z = Log(1 + eix), translates into

ζ(n) = (−1)n−1

(n− 1)! ×
1

2π

∫ π

−π
Log

(
Log(1 + eix)

) (
Log(1 + eix)

)n−1
dx .

Example 2. Applying the previous formulas to the simplest cases n = 2 and
n = 3, we get

ζ(2) = − 1
2π

∫ π

−π
ixLog(1 + eix) dx ,

ζ(3) = 1
4π

∫ π

−π
ixLog2(1 + eix) dx ,

ζ ′(2) = ζ(3)− ζ(2)(1− γ)− 1
2π

∫ π

−π
ixLog

(
Log(1 + eix)

)
Log(1 + eix) dx .
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3.3 Link with the Glasser-Manna integral
Definition 1. The Glasser-Manna function M [1, 10, 12] is defined by

M(z) := 1
2π

∫ π

−π

ix

Log (e−z(1 + eix)) dx = 4
π

∫ π/2

0

y2

y2 + ln2(2e−z cos(y))
dy .

It is analytic for z in the disc D(0, ln 2) and verifies the relation

M (n)(0) = n! Φ(−n) (n ≥ 0). (15)

Remark 5. Let Lψ(x+ 1) be the Laplace transform of the function x 7→ ψ(x+ 1),
where ψ is the digamma function, the following relation can be shown:

M(z) = γ

z
+ Lψ(x+ 1)(z)− 1

e−z − 1
(
z + Log(1− e−z)

)
(0 < |z| < ln(2)) .

Applied in a neighborhood of s = −n, formula (2) provides a relation between
Φ(s) and ζH(s) which allows us to give a nice evaluation of Φ(−n) for any non-
negative integer n.
Proposition 3. We have

2Φ(0) = 1
π

∫ π

−π

ix

Log(1 + eix) dx = ln(2π)− γ + 1 , (16)

and

2Φ′(0) = 1
π

∫ π

−π

ixLog(Log(1 + eix))
Log(1 + eix) dx

= γ1 + 1
2 ln2(2π) + 1

2γ
2 − γ − γ ln(2π)− 7

4ζ(2) + 2β , (17)

where β is the linear coefficient in the Laurent expansion of ζH at s = 0.
Proof of Proposition 3. Around 0, we have the decomposition given by (2):

ζH(s) = ζ(s+ 1) + π cot(πs) ζ(s) + Γ(1− s)Φ(s) ,

and the expansion [6, Equation (8)]

ζH(s) = 1
2s + 1

2γ + 1
2 + βs+ O(s2) .

On the other side, we have the expansions

ζ(s+ 1) = 1
s

+ γ − γ1 s+ O(s2) ,

π cot(πs) ζ(s) = − 1
2s −

1
2 ln(2π) + (1

2γ1 −
1
4 ln2(2π) + 1

4γ
2 + 7

8ζ(2))s+ O(s2) ,

Γ(1− s)Φ(s) = Φ(0) + (Φ′(0) + γΦ(0)) + O(s2) .
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By identifying the constant coefficient in the expansion of the right-hand side of
(2), we deduce the equation

1
2γ + 1

2 = γ − 1
2 ln(2π) + Φ(0) ,

which is equivalent to (16). In the same way, formula (17) is derived by identifying
the linear coefficient in the expansion of the right-hand side of (2).

Remark 6. The constant β which occurs in formula (17) can be evaluated using
[16, Corollary 4.2]; more precisely, we have

β = 1 + 1
2γ −

1
4γ

2 − γ1 + 1
4ζ(2)−

∞∑
n=2

|bn|
(n− 1)2 = 1.589935 . . . ,

where the bn are the Bernoulli numbers of the second kind defined by means of
their generating function

x

ln(x+ 1) =
∞∑
n=0

bn x
n (|x| < 1).

Proposition 4. We have

Φ(−1) = 1
2π

∫ π

−π

ix

Log2(1 + eix)
dx = ln(A)− 1

12γ + 7
24 , (18)

where ln(A) = 1
12 − ζ

′(−1) and, more generally, for all integers n ≥ 2, we have

(2n− 1)! Φ(1− 2n) = ln(An)− B2n

2n γ +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2 , (19)

with ln(An) := H2n−1B2n

2n − ζ ′(1 − 2n). The numbers An for n ≥ 2 are called
generalized Glaisher-Kinkelin constants (see [14] for more details).

Example 3. In particular,

Φ(−3) = 1
2π

∫ π

−π

ix

Log4(1 + eix)
dx = 1

6 ln(A2) + 1
720γ + 1

320 .

Proof of Proposition 4. Around s = −1, we have the expansion [6, Equation (9)]

ζH(s) = − 1
12(s+ 1) −

1
12γ −

1
8 + O(s+ 1) .
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On the other side, we have

ζ(s+ 1) = −1
2 + O(s+ 1) ,

π cot(πs) ζ(s) = ζ ′(−1) + O(s+ 1) ,
Γ(1− s)Φ(s) = Φ(−1) + O(s+ 1) .

Formula (18) is then deduced by identifying the constant coefficient in the expan-
sion of the right-hand member of (2). In the same way, from [6, Proposition 2],
the Laurent expansion around s = 1− 2n for n ≥ 2 is given by

ζH(s) = ζ(1− 2n)
s+ 2n− 1 −

B2n

2n γ+ H2n−1B2n

2n +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2 +O(s+2n−1)

which, by the same method, allows us to deduce formula (19).

Proposition 5. For all positive integers n, we have

(2n)! Φ(−2n) = −ζ ′(−2n) + (2n+ 1)B2n

4n , (20)

from which follows the reflection formula:

2(2n)! Φ(−2n) = (−1)n+1(2π)−2n Φ(2n+ 1) + (2n+ 1)B2n

2n . (21)

Example 4. In particular,

2Φ(−2) = 1
π

∫ π

−π

ix

Log3(1 + eix)
dx = −ζ ′(−2n) + 1

8 = 1
4π2 ζ(3) + 1

8 .

Proof of Proposition 5. Around s = −2n, we have by Matsuoka’s formula

ζH(s) = (2n− 1)B2n

4n + O(s+ 2n) .

On the other side, we have the expansions

ζ(s+ 1) = −B2n

2n + O(s+ 2n) ,

π cot(πs) ζ(s) = ζ ′(−2n) + O(s+ 2n) ,
Γ(1− s)Φ(s) = (2n)!Φ(−2n) + O(s+ 2n) .

By identifying the constant coefficient in the expansion of the right-hand member
of (2), we obtain formula (20). Moreover, the well-known identity

−2ζ ′(−2n) = (−1)n+1 (2π)−2n (2n)! ζ(2n+ 1)

and the relation (2n)! ζ(2n + 1) = Φ(2n + 1) given by (11) enables to deduce
formula (21) from (20).
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4 Appendix: Evaluation of Glasser-Manna inte-
grals by means of shifted Mascheroni series

In this appendix, we reinterpret some of the previous formulas in terms of shifted
Mascheroni series. For any positive integer k, we consider the series

σk :=
∞∑

n=k+1

|bn|
n− k

,

where the bn are the Bernoulli numbers of the second kind defined by means of
their generating function

x

ln(x+ 1) =
∞∑
n=0

bn x
n = 1 + x

2 −
x2

12 + x3

24 −
19x4

720 + · · ·

These series σk, called shifted Mascheroni series, have been studied in detail in [9].
The nice identity

σ1 = 1
2 ln(2π)− 1

2γ −
1
2

is well-known [9, Proposition 2] and allows us to deduce from formula (16) an
evaluation of Φ(0) in terms of σ1:

M(0) = Φ(0) = 1
2π

∫ π

−π

ix

Log(1 + eix) dx = σ1 + 1 = 1.13033 . . .

This evaluation was first given by Glasser and Manna [12, Proposition 3.3] in a
slightly different but equivalent form. More generally, the following formula:

n∑
k=1

(−1)n+kk!S(n, k)σk+1 = −ζ ′(−n)− Bn+1

n+ 1

(
γ + 1

n+ 1

)
(n ≥ 1) ,

with S(n, k) denoting the Stirling numbers of the second kind [9, Proposition 3],
allows us to give reinterpretations of formulas (18), (19) and (20) in terms of shifted
Mascheroni series σk. In this way, we obtain

(2n− 1)! Φ(1− 2n) = M (2n−1)(0)

=
2n−1∑
k=1

(−1)k+1k!S(2n− 1, k)σk+1 + B2nH2n

2n +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2

(n ≥ 1),

and

(2n)! Φ(−2n) = M (2n)(0) =
2n∑
k=1

(−1)kk!S(2n, k)σk+1 + (2n+ 1) B2n

4n (n ≥ 1).
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In particular, we have

M ′(0) = Φ(−1) = 1
2π

∫ π

−π

ix

Log2(1 + eix)
dx = σ2 + 5

12 = 0.49232 . . .

and

M ′′(0) = 2Φ(−2) = 1
π

∫ π

−π

ix

Log3(1 + eix)
dx = 2σ3 − σ2 + 1

8 = 0.15544 . . .
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