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On the convergence of the MLE as an estimator of the learning rate in the Exp3
algorithm

Julien Aubert 1 Luc Lehéricy 1 Patricia Reynaud-Bouret 1

Abstract
When fitting the learning data of an individual to
algorithm-like learning models, the observations
are so dependent and non-stationary that one may
wonder what the classical Maximum Likelihood
Estimator (MLE) could do, even if it is the usual
tool applied to experimental cognition. Our objec-
tive in this work is to show that the estimation of
the learning rate cannot be efficient if the learning
rate is constant in the classical Exp3 (Exponential
weights for Exploration and Exploitation) algo-
rithm. Secondly, we show that if the learning
rate decreases polynomially with the sample size,
then the prediction error and in some cases the
estimation error of the MLE satisfy bounds in
probability that decrease at a polynomial rate.

1. Introduction
1.1. Context

Imagine that you observe a rat in a maze, learning progres-
sively to find food. How would you guess the learning
process (or the algorithm) it actually uses ? This question
is of paramount importance in cognitive science where the
problem is not to find the fastest or best learning algorithm to
learn a specific task but to discover the most realistic learn-
ing model (always formulated as an algorithm) (Botvinick
et al., 2009).

Many learning algorithms, and in particular all those associ-
ated with reinforcement learning, are often used to model
real human or animal behavior (Sutton, 1988; Schultz et al.,
1997). Realistic models may take into account attentional
effects (Gluck & Bower, 1988), differences in reasoning
(Mezzadri et al., 2022), or granularity of actions (Botvinick,

1Université Côte d’Azur, CNRS, LJAD, France. Correspon-
dence to: Julien Aubert <julien.aubert@univ-cotedazur.fr>, Luc
Lehéricy <luc.lehericy@univ-cotedazur.fr>, Patricia Reynaud-
Bouret <Patricia.Reynaud-Bouret@univ-cotedazur.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2008). Because all these realistic ingredients vary from
one individual to another, it is clear that the fitting of a par-
ticular model should be done individual by individual and
experience by experience (Estes, 1956).

The problem of proving that a certain model (or algorithm)
is better suited to model reality than others is so crucial in
cognitive science that the methodology for fitting any kind
of learning algorithm to real learning data has been well
established and emphasized (Wilson & Collins, 2019). Any
scientist wishing to develop their own new learning model
can follow the same numerical experiments to test whether
their model is realistic or not.

The first step in the methodology is to apply the MLE to es-
timate the model parameters (Daw, 2011; Wilson & Collins,
2019). Recall that we are observing an individual learning
a specific task. Therefore, not only the training data (i.e.
the observations) strongly depend on each other, but they
are also often non stationary (otherwise the individual could
not have learned). These data make the study of the MLE
very complex from a theoretical point of view.

This is also why extensive simulations are required by (Wil-
son & Collins, 2019): depending on the set of chosen pa-
rameters, not only can a model learn or not learn, but there
is also often a set of parameters for which the estimator
behaves poorly. For instance in (Mezzadri, 2020)’s PhD
thesis, large learning rates imply a too fast learning (if the
model learns at all), which in turn prevents the MLE from
performing well. Unfortunately, there is a lack of theoretical
guarantees on whether it is possible to estimate the param-
eters of these models consistently. Our goal is to prove
rigorously what can be said about the properties of the MLE
when fitting a learning algorithm to real data.

1.2. Why Bandits Algorithms ?

This study strongly depends on the algorithm and the exper-
iment. One typical example is the Skinner box experiment,
introduced in the 30’s, whose goal was to study rodents
ability to undergo operant conditioning. Once inside the
box, the rat could pull one or more levers and get a reward
or a punishment for it. This simplified framework allowed
scientists to work in a fully controlled environment. The
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Skinner box paradigm is still being discussed nowadays
(Kang et al., 2021).

Instead of studying a particular cognitive model and in order
to work within an established general theoretical frame-
work, we focus on the adversarial multi armed bandit prob-
lem. The algorithm we specifically study (Exp3: Exponen-
tial weights for Exploration and Exploitation) is probably
the simplest algorithm for adversarial bandits (Lattimore
& Szepesvári, 2020). Even though it is not used in the
cognition literature, it describes well the learning phenom-
ena that occur in the Skinner box, and more generally all
stimulus-action associations tasks (e.g. maze T-shaped, see
introduction in (Lattimore & Szepesvári, 2020)). It also
shares many features with famous cognitive algorithms such
as component cue (Gluck & Bower, 1988): credit or loss
updating, softmax transformation, etc. Finally, Exp3 has
given rise to many variants with a variety of applications
(e.g. Exp3-IX, Exp4 in (Lattimore & Szepesvári, 2020)) in
more complex settings.

Our purpose here is not to prove any new performance result
of Exp3 by minimizing the cumulative loss or regret. In-
stead, we observe an individual performing a learning task.
We assume that it is following the Exp3 algorithm, and ask
whether it is possible to infer the parameter of this specific
Exp3 instance (that is, its learning rate) from the choices
made by the individual. To our knowledge, the present work
is the first to tackle this problem. It is why we cannot com-
pare our results to the classical Reinforcement Learning
literature: in ML, the classical purpose is to develop effec-
tive algorithms, whereas we propose to address the question:
“how to estimate parameters of a ML algorithm based on the
output of an individual using this algorithm?”

1.3. About Imitation Learning

Our framework could be seen as a particular imitation learn-
ing problem (Hussein et al., 2017), where the goal is to
imitate the process by which a system learns a new task
(and not only the final, calibrated, state of the system). How-
ever, this is not how imitation learning is typically devised:
usually, the learner imitates a teacher who has already fin-
ished learning. In this sense, the input data of a classical
imitation algorithm are not learning data.

Moreover, the motivation of the present work is different
from imitation learning. Our aim is not to reproduce realistic
learning curves, but to estimate the models and parameters
that best fit an observed behavior.

1.4. Possible Applications of Learning Rate Estimation

As mentioned above, one of the motivations for this article
is that MLE is the popular first step used to fit behavioral
models on individual training data (Wilson & Collins, 2019).

The aim of our article is to prove that this approach is justi-
fied from a mathematical point of view. This is the first step
in giving theoretical credibility to a statistical method that
has been used for years in behavioral neuroscience.

But another practical application is to use the bandit ap-
proach to model the responses of people with mental dis-
orders, see (Bouneffouf et al., 2017) as an example. For
example, smokers and non-smokers have been shown to
behave differently when faced with a bandit problem (Addi-
cott et al., 2013). Therefore, estimating the learning rates
of individuals facing a bandit experience could aid in the
early diagnosis of specific mental disorders such as apathy
or Alzheimer’s disease. Of course, such medical appli-
cations should be developed with psychiatrists to assess
performance, acceptability, and ethical and societal impact.

1.5. Contributions

In Section 3, we prove in a particular case that trying to
estimate constant learning rates leads to a bad estimation
whatever the estimation procedure: the estimation error
decreases more slowly than logarithmically with the number
of observations.

In Section 4, in the framework where the learning rate de-
creases polynomially with the number of observations, we
show a polynomial decrease in the prediction error and in
a special case (Section 5) of the estimation error on a trun-
cated MLE.

2. Model and Notation
2.1. Notation

The model of experiment on which the MLE will be fit-
ted is as follows. For n successive iterations, the sub-
ject must choose an arm among K possible arms. Let
In1 = (It)1≤t≤n be the sequence of observed arms and
(Ft)t≤n := (σ({Is, s ≤ t}))t∈n the corresponding filtra-
tion.

As in classical cognitive experiments, the losses (or penal-
ties) of the arms denoted by π = (π1, . . . , πK) are constant
over time. These losses are bounded between 0 and 1 and
without loss of generality, we assume that

1 ≥ π1 ≥ π2 ≥ · · · ≥ πK ≥ 0.

2.2. Learning Model: the Exp3 Algorithm

We assume that the subject picks an arm according to Exp3
(Algorithm 1), which in this sense becomes a learning
model.

In the most general case, Exp3 is able to cope with losses
that are depending on time and it has been proved that it
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Algorithm 1 Exp3 (Exponential weights for Exploration
and Exploitation for losses)
Let η be a positive real number, called the learning rate.
Let pη1 be the uniform distribution over {1, . . . ,K}.
For each t = 1, . . . , n,
• Draw an arm It from the probability distribution pηt .
• For each arm i = 1, . . . ,K, compute the estimated loss
π̃i,t =

πi

pηi,t
1It=i and update the estimated cumulative loss

L̃i,t+1 = L̃i,t + π̃i,t.
• Update the probability distribution of picking a given arm
pηt+1 = (pη1,t+1, . . . , p

η
K,t+1), where for all i ∈ {1, . . . ,K}

pηi,t+1 =
exp(−ηL̃i,t+1)∑K

k=1 exp(−ηL̃k,t+1)
. (1)

achieves sublinear bounds for the convergence of the pseudo-
regret (Bubeck & Cesa-Bianchi, 2012).

However, for the purpose of the present work, we have sim-
plified the set-up. Even if the algorithm is able to cope with
time-varying losses, it is observed within a rigid framework
planned by the cognitive experiment itself, the most clas-
sical framework of which corresponds to fixed losses. In
cognitive science, robust and realistic learning processes are
often assessed in toy situations where most of the variability
is cancelled out.

The parameter η in Exp3 can originally be chosen as a time-
varying parameter. Here, we have decided that this quantity
is fixed during the experiment, as it is the parameter that the
MLE estimates on the basis of n observations.

While the pseudo-regret bound obtained in (Bubeck & Cesa-
Bianchi, 2012) is optimal for η of the order of 1/

√
n, there

are situations where the algorithm can learn even if η is
constant (see Section 3) or decreases at a different rate.
Therefore from a statistical point of view, it is not clear that
the subject uses a constant η or a parameter η that tends to
0 with n. Let us go even further: whether the algorithm
learns or not should not be an absolute criterion, since we
might have subjects who are unable to learn even after many
iterations and who might simply give up.

This is the main difference with other works on Exp3. Here
we take Exp3 as a realistic model that can be fitted to data :
the range of η that matters to us is the one for which we can
guarantee a good quality estimate of the learning rate η.

In the sequel, we denote by Pη the probability when the
learning parameter is η, and Eη[.] is the associated expecta-
tion. Finally, if f is a function, f (i) denotes its i-th iteration,
and f−1 denotes its inverse when it exists. Also On(1) is
sequence that is bounded when n tends to infinity.

3. Tetration Behaviour
In this section, we illustrate the poor performance of the
MLE when η is constant. We focus on a particular case
where there are only two arms and π2 = 0. By studying
KL(Pη

In
1
||Pδ

In
1
), the Kullback-Leibler (KL) divergence be-

tween Pη
In
1

and Pδ
In
1

(the distributions of the vector of pulled
arms In1 with the learning rates η and δ respectively), we
show that some parameters do not separate well whatever
the statistical procedure used.

3.1. A Particular Setup

It is sufficient with only two arms to look only at the time
steps at which the worst arm (arm 1) is pulled, that is T0 = 0
and for all i ≥ 0 , Ti+1 = inf{t ≥ Ti + 1 , It = 1}.

Indeed, only at that times, is the probability changing: with
qη0 = 1

2 and for all i ≥ 0,

qηi+1 =
qηi e

−π1η/q
η
i

(1− qηi ) + qηi e
−π1η/q

η
i

.

Note that pη1,t is simply pη1,t =
∑
i≥0

qηi 1Ti+1≤t≤Ti+1 .

We show in Lemma A.1 from the Appendix that the qηi ’s are
decreasing and tend to 0, and that the increments Ti+1 − Ti

are independent and geometrically distributed with parame-
ter qηi .

Therefore when i increases, the distance between the Ti

increases, making it more and more difficult to observe an
error. This is what we quantify in the next paragraph.

3.2. Behavior of qηi
Define I(η) and J(n, η) as follows.

{
I(η) := max{i ∈ N , qηi ≥ ηπ1}
J(n, η) := max{i ∈ N , qηi ≥ 1

n}

Note that when η is constant, so is I(η).

The following proposition shows how fast qηi decreases for
i ≥ I(η).

Proposition 3.1. Let f be the function defined as f(x) =
e

x
2 . Then, for all k ≥ 0,

qηI(η)+k+1 ≤ 1

f (k)(2)
,

with the convention f (0) = Id. In particular, J(n, η) ≤
I(η) + log∗(n) + 1, where

log∗(n) = max{k ∈ N , (f−1)(k)(n) ≥ 2}.

Proof. See section A.1.2 of the Appendix.
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This result shows that, as soon as i ≥ I(η), qηi decreases
extremely rapidly down to 0, as fast as a tetration (that is an
iterated exponentiation) (see (Knoebel, 1981)). This means
reciprocally that the number of indices necessary to pass
from I(η) to J(n, η) is in essence bounded. For instance,
with n = 1023, log∗(n) ≤ 6: even with an unrealistic
number of observations, it means that after I(η) + 7 errors,
which is a constant and quite small number, qηi becomes as
small as 10−23. This essentially means that this quantity
becomes null, up to a reasonable computer precision.

Said differently (still with n = 1023), the statistical problem
is almost equivalent (up to computer precision) to the one
consisting in observing a fixed number m of independent
geometric variables (with m ≤ I(η) + 7).

3.3. Bounded Kullback-Leibler Divergence

Let τ(n) = max{k ∈ N , Tk ≤ n}. Then,

KL(Pη
In
1
||Pδ

In
1
) = Eη

[ τ(n)−1∑
i=0

((Ti+1 − Ti − 1) log
1− qηi
1− qδi

+ log
qηi
qδi

)

]
+ Eη

[
(n− Tτ(n)) log

1− qητ(n)

1− qδτ(n)

]
(2)

The previous proposition leads to the following result.

Theorem 3.2 (Existence of parameters that are hard to dis-
tinguish). Let R such that 0 < Rπ1 < 1 and let β > 0.
There exists an integer n0 depending on R, π1 and β, a
constant ∆ > 0 depending on π1 and β and a constant
c > 0 depending on π1 such that for all n ≥ n0, there exists

• δ ∈ [0, R] such that δ ≥ c

log∗(n)
,

• η ∈ [0, R] such that η = δ +
1

(log(n))1+β

such that
KL(Pη

In
1
||Pδ

In
1
) ≤ ∆. (3)

Proof. See Section A.1.3 of the Appendix.

This theorem becomes really interesting in the light of The-
orem 2.2. of (Tsybakov, 2009) that tells us that if one finds
two distributions such that KL(Pη

In
1
||Pδ

In
1
) ≤ ∆, then any

statistical procedure able to distinguish η from δ is doomed
to make an error in probability of at least 1/4 exp(−∆).

This means that, whatever the method, these two parameters
cannot be distinguished without a nearly fixed probability
of error. This implies that any estimation procedure of η

cannot converge at a faster rate than the distance between η
and δ, that is a logarithmic rate in On(log(n)

−(1+β)).

Note that due to technicalities, δ may have to tend to 0 in
Theorem 3.2 but at a slower rate than 1/ log∗(n), which
as said previously is almost constant. So in practice this
corresponds to the case where the learning parameters are
constants.

We think the lower logarithmic bound for |η − δ| is pes-
simistic and it is quite likely that the phenomenon appear
even for |η−δ| = On((log

∗(n))−1), maybe to some power,
but we have not been able to prove it. In any case, this
rate is much slower than the polynomial rate we obtain in
the next two sections for a decreasing learning rate and the
truncated MLE. Moreover, simulations (see Section 6) at
least confirm that for a fixed error (say 5%), the estimation
error of the MLE is not decreasing as a function of n for a
constant learning rate.

4. Decreasing Learning Rate
Let us now turn to the case where the parameter η = ηn
decreases with n, the number of observations. We consider
the general case of K arms introduced in Section 2.1.

Allowing ηn to decrease with n is allowing I(ηn) to grow
with n. Proposition 3.1 intuitively shows that the observa-
tions that matter for the estimation are those obtained for
t ≤ I(ηn). After I(ηn), the probability of pulling the worst
arm is so small that it is negligible from a numerical point
of view and almost uninformative from an estimation point
of view (see Section 3).

Truncating the observations has therefore a twofold interest:
not only are we deleting uninformative data, but we are
also removing the values in the log likelihood which could
explode at the speed of a tetration and lead to numerical
issues (see Section 6 for an illustration).

The question now is where to truncate the observations.
From an estimation point of view, it is not possible to choose
I(ηn) as a truncating value since it depends on the unknown
parameter ηn. Instead we introduce a parameter ε > 0, and
given the number of observations n, we want to find a stop-
ping term Υn ∈ N guaranteeing that pδnk,t, the probability
of choosing an arm k at round t, remains greater than ε for
all t ≤ Υn, whatever the choice of δn in the set of possible
parameters.

4.1. The New Setup and the Truncated Log-likelihood

In the general setting, recall that K is the number of arms
and π the sequence of losses. From now on, for some α

fixed and known in (0, 1), let ηn =
η0

nαπ1
. We assume

that the unknown parameter η0 belongs to Θ = [r,R] with
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0 < r < R two known positive constants.

Let 0 < ε < 1
K be a fixed known threshold, corresponding

roughly in practice to the numerical precision.

The following result gives an absolute bound Υn that guar-
antees that the pδnk,t’s are always larger than the threshold ε.

Proposition 4.1. Let

Υn =
⌊
(
1

K
− ε)

nα

R

⌋
. (4)

Then

∀δ0 ∈ Θ, ∀t ≤ Υn, ∀1 ≤ k ≤ K, pδnk,t ≥ ε,

with δn =
δ0

nαπ1
.

Proof. See Section A.2.1 of the Appendix.

From now on, we define the truncated log likelihood as
follows

∀δ0 ∈ Θ, ℓn,ε(δ0) :=

Υn∑
t=1

K∑
k=1

log(pδnk,t)1It=k, (5)

with δn =
δ0

nαπ1
and Υn given by (4).

4.2. Upperbound on the Prediction Error

Let η0 ∈ Θ be the true parameter, meaning Exp3 is used by
the subject with a learning parameter ηn =

η0
nαπ1

. Let

η̂0 = argmaxδ0∈Θ ℓn,ε(δ0).

The estimator of the learning rate of Exp3 is therefore η̂n =
η̂0

nαπ1
. The following result shows that the prediction error

converges to zero with n.

Theorem 4.2. For any t ≥ 0, and any δ0, δ
′
0 ∈ Θ, let

∥pδnt − p
δ′n
t ∥22 =

K∑
k=1

|pδnk,t − p
δ′n
k,t|

2,

with δn = δ0
nαπ1

(resp. δ′n =
δ′0

nαπ1
.)

Then, for all n ≥ (R/ε2)1/α and x ≥ 0, with Pηn
-

probability at least 1− e−x,

1

Υn

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22 <
9c

ε

(√
x+ 1

Υn
+

x+ 1

Υn

)
,

where c is given by Lemma 4.3 below (c = 11 works).

Proof. See Section A.2.5 of the Appendix for a complete
proof but a sketch of the proof with the main milestones is
given in the next section.

Note that if we take ε = 10−15 the previous bound is rather
pessimistic, but for ε = 10−2 (and K much smaller than
100), we find almost identical Υn from a theoretical point
of view (see Proposition 4.1). Even in practice (See Section
6), one can show that the first time, Υmax, that the pηn

k,t’s
pass below ε, does not vary much between both choices
for ε. Since ε does not impact the estimation per se (only
through Υn), one can opt for a rather reasonable choice
of ε when using this bound. The fact that passing 10−2

or passing 10−15 happen at almost the same time t can
be linked heuristically to the tetration phenomenon (see
Proposition 3.1 that applies whatever η and in particular
with η = ηn).

This bounds also means that if one stays away from ε, the
behavior of the truncated MLE seems slower than the para-
metric convergence rate (that should be in Υ−1

n ), where
Υn represents the number of observation used in the trun-
cated log-likelihood. Nevertheless the rate is polynomial in
On(Υ

−1/2
n ) = On(n

−α/2). We do not know, if this bound
is tight or not, but the simulations (see Section 6) seem to
confirm this rate.

4.3. Sketch of Proof

1. By definition of η̂0, we have ℓn,ε(η̂0) ≥ ℓn,ε(η0). By
concentrating each quantity around its compensator
in the martingale sense, we get a bound on a random
version of a truncated Kullback-Leibler divergence,
which is in turn lower bounded by the prediction error.

2. However, the concentration inequality is not straight-
forward because η̂0 is random and depends on the same
sample. Hence we need to control the deviation of a
supremum of martingales.

3. To do so, we turn to the work of (Baraud, 2010),
which provides a bound on supremum of the type
Z = supδ∈Θ Yδ as long as Yδ − Yδ′ has a specific
Laplace transform that shows a certain regularity w.r.t.
a distance on Θ.

4. In particular, to prove this form of regularity of the
Laplace transform, the adequate distance should con-
trol a distance on the pηn

k,t’s.

Let us describe now briefly how we do these steps, starting
from step 4.
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4.3.1. STEP 4: LIPSCHITZ CHARACTER OF pδt

Lemma 4.3. For any t ≥ 0 and δ0, δ
′
0 ∈ Θ, let

∥pδnt − p
δ′n
t ∥∞ = max

1≤k≤K
|pδnk,t − p

δ′n
k,t|.

There exists a numerical constant c (for instance c = 11)
such that for all δ0, δ′0 ∈ Θ, n ≥ (R/ε2)1/α and 1 ≤ t ≤
Υn = ( 1

K − ε)n
α

R ,

∥pδ
′
n

t − pδnt ∥∞ ≤ c
|δ0 − δ′0|

R
. (6)

Proof. See Section A.2.2 of the Appendix.

4.3.2. STEP 3: REGULARITY OF THE LAPLACE
TRANSFORM

Let δ0 ∈ Θ and let

Xδn = ℓn,ε(δ0)−
Υn∑
t=1

K∑
k=1

log(pδnk,t)p
ηn

k,t

=

Υn∑
t=1

K∑
k=1

log(pδnk,t)
[
1It=k − pηn

t,k

]
.

Note that, since the true learning rate parameter is ηn, the
quantity Xδn can be seen as a martingale stopped at time
Υn, whatever the value of δn.

The following proposition is a requirement to apply the
work by (Baraud, 2010).
Proposition 4.4. Let c be the constant defined in Lemma 4.3.
For each δ0, δ

′
0 ∈ Θ2, let

d(δ′0, δ0) =
c

Rε
|δ0 − δ′0|.

Then, for all (δ0, δ′0) ∈ Θ2, n ≥ (R/ε2)1/α and |λ| <
1

d(δ0,δ′0)
,

Eηn
[eλ(Xδn−Xδ′n

)] ≤ exp

(
(λd(δ′0, δ0))

2Υn

2(1− λd(δ′0, δ0))

)
.

Proof. See Section A.2.3 of the Appendix.

4.3.3. STEP 2: RESULTING CONCENTRATION
INEQUALITY FOR THE SUPREMUM

Next, it is sufficient to apply the work by (Baraud, 2010) to
Yδ0 = Xδn −Xηn

.
Theorem 4.5 (Bernstein-type inequality). Let c be the con-
stant from Lemma 4.3. Let Zn = sup

δ0∈Θ
(Xδn −Xηn

). Then,

for all n ≥ (R/ε2)1/α and x ≥ 0,

Pηn

[
Zn ≥ 18 c

ε
(
√
Υn

√
x+ 1 + x+ 1)

]
≤ e−x, (7)

Proof. See Section A.2.4 of the Appendix.

4.3.4. SOME COMMENTS ABOUT STEP 1 AND THE
GENERAL METHODOLOGY

Step 1 is very classic. This kind of methodology to derive
non asymptotic results for Maximum Likelihood Estimators
has been already used in much more general set-up, in
particular by (Spokoiny, 2011). Note, however, that despite
the very general nature of Spokoiny’s work, it is not easy to
apply it here, as the derivatives of the log-likelihood with
respect to δ are not direct, due to the recursive nature of
pδnk,t. Therefore we have been forced to replace this kind of
direct approach on the derivative with a less direct one. In
particular, our general result stops at the prediction error and
we are not able to give bounds directly on the estimation
error, |η̂0 − η0|, because a general control on the derivatives
of the log-likelihood is missing. We derive bounds on the
estimation error only in one specific case which we detail in
the next section, because in this case we can find recursive
bounds on the derivatives.

5. Estimation Error in a Special Case
We prove an upper bound in large probability on the estima-
tion error |η0 − η̂0|, only in the case when we have only two
arms K = 2 and the loss of arm 2 is null, that is π2 = 0.

5.1. Lower Bound on the Prediction Error

To pass from the control of the prediction error to the control
of the estimation error, we need first to find an adequate
lower bound.

Proposition 5.1. Let N0 = 0 and Nt =

t∑
s=1

1Is=1 be the

number of times arm 1 is pulled until t ≥ 1.

There exists a constant mπ1,ε > 0, depending only on π1

and ε such that, for all δ0, η0 ∈ Θ

Υn∑
t=1

|pδn1,t − pηn

1,t|2 ≥ mπ1,ε|δn − ηn|2
Υn∑
t=1

N2
t−1. (8)

Proof. See Section A.3.1 of the Appendix.

5.2. Upper Bound for the Estimation Error

Thanks to Theorem 4.2 and Proposition 5.1, the following
bound on the estimation error holds with large probability.
Proposition 5.2. For x ≥ 0 and n ∈ N, define by

Gn(x) =
2

5

√
2(log 2Υn + x)Υ

1
2
n + log 2Υn + x

There exists a constant Mπ1,ε > 0, depending only on π1

and ε and a positive sequence Bn verifying

Bn :=
1

48
Υn +On(1),

6
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such that for all n ≥ (R/ε2)
1
α and x ≥ 0 such that Bn >

Gn(x), with Pηn -probability at least 1− 2e−x,

|η̂0 − η0| ≤ Mπ1,ε

(√
(x+ 1)Υn + x+ 1

Bn −Gn(x)

) 1
2

.

Proof. See Section A.3.2 of the Appendix.

Proposition 5.2 shows that for large n, |η0 − η̂0| =

O(Υ
− 1

4
n ) = O(n−α

4 ), which means that the truncated MLE
converges at a polynomial rate, which is slower than the
classic parametric rate, but clearly faster than the logarith-
mic rate obtained in Section 3 for a constant learning rate.
As for the prediction error, we do not know if this rate is
tight, but it seems to be confirmed by the simulations (see
Section 6).

6. Numerical Illustrations
6.1. Numerical Setup

All the simulations have been conducted with R. The simula-
tion of the n iterative subject’s choices have been simulated
according to an Exp3 algorithm with a given learning pa-
rameter η, K arms and losses given by π = (π1, ..., πK).
Note that if the pηk,t are too small, the Exp3 simulation stops
because “NA” can be returned when evaluating (1). In all
the simulations that are proposed here, thanks to the choices
of n and η this has never happened.

6.2. Constant Learning Rate

We choose η = 0.3. The log-likelihood is given by

∀δ ∈ (0.1, 0.8), ℓn(δ) :=

n∑
t=1

K∑
k=1

log(pδk,t)1It=k. (9)

Figure 1 shows the shape of the log-likelihood when K = 2
and π = (0.8, 0) on one simulation. For some parameters
δ, the log-likelihood is computed as -Inf because some
probabilities become null for the numerical precision (see
the right part of the top sub-figure in Figure 1). Because of
this repeated -Inf value, we have not been able to perform
simulations for such large η with more than 2 arms.

For K = 2, π = (0.8, 0) and η = 0.3, we maximised
the log-likelihood thanks to the function DEoptim in R
inside the interval (0.1, 0.8), with the default parameters
and a maxiter value equal to 50. For this set-up, DEoptim
returns a correct estimator (red point in Figure 1), but the
log-likelihood is very flat around the MLE, so an erroneous
estimate is likely to occur.

In this setup, we performed 1000 simulations for various
sample size between n =500, and n = 30000 (see Figure 2).
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Figure 1. Log-likelihood. On top, the log-likelihood with the MLE
in red. The simulation is performed via the Exp3 algorithm with
K = 2, π = (0.8, 0) and η = 0.3. The value of the log-likelihood
at δ = 0.6 is -Inf. Below, evolution of pη1,t (plain black) and of
pδ1,t (dotted black), with δ = 0.6. After n = 20, pδ1,t is considered
as null by the computer.

Figure 2. Estimation error when η = 0.3. In the set-up of Figure 1,
boxplot over 1000 simulations of |η̂−η|/η. The red squares are the
95% quantiles. The Spearman rank correlation test of decreasing
character of these 95% quantiles has a p-value of 0.33. The red
horizontal line is the mean of these quantiles.

While the variance of the error decreases with n, the overall
trend in the estimation error does not. The Spearman rank
correlation test does not detect any decreasing character
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of the 95% quantile of the error as n increases. This is
consistent with Theorem 3.2 which states there are some δ, η
which are indistinguishable regardless of n. The simulations
corroborate that the estimation cannot be done satisfactorily
when η is constant and even suggest that the logarithmic
lower bound of Theorem 3.2 is pessimistic.

6.3. Decreasing Learning Rate and the Stopping
Criterion

Here we choose α = 1/2, η = ηn =
0.3

π1nα
. The truncated

log-likelihood is defined by

∀δ0 ∈ (0.1, 0.8), ℓn(δn) :=

Υmax∑
t=1

K∑
k=1

log(pδnk,t)1It=k.

(10)

Following the configuration of Section 4 and to avoid values
-Inf for the log-likelihood, we stop the log-likelihood, for
a given ε, at

Υmax = sup{t ∈ N : pδnk,t > ε, ∀δn ∈ gridn,∀k},
(11)

where gridn is a regular grid of 50 points in ( 0.1
π1

√
n
, 0.8
π1

√
n
)

and 1 ≤ k ≤ K.

Note that Υmax is random and larger than the theoretical
choice Υn of Section 4.

For a fixed n taking various values between n = 500 and
n = 30000, we perform 1000 simulations with K = 4 arms
and π = (0.8, 0.6, 0.4, 0.2) and computed each time the
corresponding Υmax. The average is shown on Figure 3. In
particular, we see that the bound Υn in

√
n in Proposition

4.1 is a tight bound that reflects well the behavior of the
first time to cross ε. We also see that the value of ε has
almost no impact on the choice of the truncation inside the
log-likelihood, since all curves are almost confounded.

6.4. Performance with Decreasing Learning Rate

We take again ηn =
0.3

π1
√
n

. We perform 1000 simulations.

The sample size n takes various values between 500 and
30000. We maximize the truncated log-likelihood given
by (5) truncated at Υmax given by (11) with ε = 10−7,
thanks to the DEoptim function of R. We consider two
cases: K = 2 arms with π = (0.8, 0) and K = 4 arms with
π = (0.8, 0.6, 0.4, 0.2).

As expected, in both configurations, Figure 4 shows that
the prediction error seems to be decreasing in n−1/4 (see
Theorem 4.2).

The estimation error is illustrated in Figure 5. For K = 2,
π = (0.8, 0), we observe that the error approximately de-
creases in n−1/8 (see Proposition 5.2). For the configuration

Figure 3. Evolution of Υmax as a function of n for different ε.
The points are the average of the Υmax over 1000 simulations
with K = 4 arms and π = (0.8, 0.6, 0.4, 0.2) and η = ηn =
0.3/(π1

√
n). The curves for the different values of ε are found by

regression of the points on the square root curve.

Figure 4. Prediction errors as defined in Theorem 4.2. On top,
K = 2 and π = (0.8, 0). Below, K = 4 and π =
(0.8, 0.6, 0.4, 0.2). 95% quantiles are in red. Spearman rank cor-
relation test detects in both cases that the quantiles decrease with
n (on top p-value = 3.10−6, below p-value < 2.10−16). The red
line is obtained by a regression with respect to n−1/4.

K = 4 and π = (0.8, 0.6, 0.4, 0.2), which is not covered
by Proposition 5.2, we still observe a decreasing charac-
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Figure 5. Estimation errors |η̂ − η|/η. On top, K = 2 and
π = (0.8, 0). Below, K = 4 and π = (0.8, 0.6, 0.4, 0.2). 95%
quantiles are in red. Spearman rank correlation test detects in both
cases that the quantiles decrease with n (on top p-value = 3.10−6,
on the bottom p-value < 2.10−16). On top, the red line is obtained
by a regression with respect to n−1/8.

ter of the 95% quantile as a function of n (p-value of the
Spearman rank test is lower than 2.10−16), but it seems to
decrease much slower than n−1/8.

7. Conclusion
In conclusion, we have shown that the estimation of the
learning rate in Exp3 cannot be done correctly if the true
learning rate parameter is constant, that is the estimation
rate is at most logarithmic. But the MLE on truncated
observations can estimate adequately learning rates that
are decreasing at a polynomial rate with the number of
observations. Note that the rates of convergence that we
have shown either for the general prediction error or for
the estimation error in particular cases are not the classic
parametric rate.

Even if Exp3 is a toy learning model with respect to the vast
literature in cognition, we believe that these phenomenons
appear in a large variety of models well used in practice
such as for instance (Kruschke, 1992) or (Gluck & Bower,
1988) and that our theoretical conclusions should be kept in
mind even when working on more realistic models from a

more practical point of view.
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A. MISSING PROOFS
The Appendix contains the omitted proofs, as well as some indications on the numerical illustrations.

A.1. For a constant learning rate

In this section, we include the proofs and results used for the study of the Kullback-Leibler divergence for a constant learning
rate. Technical lemmas used throughout the proofs are gathered in Section A.1.4.

A.1.1. PROPERTIES OF qηi

Lemma A.1. The following properties hold:

(i) Let η > 0. The sequence (qηi )i≥0 is decreasing to 0 as i → +∞.

(ii) For all i ∈ N∗, the function η 7−→ qηi is decreasing.

(iii) The sequence (Ti)i≥0 is non-decreasing. Moreover, Ti → +∞ as i → +∞ almost surely.

(iv) Let η > 0. Under the distribution with parameter η, for all i ∈ N, the Ti+1 − Ti are independent and geometrically
distributed with parameter qηi .

(v) Let Sn =
∑n

t=1 It be the number of times the worst arm is pulled before time n. Then, Sn → +∞ as n → +∞ almost
surely.

(vi) Let η > 0. The sequence (pη1,t)t∈N∗ is decreasing to 0 as t → +∞ almost surely.

Proof of (i). Let η > 0. We show that (qηi )i≥0 is a decreasing sequence by induction. Denote by g the function defined for
all γ ≥ 0 and q ≥ 0 by

g(γ, 0) = 0,

g(γ, q) =
qe−γπ1/q

(1− q) + qe−γπ1/q
=

1

( 1q − 1)eγπ1/q + 1
∈ (0, 1] when q > 0.

(12)

This function is continuous in both its parameters. The denominator is an increasing function of 1/q, and thus q 7−→ g(γ, q)
is an increasing function.

Moreover, qη0 = 1
2 > e−2ηπ1

1+e−2ηπ1
= qη1 . Let i ≥ 0, and assume qηi−1 ≥ qηi . Since g is an increasing function of q, by the

induction hypothesis,
qηi+1 = g(η, qηi ) < g(η, qηi−1) = qηi .

Hence (qηi )i≥0 is decreasing. Since it is lower bounded by 0, it converges to some m ∈ [0, 1/2]. Since g is continuous in its
second parameter, m = g(γ,m), that is

m =
me−π1η/m

(1−m) +me−π1η/m
,

or equivalently,
m(1−m)(1− e−π1η/m) = 0,

which admits only one solution in [0, 1/2]: m = 0.

Proof of (ii). We show that η 7→ qηi is a decreasing function by induction on i ∈ N. Let δ < η. Firstly, for i = 0,
qη0 = qδ0 = 1/2. Let i ∈ N, and assume that qδi ≥ qηi . The function g from (12) is decreasing in its first parameter and
increasing in its second, therefore

qηi+1 = g(η, qηi ) < g(δ, qηi ) ≤ g(δ, qδi ) = qδi+1,

hence the result by induction.

11
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Proof of (iii). By definition of Ti, Ti+1 ≥ Ti and Ti ≥ i, hence the result.

Proof of (iv). By definition, for all t ∈ [Ti + 1, Ti+1], p
η
t = qηi , and therefore, for all s ≥ 1,

Pη(Ti+1 − Ti = s | (Tj+1 − Tj)j ̸=i)

=
∑
k≥1

Pη(Ik+s−1
k+1 = 0, Ik+s = 1 |Ti = k, (Tj+1 − Tj)j ̸=i)P

η(Ti = k | (Tj+1 − Tj)j ̸=i)

= (1− qηi )
s−1qηi

∑
k≥1

Pη(Ti = k | (Tj+1 − Tj)j ̸=i)

= (1− qηi )
s−1qηi ,

which shows that Ti+1 − Ti is geometrically distributed with parameter qηi and independent from the other Tj+1 − Tj .

Proof of (v). The sequence (Sn)n≥1 is non-decreasing, so, almost surely, it either tends to +∞ or it converges to some limit
m ∈ N.

Consider the event where limn Sn = m ∈ N, then on this event, Tm < +∞ and Tm+1 = +∞, in particular Tm+1 − Tm =
+∞, which is an event with probability zero by (iv) since qηm > 0 for all m ∈ N. Therefore, Pη(limn Sn < +∞) = 0.

Proof of (vi). First, note that p1,t = qηSt−1
, where (Sn)n≥0 is defined in (v), with the convention S0 = 0. The sequence

(Sn)n≥1 is non-decreasing and tends to +∞ almost surely by (v). Combining this with (i) shows that (pη1,t)t≥1 is non-
increasing and converges to 0 almost surely.

A.1.2. PROOF OF PROPOSITION 3.1: TETRATION BEHAVIOUR OF THE UPDATED PROBABILITIES.

Let us show by induction that for all k ≥ 1 :

qηI(η)+k+1 ≤
2min(ηπ1, q

η
I(η)+k)

f (k)(2)
≤ 1

f (k)(2)
.

For any η > 0 and i ≥ 0, 1− qηi + qηi e
−ηπ1/q

η
i ≥ 1

2 because qηi ≤ 1
2 . Therefore, qηi+1 ≤ 2qηi e

−ηπ1/q
η
i . In particular,

qηI(η)+2 ≤
qηI(η)+1e

−ηπ1/q
η
I(η)+1

1− qηI(η)+1 + qηI(η)+1e
−ηπ1/q

η
I(η)+1

≤ 2qηI(η)+1e
−ηπ1/q

η
I(η)+1

≤ 2min(ηπ1, q
η
I(η)+1) · e

−1 =
2min(ηπ1, q

η
I(η)+1)

f
(
2
) ≤ 1

f
(
2
) .

Let k ≥ 2. Assume the result is true for k ≥ 2. Then,

qηI(η)+k+2 ≤ 2qηI(η)+k+1e
−ηπ1/q

η
I(η)+k+1

≤ 2min(ηπ1, q
η
I(η)+k+1) · e

−ηπ1f
(k)(2)/(2ηπ1)

≤ 2min(ηπ1, q
η
I(η)+k+1) ·

1

ef(k)(2)/2

≤
2min(ηπ1, q

η
I(η)+k+1)

f (k+1)
(
2
) ≤ 1

f (k+1)
(
2
) .

Let us study the monotonicity of the sequence (f (k)(2))k≥0: f (0)(2) = 2 < e = f (1)(2). Suppose the result is true for
k ∈ N. Then, since f is increasing,

f (k)(2) < f (k+1)(2) =⇒ f (k+1)(2) < f (k+2)(2).
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Hence, (f (k)(2))k≥0 is increasing.

For the second part of the Proposition, 1
f(k)(2)

< 1
n implies qηI(η)+k+1 < 1

n , that is k+ I(η) + 1 ≥ J(n, η) + 1. Let log∗(n)
be defined as in Proposition 3.1. For all k ≥ 1,

1

f (k)(2)
<

1

n
⇐⇒ n < f (k)(2) ⇐⇒ k ≥ log∗(n) + 1,

because the sequence
(
f (k)(2)

)
k≥1

is increasing. In particular, taking k = log∗(n) + 1,

J(n, η) ≤ I(η) + log∗(n) + 1.

A.1.3. PROOF OF THEOREM 3.2

The proof is divided into two parts. We first show that the KL divergence can be bounded, up to an additive constant, by a
sum whose number of terms is bounded by J(n, δ), that is:

KL(Pη
In
1
||Pδ

In
1
) ≤

J(n,δ)∑
i=0

2
qδi − qηi

qηi
+ n(J(n, δ) + 1)(1− qηJ(n,δ))

⌊ n

J(n, δ) + 1
⌋
+On(1).

We then show the existence of δ > 0 and η > δ, as in the theorem, that verifies that the KL divergence is bounded.

Proof of Theorem 3.2. Let us split the KL divergence into three parts. Assume in the following that η > δ, so that log qηi
qδi

≤ 0.
Recall from Equation (2) that

KL(Pη
In
1
||Pδ

In
1
) =

n−1∑
i=0

Eη[1Ti+1≤n(Ti+1 − Ti − 1) log
1− qηi
1− qδi

+ 1Ti+1≤n log
qηi
qδi

+ Eη

[
(n− Tτ(n)) log

1− qητ(n)

1− qδτ(n)

]

=

J(n,δ)∑
i=0

Eη[1Ti+1≤n(Ti+1 − Ti − 1) log
1− qηi
1− qδi

+ 1Ti+1≤n log
qηi
qδi

]︸ ︷︷ ︸
A

+

n−1∑
i=J(n,δ)+1

Eη[1Ti+1≤n(Ti+1 − Ti − 1) log
1− qηi
1− qδi

+ 1Ti+1≤n log
qηi
qδi

]

︸ ︷︷ ︸
B

+ Eη

[
(n− Tτ(n)) log

1− qητ(n)

1− qδτ(n)

]
︸ ︷︷ ︸

C

.
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Since 0 ≤ qηi ≤ qδi and log(1− ·) is non-increasing and 2-lipschitz on [0, 1
2 ], for all i ≥ 0, if δπ1n ≥ log 2 and n ≥ 3,

B ≤
n−1∑

i=J(n,δ)+1

Eη

[
1Ti+1≤n(Ti+1 − Ti)

]
log

1− qηi
1− qδi

≤
n−1∑

i=J(n,δ)+1

nPη(Ti+1 ≤ n)× 2(qδi − qηi )

≤ 2n

n−1∑
i=J(n,δ)+1

qδi

≤ 2n
1

n− 2

∑
i≥0

e−δπ1ni by Lemma A.3

≤ 6

1− e−δπ1n
≤ 12.

For the same reasons,

C = Eη[(n− Tτ(n)) log
1− qητ(n)

1− qδτ(n)
]

≤ 2nEη[q
δ
τ(n)]

= 2nEη[q
δ
τ(n)1τ(n)≤J(n,δ)] + 2nEη[q

δ
τ(n)1τ(n)≥J(n,δ)+1]

≤ 2n× 1

2
Pη(τ(n) ≤ J(n, δ)) + 2 by definition of J(n, δ)

= nPη(TJ(n,δ)+1 > n) + 2

≤ n(J(n, δ) + 1)(1− qηJ(n,δ))
⌊ n

J(n, δ) + 1
⌋
+ 2 by (18)

Finally, provided that ηπ1n ≥ log 2 and n ≥ 3,

A ≤
J(n,δ)∑
i=0

Eη[1Ti+1≤n(Ti+1 − Ti − 1)] log
1− qηi
1− qδi

≤ 2

J(n,δ)∑
i=0

(qδi − qηi ) {Eη[Ti+1 − Ti] ∧ nPη(Ti+1 ≤ n)}

≤ 2

J(n,δ)∑
i=0

(qδi − qηi )

{
1

qηi
∧ n2qηi

}
by (18)

≤ 2

(J(n,η)+1)∧J(n,δ)∑
i=0

qδi − qηi
qηi

+ 2
n2

n− 2

+∞∑
i=J(n,η)+2

e−ηπ1n(i−J(n,η)−1) by Lemma A.3

≤ 2

(J(n,η)+1)∧J(n,δ)∑
i=1

qδi − qηi
qηi

+ 12ne−ηπ1n.

Therefore,

KL(Pη
In
1
||Pδ

In
1
) ≤ 2

(J(n,η)+1)∧J(n,δ)∑
i=1

qδi − qηi
qηi

+ n(J(n, δ) + 1)(1− qηJ(n,δ))
⌊ n

J(n, δ) + 1
⌋
+ 14 + 12ne−ηπ1n.
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On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

From Lemma A.5, by monotonicity of the sequence (qδk/q
η
k)k≥0,

KL(Pη
In
1
||Pδ

In
1
) ≤ 2J(n, δ)

qδJ(n,δ) − qηJ(n,δ)

qηJ(n,δ)
+ n(J(n, δ) + 1)(1− qηJ(n,δ))

⌊ n

J(n, δ) + 1
⌋
+ 14 + 12ne−ηπ1n. (13)

By Proposition 3.1, for any δ > 0 such that δπ1 ≥ 1
n ,

I(δ) ≤ J(n, δ) ≤ I(δ) + log∗(n) + 1.

Let R > 0 be such that 1
n < Rπ1 ≤ 1/2. By the inequalities above, for any δ such that 1

n < δπ1 < Rπ1,

J(n, δ)− J(n,R) ≥ I(δ)−
(
I(R) + log∗(n) + 1

)
.

From Lemma A.6, I(δ) > I(R) + log∗(n) + 1 (and thus J(n, δ) > J(n,R)) as soon as

1

2δπ1
− 2 >

2

Rπ1
− 4 + log∗(n) + 1,

that is when

δ <
1

2π1

2
Rπ1

+ log∗(n)− 1
.

Therefore, by contraposition, choosing δ such that J(n, δ) = J(n,R) implies δ ≥
1

2π1

2
Rπ1

+ log∗(n)− 1
. By continuity

of γ 7→ qγJ(n,R)+1 and the fact that its limit is 1/2 (resp. smaller than 1/n) when γ → 0 (resp. R), for all n ≥ 2, there
exists δ ∈ (0, R) such that qδJ(n,R)+1 ∈ [ 1

2n ,
1
n ). Let δn be such a δ. In particular, J(n, δn) ≤ J(n,R), thus is equal since

δ 7→ J(n, δ) is non-increasing. Therefore,

δn ≥
1

2π1

2
Rπ1

+ log∗(n)− 1
≥ (4π1)

−1

log∗ n
=:

c

log∗ n
. (14)

for n such that log∗(n) ≥ 2
Rπ1

− 1. As a consequence, δnπ1n ≥ 1∨ log 2 for all n ≥ n0, for some n0 that depends only on
R and π1. From Lemma A.7, for any η > δn,

qδnJ(n,δn) − qηJ(n,δn) ≤ G(n, δn)(η − δn),

where

G(n, δn) =
8

δnπ1

(
8

δnπ1

)J(n,δn)
− 1

8
δnπ1

− 1
≤ 2

(
8

δnπ1

)J(n,δn)

In particular, for ηn = δn + 1
(logn)1+β ,

qδnJ(n,δn) − qηn

J(n,δn)
≤ G(n, δn)

(log n)1+β
. (15)

Note that G(n,δn)
(logn)α → 0 as n → +∞ for any α > 0. Indeed, by Proposition 3.1 and Lemma A.6,

J(n, δn) + 1 ≤ I(δn) + log∗(n) + 2 ≤ 2

δnπ1
− 4 + log∗(n) + 2 ≤ 9 log∗(n) (16)

by (14), as long as n is such that log∗(n) ≥ 2
Rπ1

− 1, which also entails 1
δnπ1

≤ 4 log∗(n), so that logG(n, δn) =

O(log∗(n) log log∗(n)) = o(log log n).

15



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

Therefore, since qδnJ(n,δn) ≥
δπ1

log(2n) by Lemma A.4 and the assumption qδnJ(n,δn)+1 ≥ 1/(2n),

qηn

J(n,δn)
≥ δnπ1

log(2n)
− G(n, δn)

(log n)1+β
≥ 1

8 log∗(n) log n
(17)

for n ≥ n0, for some n0 depending on R, π1 and β. Therefore, by (16),

n(J(n, δn) + 1)(1− qηn

J(n,δn)
)
⌊ n

J(n, δn) + 1
⌋
≤ n(J(n, δn) + 1)

(
1− 1

8 log∗(n) log n

)⌊ n

J(n, δn) + 1
⌋

≤ n(J(n, δn) + 1) exp

(
−⌊ n

J(n, δn) + 1
⌋ 1

8 log∗(n) log n

)
≤ n× 9 log∗(n) exp

(
−⌊ n

9 log∗(n)
⌋ 1

8 log∗(n) log n

)
= on(1),

where we used log(1− x) ≤ −x for x ∈ (0, 1). Injecting this result in (13), and since ηnπ1n ≥ log n for n ≥ n′
0 for some

n′
0 that depends only on π1 and β,

KL(Pηn

In
1
||Pδn

In
1
) ≤ 2J(n, δ)

qδnJ(n,δn) − qηn

J(n,δn)

qηn

J(n,δn)

+ 14 + 12ne−π1n/(logn)1+β

+ on(1).

Using (15) and (17), for n large enough,

KL(Pηn

In
1
||Pδn

In
1
) ≤ 2J(n, δn)

G(n,δn)
(logn)1+β

1
8 log∗(n) logn

+ 14 + on(1).

≤ 18 log∗(n)
8 log∗(n)G(n, δn)

(log n)β
+ 14 + on(1)

= 14 + on(1)

since G(n, δn) ∨ log∗(n) = on((log n)
α) for any α > 0. Note that this on(1) only depends on π1 and β. Therefore, there

exists ∆β,π1 > 0 depending on π1 and β and n0 ∈ N depending on π1, R and β, such that for all n ≥ n0,

KL(Pηn

In
1
||Pδn

In
1
) ≤ ∆β,π1

.

A.1.4. TECHNICAL LEMMAS

Lemma A.2 (Bracketing the c.d.f. of Ti). Let η > 0. For all i ∈ N,

1− i(1− qηi−1)
⌊n

i ⌋ ≤ Pη(Ti ≤ n) ≤ 1− (1− qηi−1)
n ≤ nqηi−1. (18)

Proof. Since Ti = Ti − T0 =
∑i−1

k=0(Tk+1 − Tk) ≥ Ti − Ti−1,

Pη(Ti ≤ n) = Pη(

i−1∑
k=0

Tk+1 − Tk ≤ n)

≤ Pη(Ti − Ti−1 ≤ n)

= 1− (1− qηi−1)
n by Proposition A.1 (iv)

≤ 1− (1− nqηi−1) = nqηi−1 by Bernoulli’s inequality.

16



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

On the other hand,

Pη(Ti ≤ n) ≥ Pη(∀k ∈ {0, . . . , i− 1}, Tk − Tk−1 ≤ ⌊n
i
⌋) ≥ 1−

i−1∑
k=0

(1− qηk−1)
⌊n

i ⌋ by union bound

≥ 1− i(1− qηi−1)
⌊n

i ⌋,

which concludes the proof.

Lemma A.3. For all n ≥ 3 such that ηπ1n ≥ log 2, for all i ≥ J(n, η) + 1,

qηi ≤ 1

n− 2
e−ηπ1n(i−J(n,η)−1).

In particular, under the same conditions on n and η, for all i ≥ J(n, η) + 2,

qηi ≤ e−ηπ1n

n− 2
≤ e−ηπ1n.

Proof. Write h : (x, y) ∈ (0, 1) × R+ 7−→ xe−y

1−x , so that qηi+1 ≤ h(qηi ,
ηπ1

qηi
). This function h is increasing in x and

decreasing in y.

Now, let k ≥ 1, and assume that there exists 0 ≤ ck < n such that qηJ(n,η)+k ≤ 1
n−ck

e−ηπ1n(k−1). By definition of J(n, η),
this holds for k = 1 with c1 = 0.

Since i 7→ qηi is decreasing and J(n, η) + k + 1 > J(n, η), qηJ(n,η)+k+1 ≤ 1
n , so

qJ(n,η)+k+1 ≤ h(qJ(n,η)+k,
ηπ1

1/n
) =

1

n− ck
e−ηπ1nk

1

1− 1
n−ck

e−ηπ1n(k−1)

=
e−ηπ1nk

n− ck − e−ηπ1n(k−1)

thus the same inequality holds for qJ(n,η)+k+1 with ck+1 = ck + e−ηπ1n(k−1), and for all k ≥ 1, ck ≤ 1
1−e−ηπ1n . Since

ηπ1n ≥ log 2, ck ≤ 2 < n for all k ≥ 1 (and n ≥ 3), which concludes the proof.

Lemma A.4. Let η > 0. For all i ≥ 0,
qηi ≥ ηπ1

log(1/qηi+1)
.

In particular, for all i ≤ J(n, η)− 1,
qηi ≥ ηπ1

log n
.

Proof. First, for any i ≥ 1,

qηi =
qηi−1e

−ηπ1/q
η
i−1

1− qηi−1 + qηi−1e
−ηπ1/q

η
i−1

≤
qηi−1

1− qηi−1

e−ηπ1/q
η
i−1 ≤ e−ηπ1/q

η
i−1

since qηi−1 ≤ 1/2, which leads to the first inequality.

For the second, recall that by definition, for any i ≤ J(n, η), qηi ≥ 1
n , and use the first inequality.

Lemma A.5. Let δ > η > 0. Then, the sequence
( qδi
qηi

)
i≥0

is decreasing and tends to 0 when i tends to +∞.

Proof. Let ui :=
qδi
qηi

for all i ≥ 0. Then, by definition of qηi ,

ui+1 = ui ·
e−δπ1/q

δ
i

(1− qδi ) + qδi e
−δπ1/qδi

· (1− qηi ) + qηi e
−ηπ1/q

η
i

e−ηπ1/q
η
i

.

17



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

Let h(q, γ) :=
e−γπ1/q

(1− q) + qe−γπ1/q
. Then, for all 0 < q < 1 and γ > 0,

∂h

∂γ
(q, γ) =

−π1

q e−γπ1/q
(
1− q + qe−γπ1/q

)
− e−γπ1/q(−π1e

−γπ1/q)(
1− q + qe−γπ1/q

)2
=

−π1

q e−γπ1/q
(
1− q

)
(
1− q + qe−γπ1/q

)2 < 0.

And, for all 0 < q < 1 and γ > 0,

∂h

∂q
(q, γ) =

γπ1

q2 e−γπ1/q
(
1− q + qe−γπ1/q

)
− e−γπ1/q

(
− 1 + e−γπ1/q(1 + γπ1

q )
)

(
1− q + qe−γπ1/q

)2
=

γπ1

q2 e−γπ1/q(1− q)− e−γπ1/q(−1 + e−γπ1/q)(
1− q + qe−γπ1/q

)2
= e−γπ1/q

γπ1

q2 (1− q) + 1− e−γπ1/q(
1− q + qe−γπ1/q

)2 > 0.

Hence h is decreasing in γ and increasing in q. Let i ≥ 0. Since δ > η, qδi ≤ qηi and ui > 0,

0 <
ui+1

ui
=

h(qδi , δ)

h(qηi , η)
≤ h(qηi , δ)

h(qηi , η)

<
h(qηi ,η)

h(qηi ,η)
= 1

= e−δπ1/q
η
i

1−qηi +qηi e
−δπ1/q

η
i
· 1−qηi +qηi e

−ηπ1/q
η
i

e−ηπ1/q
η
i

∼ e
− (δ−η)

q
η
i

π1 −→ 0

since qηi −→ 0 when i → +∞. Therefore, (ui)i≥1 is decreasing and tends to 0.

Lemma A.6. Let η > 0 such that ηπ1 < 1. For all i ≤ I(η),

1

2
− iηπ1 ≤ qηi ≤ 1

2
− i

ηπ1

4
. (19)

Therefore,
1

2ηπ1
− 2 ≤ I(η)

and when ηπ1 ≤ 1
2 ,

I(η) ≤ 2

ηπ1
− 4.

Proof. Let’s prove (19) first, starting with the lower bound. For all i,

qηi − qηi+1 =
qηi (1− qηi )(1− e−ηπ1/q

η
i )

1− qηi + qηi e
−ηπ1/q

η
i

≤ qηi (1− e−ηπ1/q
η
i ) ≤ qηi

ηπ1

qηi
= ηπ1

since 1−qηi

1−qηi +qηi e
−ηπ1/q

η
i
≤ 1 and 1− e−x ≤ x. Thus, by summation,

qηi ≥ 1

2
− ηπ1i.

18



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

Conversely, for all i ≤ I(η),

qηi − qηi+1 =
qηi (1− qηi )(1− e−ηπ1/q

η
i )

1− qηi + qηi e
−ηπ1/q

η
i )

≥ (1− qηi )q
η
i (1− e−ηπ1/q

η
i )

≥ (1− qηi )(ηπ1 −
1

2

(ηπ1)
2

qηi
) since 1− e−x ≥ x− x2/2

≥ (1− 1

2
)(ηπ1 −

ηπ1

2
) since ηπ1 ≤ qηi ≤ 1/2 for i ≤ I(η)

=
ηπ1

4
.

The upper bound on qηi follows by summation. For the bracketing I(η), by definition of I(η) and (19),

ηπ1 ≥ qηI(η)+1 ≥ 1

2
− (I(η) + 1)ηπ1

and when ηπ1 ≤ 1/2,

ηπ1 ≤ qηI(η) ≤
1

2
− I(η)

ηπ1

4
.

Therefore,
1

2ηπ1
− 2 ≤ I(η) ≤ 2

ηπ1
− 4.

Lemma A.7. Let δ and η such that 1
π1

> η > δ > 0. Then for all i ≥ 0,

0 ≤ qδi − qηi ≤ (η − δ)
8

δπ1

( 8
δπ1

)i − 1
8

δπ1
− 1

.

Proof. Let

g1(δ, q) =
qe−δπ1/q

1− q + qe−δπ1/q
.

From Equation (21), for 1
π1

> η > 0 and q ∈ (0, 1
2 ),∣∣∣∣∂g1(η, q)∂η

∣∣∣∣ = (1− q)π1e
−ηπ1/q

(1− q + qe−ηπ1/q)2

≤ π1e
−ηπ1/q

1− q + qe−ηπ1/q

≤ 2π1e
−ηπ1/q,

since 1− q + qe−ηπk/q ≥ 1− q ≥ 1
2 . And from Equation (22), for 1

π1
> η > 0 and q ∈ (0, 1

2 ),

∂g1(η, q)

∂q
=

e−ηπ1/q(1 + (1−q)ηπ1

q )

(1− q + qe−ηπ1/q)2

≤ e−ηπ1/q

q
4(1 + ηπ1)

≤ 8
e−ηπ1/q

q
.

In particular, since π1 ≤ 1 ≤ 1
q ,

max

(
∂g1(η, q)

∂q
,

∣∣∣∣∂g1(η, q)∂η

∣∣∣∣) ≤ 8
e−δπ1/q

q
≤ 8

δπ1
,

19
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where we used ex ≥ x applied to x = δπ1

q . Let η > δ, then by the mean value theorem, for all i ≥ 0,

qδi+1 − qηi+1 = qδi+1 − g1(η, q
δ
i ) + g1(η, q

δ
i )− qηi+1

≤ 8
e−δπ1/q

δ
i

qδi

(
qδi − qηi + η − δ

)
≤ 8

δπ1
(qδi − qηi + η − δ).

Therefore, since qδ0 = qη0 = 1
2 , iterating this equation leads to: for all i ≥ 0,

qδi − qηi ≤
i−1∑
k=0

(
8

δπ1

)k+1

(η − δ)

= (η − δ)
8

δπ1

( 8
δπ1

)i − 1
8

δπ1
− 1

.

The inequality qδi − qηi ≥ 0 follows from the fact that δ 7→ qηi is non-increasing, see Lemma A.1 (ii).

A.2. For a decreasing learning rate

In this section, we prove all the results concerning Section 4.

A.2.1. PROOF OF PROPOSITION 4.1: CHOICE OF A STOPPING TIME.

Let η0 ∈ Θ and 1 ≤ k ≤ K.

pηn

k,t+1 =
pηn

k,te
−ηnπk/p

ηn
k,t

(1− pηn

k,t) + pηn

k,te
−ηnπk/p

ηn
k,t

1It=k +

K∑
j=1
j ̸=k

pηn

k,t

(1− pηn

j,t) + pηn

j,te
−ηnπj/p

ηn
j,t

1It=j .

For any q ∈ [0, 1], 1− q + qe−ηπk/q ≤ 1. Therefore,

pηn

k,t+1 ≥ pηn

k,te
−ηnπk/p

ηn
k,t1It=k +

K∑
j=1
j ̸=k

pηn

k,t1It=j .

Since e−ηnπk/p
ηn
k,t ≤ 1,

pηn

k,t+1 ≥ pηn

k,te
−ηnπk/p

ηn
k,t1It=k +

K∑
j=1
j ̸=k

pηn

k,te
−ηnπk/p

ηn
k,t1It=j = pηn

k,te
−ηnπk/p

ηn
k,t ≥ pηn

k,t(1−
ηnπk

pηn

k,t

) = pηn

k,t − ηnπk.

Summing from 1 to t, since pηn

k,1 = 1
K ,

pηn

k,t ≥
1

K
− ηnπkt.

Hence, choosing Υn =
⌊
(
1

K
− ε)

nα

R

⌋
implies that for all η0 ∈ Θ, t ≤ Υn and 1 ≤ k ≤ K,

ε ≤ 1

K
− R

nαπ1
π1Υn =

1

K
−Rnπ1Υn ≤ 1

K
− ηnπ1Υn ≤ 1

K
− ηnπkΥn ≤ 1

K
− ηnπkt ≤ pηn

k,t.

A.2.2. PROOF OF LEMMA 4.3: LIPSCHITZ CHARACTER OF THE UPDATED PROBABILITY.

Recall that, for η0 ∈ Θ, for all 1 ≤ k ≤ K, for all t ≤ Υn − 1,

pηn

k,t+1 =
pηn

k,te
−ηnπk/p

ηn
k,t

(1− pηn

k,t) + pηn

k,te
−ηnπk/p

ηn
k,t

1It=k +

K∑
j=1
j ̸=k

pηn

k,t

(1− pηn

j,t) + pηn

j,te
−ηnπj/p

ηn
j,t

1It=j .

20



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

For all 1 ≤ k ≤ K, denote by hk and gk the following functions:

hk(η, q) :=
1

1− q + qe−ηπk/q
and gk(η, q) = qe−ηπk/qhk(η, q).

Then,

pηn

k,t+1 = gk(ηn, p
ηn

k,t)1It=k +

K∑
j=1
j ̸=k

pηn

k,thj(ηn, p
ηn

j,t)1It=j .

Let δ0, δ′0 ∈ Θ. Let 1 ≤ k ≤ K. Then, for all t ≤ Υn − 1,

|pδnk,t+1 − p
δ′n
k,t+1| ≤ |gk(δn, pδnk,t)− gk(δ

′
n, p

δ′n
k,t)|1It=k +

K∑
j=1
j ̸=k

|pδnk,thj(δn, p
δn
j,t)− p

δ′n
k,thj(δ

′
n, p

δ′n
j,t)|1It=j . (20)

The following lemma controls the derivatives of hk and gk and is proved at the end of the current section. Recall that
π1 ≥ πk ≥ 0 for all k.

Lemma A.8. Let k ∈ {1, . . . ,K}. For all η > 0 such that ηπ1 < 1,

0 ≤ hk(η, q) ≤ 1
1−ηπ1

0 ≤ ∂hk

∂q (η, q) ≤ 1
(1−ηπ1)2

(ηπ1

q ∧ 1)2

0 ≤ ∂hk

∂η (η, q) ≤ π1

1−ηπ1

−π1 ≤ ∂gk
∂η (η, q) ≤ 0

0 ≤ ∂gk
∂q (η, q) ≤ 1

(1−ηπ1)2
.

Let us now consider the two cases. Let n0 be such that Rn−α
0 ≤ ε2, so that ηnπ1 ≤ ε2 ≤ ε for all n ≥ n0 and η0 ∈ Θ,

and let Rn = R
nαπ1

. Recall that Υn = ( 1
K − ε)n

α

R is chosen such that pηn

k,t ≥ ε for all k, t ≤ Υn and η0 ∈ Θ with
Proposition 4.1.

• If It = j ̸= k, then, by the triangle inequality,

|pδnk,t+1 − p
δ′n
k,t+1| ≤ |pδnk,thj(δn, p

δn
j,t)− pδnk,thj(δ

′
n, p

δ′n
j,t)|+ |pδnk,thj(δ

′
n, p

δ′n
j,t)− p

δ′n
k,thj(δ

′
n, p

δ′n
j,t)|

≤ |hj(δn, p
δn
j,t)− hj(δ

′
n, p

δ′n
j,t)|+ hj(δ

′
n, p

δ′n
j,t)|p

δn
k,t − p

δ′n
k,t|

≤ |hj(δn, p
δn
j,t)− hj(δn, p

δ′n
j,t)|+ |hj(δn, p

δ′n
j,t)− hj(δ

′
n, p

δ′n
j,t)|+ hj(δ

′
n, p

δ′n
j,t)∥p

δn
t − p

δ′n
t ∥∞.

Then, by Lemma A.8 and the mean value theorem, for all n ≥ n0,

|pδnk,t+1 − p
δ′n
k,t+1| ≤

(
1

1−Rnπ1
+

(Rnπ1)
2

ε2(1−Rnπ1)2

)
∥pδnt − p

δ′n
t ∥∞ +

π1

1−Rnπ1
|δn − δ′n|.

• If It = k, then, by the triangle inequality, Lemma A.8 and the mean value theorem, for all n ≥ n0,

|pδnk,t+1 − p
δ′n
k,t+1| ≤ |gk(δn, pδnk,t)− gk(δ

′
n, p

δn
k,t)|+ |gk(δ′n, p

δn
k,t)− gk(δ

′
n, p

δ′n
k,t)|

≤ π1|δn − δ′n|+
1

(1−Rnπ1)2
|pδ

′
n

k,t − pδnk,t|

≤ π1|δn − δ′n|+
1

(1−Rnπ1)2
∥pδ

′
n

t − pδnt ∥∞.

Thus, almost surely, for all n ≥ n0 and t ≤ Υn − 1,

∥pδ
′
n

t+1 − pδnt+1∥∞ ≤
1−Rnπ1 + (Rnπ1

ε )2

(1−Rnπ1)2
∥pδ

′
n

t − pδnt ∥∞ +
π1

1−Rnπ1
|δn − δ′n|.
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Now, ∥pδ
′
n

1 − pδn1 ∥∞ = 0, so that

∥pδ
′
n

t − pδnt ∥∞ ≤ π1

1−Rnπ1
|δn − δ′n|

t−1∑
s=1

(
1−Rnπ1 + (Rnπ1

ε )2

(1−Rnπ1)2

)s−1

.

The latter quantity is an increasing function of t, thus for all t ≤ Υn,

∥pδ
′
n

t − pδnt ∥∞ ≤ π1

1−Rnπ1
|δn − δ′n|

(
1−Rnπ1+(

Rnπ1
ε )2

(1−Rnπ1)2

)Υn−1

− 1

1−Rnπ1+(
Rnπ1

ε )2

(1−Rnπ1)2
− 1

.

Now,
1−Rnπ1 + (Rnπ1

ε )2

(1−Rnπ1)2
= 1 +Rnπ1 + u.

where 0 ≤ u ≤ c(Rnπ1)
2 for some numerical constant c, for instance c = 76

9 , since Rnπ1 ≤ ε2 ≤ 1
4 . Therefore,(

1−Rnπ1 + (Rnπ1

ε )2

(1−Rnπ1)2

)Υn−1

= exp((Υn − 1) log(1 +Rnπ1 + u)) = exp(ΥnRnπ1 + ũ)

where |ũ| ≤ Rnπ1 + c̃Υn(Rnπ1)
2 for some numerical constant c̃, for instance c̃ = 22. Recall that Υn = ( 1

K − ε)
nα

R
=

1
K − ε

Rnπ1
, so that |ũ| ≤ 12Rnπ1 ≤ 3 and

(
1−Rnπ1 + (Rnπ1

ε )2

(1−Rnπ1)2

)Υn−1

= exp(
1

K
− ε) exp(ũ).

All in all,

∥pδ
′
n

t − pδnt ∥∞ ≤ π1|δn − δ′n|
Rnπ1 + u

(
exp(

1

K
− ε) exp(ũ)− 1

)
≤ c′

|δ0 − δ′0|
R

for some numerical constant c′, for instance c′ = 11.

Proof of Lemma A.8. First of all, using e−x ≥ 1− x and 1− ηπk ≥ 1− ηπ1 > 0,

hk(η, q) ≤
1

1− ηπk
≤ 1

1− ηπ1
.

Let’s study the derivatives of hk:
∂hk

∂q
(η, q) =

1− e−ηπk/q(1 + ηπk

q )

(1− q + qe−ηπk/q)2
≥ 0

since e−x(1 + x) ≤ 1, and

∂hk

∂q
(η, q) ≤


1−(1− ηπk

q )(1+
ηπk
q )

(1−q+qe−ηπk/q)2
≤ (

ηπ1
q )2

(1−ηπ1)2
if ηπk/q ≤ 1

1
(1−q+qe−ηπk/q)2

≤ 1
(1−ηπ1)2

if ηπk/q > 1

Similarly, since 1− q + qe−x ≥ (1− q)e−x + qe−x = e−x for any x ≥ 0,

∂hk

∂η
(η, q) =

πke
−ηπk/q

(1− q + qe−ηπk/q)2
≤ πk

1− ηπk
≤ π1

1− ηπ1
.
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Now let’s study the derivatives of gk. For all q ∈ (ε, 1],

∂gk(η, q)

∂η
=

−(1− q)πke
−ηπk/q

(1− q + qe−ηπk/q)2
≤ 0. (21)

Thus,

−∂gk(η, q)

∂η
≤ (1− q)πk

1− q + qe−ηπk/q
≤ πk ≤ π1,

and

∂gk(η, q)

∂q
= e−ηπk/qhk(η, q) + q

ηπk

q2
e−ηπk/qhk(η, q) + qe−ηπk/q

∂hk(η, q)

∂q

=
e−ηπk/q

(1− q + qe−ηπk/q)2

(
(1 +

ηπk

q
)(1− q + qe−ηπk/q) + q(1− e−ηπk/q(1 +

ηπk

q
))

)
=

e−ηπk/q(1 + (1−q)ηπk

q )

(1− q + qe−ηπk/q)2
≥ 0. (22)

Now, since ex ≥ 1 + x, 1 + (1−q)ηπk

q ≤ 1 + ηπk

q ≤ eηπk/q , so

∂gk(η, q)

∂q
≤ 1

(1− q + qe−ηπk/q)2
≤ 1

(1− ηπk)2
≤ 1

(1− ηπ1)2
.

A.2.3. PROOF OF PROPOSITION 4.4

For δ0 ∈ Θ, recall that Xδn = ℓn,ε(δ0)−
Υn∑
t=1

K∑
k=1

log(pδnk,t)p
ηn

k,t. For t ≥ 1, let

Y δn
t :=

K∑
k=1

log(pδnk,t)1It=k

and let

Cδn
t = Eηn

[Y δn
t |Ft] =

K∑
k=1

log(pδnk,t)p
ηn

k,t

be its compensator. Then, Xδn =
∑Υn

t=1(Y
δn
t − Cδn

t ). Since η̂0 is the maximum likelihood estimator, the following
inequalities hold:

Υn∑
t=1

(Cηn

t − C η̂n

t ) ≤ ℓn,ε(η̂0)− ℓn,ε(η0)︸ ︷︷ ︸
≥0

−
Υn∑
t=1

(C η̂n

t − Cηn

t )

=

Υn∑
t=1

(Y η̂n

t − Y ηn

t − (C η̂n

t − Cηn

t ))

≤ sup
δ0∈Θ

Υn∑
t=1

(Y δn
t − Y ηn

t − (Cδn
t − Cηn

t )).

Let δ0, δ′0 ∈ Θ. Let Z1 = 0 and for 2 ≤ t ≤ Υn, let Zt =

t−1∑
s=1

(Y δn
s − Y

δ′n
s − (Cδn

s − C
δ′n
s )). Then, (Zt)t is an

(Ft)t-martingale. Indeed,

Eηn
[Zt+1|Ft] = Eηn

[Y δn
t − Y

δ′n
t |Ft]− (Cδn

t − C
δ′n
t )︸ ︷︷ ︸

=0

+

t−1∑
s=1

(Y δn
s − Y

δ′n
s − (Cδn

s − C
δ′n
s )) = Zt.
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Let Ak
t =

∑t
s=2 Eηn

[(Zs − Zs−1)
k|Fs−1] if t ≥ 2 and 0 if t = 1. Let λ ≥ 0. From Lemma 3.3 in (Houdré &

Reynaud-Bouret, 2002), the sequence (Et)t≥1 defined for all integers t ≥ 1 by

Et = exp(λZt −
∑
k≥2

λk

k!
Ak

t )

is a supermartingale with respect to the filtration (Ft)t. As a result, for any t ≥ 1,

Eηn [Et] ≤ Eηn [E1] = 1.

Therefore, for any t ≥ 1,

Eηn [exp(λZt)] ≤ Eηn [exp(
∑
k≥2

λk

k!
Ak

t )]. (23)

Let t ≥ 2. When there exists a constant CZ such that |Zs − Zs−1| ≤ CZ for all 2 ≤ s ≤ t almost surely, it holds for all
k ≥ 2,

|Ak
t | ≤

t∑
s=2

Eηn [(Zs − Zs−1)
2|Fs−1]C

k−2
Z . (24)

For all u ≥ 2,

Zu − Zu−1 =

K∑
k=1

log(
pδnk,u

p
δ′n
k,u

)(1Iu=k − pηn

k,u).

Hence,

|Zu − Zu−1| ≤
K∑

k=1

| log(
pδnk,u

p
δ′n
k,u

)| · |1Iu=k − pηn

k,u| ≤

(
sup

1≤k≤K
| log(

pδnk,u

p
δ′n
k,u

)|

)
K∑

k=1

|1Iu=k − pηn

k,u|.

Then, using the lipschitzianity of the log function on [ε, 1] and Lemma 4.3,

|Zu − Zu−1| ≤
2c

Rε
|δ0 − δ′0|.

Therefore, Equation (24) becomes

|Ak
t | ≤ (

2c

Rε
|δ0 − δ′0|)k−2

t∑
s=2

Eηn
[(Zs − Zs−1)

2|Fs−1]. (25)

Let us control the order 2 moment in the above equation:

t∑
s=2

Eηn [(Zs − Zs−1)
2|Fs−1] =

t∑
s=2

Eηn [(Y
δn
s − Y ηn

s − (Cδn
s − Cηn

s ))2|Fs−1]

=

t∑
s=2

Eηn

( K∑
k=1

log(
pδnk,s

p
δ′n
k,s

)(1It=k − pηn

k,s)

)2

|Fs−1


=

t∑
s=2

Eηn

[
K∑

k=1

log(
pδnk,s

p
δ′n
k,s

)2(1Is=k − pηn

k,s)
2|Fs−1

]

+

t∑
s=2

Eηn

∑
j ̸=k

log(
pδnk,s

p
δ′n
k,s

) log(
pδnj,s

p
δ′n
j,s

)(1Is=k − pηn

k,s)(1Is=j − pηn

k,s))|Fs−1


=

t∑
s=2

K∑
k=1

log(
pδnk,s

p
δ′n
k,s

)2(1− pηn

k,s)p
ηn

k,s −
t∑

s=2

∑
j ̸=k

log(
pδnk,s

p
δ′n
k,s

) log(
pδnj,s

p
δ′n
j,s

)pηn

k,sp
ηn

j,s,
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where for the last line we used that

Eηn
[(1Is=k − pηn

k,s)
2|Fs−1] = Vηn

[1Is=k|Fs−1] = (1− pηn

k,s)p
ηn

k,s

and
Eηn [(1Is=k − pηn

k,s)(1Is=ℓ − pηn

ℓ,s)|Fs−1] = −pηn

ℓ,sp
ηn

k,s.

Therefore,

t∑
s=2

Eηn
[(Zs − Zs−1)

2|Fs−1] =

t∑
s=2

K∑
k=1

(log(
pδnk,s

p
δ′n
k,s

))2pηn

k,s −
t∑

s=2

∑
j,k

log(
pδnk,s

p
δ′n
k,s

) log(
pδnj,s

p
δ′n
j,s

)pηn

k,sp
ηn

j,s

=

t∑
s=2

 K∑
k=1

(log(
pδnk,s

p
δ′n
k,s

))2pηn

k,s −

(
K∑

k=1

log(
pδnk,s

p
δ′n
k,s

)pηn

k,s

)2


≤
t∑

s=2

K∑
k=1

(log(
pδnk,s

p
δ′n
k,s

))2pηn

k,s.

The log function is lipschitz on [ε, 1], and its lipschitz constant is 1
ε . Therefore,

t∑
s=2

Eηn
[(Zs − Zs−1)

2|Fs−1] ≤
1

ε2

t∑
s=2

K∑
k=1

(pδnk,s − p
δ′n
k,s)

2pηn

k,s,

and by Lemma 4.3,

t∑
s=2

Eηn [(Zs − Zs−1)
2|Fs−1] ≤

c2

R2ε2

t∑
s=2

K∑
k=1

|δ0 − δ′0|2p
ηn

k,s

=
c2

R2ε2
|δ0 − δ′0|2(t− 1). (26)

Injecting (26) and (25) in (23),

Eηn
[exp(λZΥn+1)] ≤ Eηn

exp
λ2 c2

R2ε2
|δ0 − δ′0|2Υn

∑
k≥2

λk−2

k!
(
2c

Rε
|δ0 − δ′0|)k−2

 .

For all k ≥ 0, (k + 2)! ≥ 2k+1, so

∀|λ| < (
c

Rε
|δ0 − δ′0|)−1, Eηn

[exp(λZΥn+1)] ≤ exp

 ( λc
Rε |δ0 − δ′0|)2Υn

2(1− λc

Rε
|δ0 − δ′0|)

 .

To conclude, note that ZΥn+1 = Xδn −Xδ′n
.

A.2.4. PROOF OF THEOREM 4.5

The goal is to apply Theorem 2.1 of (Baraud, 2010). The distance d(·, ·) derives from a norm, and for all δ0 ∈ Θ,

d(δ0, η0) =
c

Rε
|δ0 − η0| ≤

c(R− r)

Rε
≤ c

ε
.

Therefore, Assumption 2.2 in (Baraud, 2010) is verified for the constants v = c
ε

√
Υn and b = c

ε , so that

∀x ≥ 0, Pηn

[
Zn ≥ κ(v

√
x+ 1 + b(x+ 1))

]
≤ e−x

with κ = 18.
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A.2.5. PROOF OF THEOREM 4.2

Take the notations of Section A.2.3. Since η̂0 is the maximum likelihood estimator, the following inequalities hold:

Υn∑
t=1

(Cηn

t − C η̂n

t ) ≤ ℓn,ε(η̂0)− ℓn,ε(η0)︸ ︷︷ ︸
≥0

−
Υn∑
t=1

(C η̂n

t − Cηn

t )

=

Υn∑
t=1

(Y η̂n

t − Y ηn

t − (C η̂n

t − Cηn

t ))

≤ sup
δ0∈Θ

Υn∑
t=1

(Y δn
t − Y ηn

t − (Cδn
t − Cηn

t )).

Note that
Υn∑
t=1

(Cηn

t − C η̂n

t ) =

Υn∑
t=1

K∑
k=1

log(
pηn

k,t

pη̂n

k,t

)pηn

k,t,

so that using Pinsker’s inequality,

Υn∑
t=1

(Cηn

t − C η̂n

t ) ≥ 2

Υn∑
t=1

(
K∑

k=1

|pηn

k,t − pη̂n

k,t|

)2

.

By comparison of the norms,

=

(
K∑

k=1

|pηn

k,t − pη̂n

k,t|

)2

≥
K∑

k=1

|pηn

k,t − pη̂n

k,t|
2 = ∥pηn

t − pη̂n

t ∥22.

Thus,
Υn∑
t=1

(Cηn

t − C η̂n

t ) ≥ 2

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22.

All in all,

2

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22 ≤ sup
δ0∈Θ

Υn∑
t=1

(Y δn
t − Y ηn

t − (Cδn
t − Cηn

t )) = Zn.

Using Theorem 4.5 with the same constants,

∀x ≥ 0, Pηn

[
2

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22 ≥ 18c

ε

(√
Υn

√
x+ 1 + x+ 1)

)]
≤ e−x,

that is,

∀x ≥ 0, Pηn

[
1

Υn

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22 ≥ 9c

ε

(√
x+ 1

Υn
+

x+ 1

Υn

)]
≤ e−x.

A.3. Application to a special case

In this section, we prove all the results of Section 5. Some lemmas are used for the two propositions. They can be found at
the end of each section.

A.3.1. PROOF OF PROPOSITION 5.1: A LOWER BOUND ON THE PREDICTION ERROR.

By Lemma A.9, there exists Dπ1
such that

|pη̂n

1,t − pηn

1,t| ≥ Dπ1 |η̂n − ηn|e−(t−2)Rnπ1/εNt−1.
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Taking the square and summing,

Υn∑
t=1

|pδn1,t − pηn

1,t|2 ≥ D2
π1
|η̂n − ηn|2

Υn∑
t=1

e−2(t−2)Rnπ1/εN2
t−1 ≥ D2

π1
|η̂n − ηn|2e−2ΥnRnπ1/ε

Υn∑
t=1

N2
t−1.

Since Υn = (
1

2
− ε)

nα

R
,

Υn∑
t=1

|pδn1,t − pηn

1,t|2 ≥ D2
π1
|η̂n − ηn|2e−(1−2ε)/ε

Υn∑
t=1

N2
t−1.

Let mπ1,ε := D2
π1
e−(1−2ε)/ε. Then,

Υn∑
t=1

|pδn1,t − pηn

1,t|2 ≥ mπ1,ε|η̂n − ηn|2
Υn∑
t=1

N2
t−1,

which is the desired result.

Lemma A.9. Recall that R = max{δ0, δ0 ∈ Θ} =
( 1
K − ε)nα

Υn
. Let Nt =

∑t
s=1 1Is=1. Let η0, δ0 ∈ Θ. There exists

Dπ1 > 0, such that for any t ∈ {1, . . . ,Υn}

|pδn1,t+1 − pηn

1,t+1| ≥ Dπ1 |ηn − δn|
t∑

s=1

e−(t−s)Rnπ1/ε1Is=1 ≥ Dπ1 |ηn − δn|e−(t−1)Rnπ1/εNt. (27)

Proof. Suppose δ0 ≤ η0. Then, for all t ≥ 1,
pδn1,t ≥ pηn

1,t.

Indeed, the result holds for t = 1. Assume it is true for t ∈ N. If It = 2, then

pδn1,t+1 = pδn1,t ≥ pηn

1,t = pηn

1,t+1.

If It = 1, then
pδn1,t+1 = g(pδn1,t, δn) ≥ g(pδn1,t, ηn) ≥ g(pηn

1,t, ηn) = pηn

1,t+1

where g is the function defined in the proof of Lemma A.1 and verifies that q 7→ g(q, η) is an increasing function and
η 7→ g(q, η) is a decreasing function. Hence the result. Let’s examine

pδn1,t+1 − pηn

1,t+1 = (pδn1,t − pηn

1,t)1It=2 + (g(pδn1,t, δn)− g(pηn

1,t, ηn))1It=1.

Recall that R = maxΘ. Using Lemma A.10,

g(pδn1,t, δn)− g(pηn

1,t, ηn) ≥ g(pδn1,t, δn)− g(pηn

1,t, δn) + g(pηn

1,t, δn)− g(pηn

1,t, ηn)

≥ e−Rnπ1/ε(pδn1,t − pηn

1,t) +Dπ1(ηn − δn).

Therefore,

pδn1,t+1 − pηn

1,t+1 ≥ (pδn1,t − pηn

1,t)1It=2 +
(
e−Rnπ1/ε︸ ︷︷ ︸

≤1

(pδn1,t − pηn

1,t) +Dπ1(ηn − δn)
)

1It=1

≥ e−Rnπ1/ε(pδn1,t − pηn

1,t)1It=2 + (e−Rnπ1/ε(pδn1,t − pηn

1,t) +Dπ1(ηn − δn))1It=1

≥ e−Rnπ1/ε(pδn1,t − pηn

1,t) +Dπ1
(ηn − δn)1It=1.

Therefore, iterating,

pδn1,t+1 − pηn

1,t+1 ≥ Dπ1(ηn − δn)

t∑
s=1

1Is=1e
−(t−s)Rnπ1/ε.

The proof is the same for δ0 > η0.
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Lemma A.10. For all γπ1 ∈ (0, 1] and q ∈ [max(ε, γπ1),
1
2 ],

|∂g1(γ, q)
∂γ

| ≥ π1e
−1

2
=: Dπ1

and
∂g1(γ, q)

∂q
≥ e−γπ1/ε.

Proof. In (21), for all γπ1 ∈ (0, 1] and q ∈ [max(ε, γπ1),
1
2 ],

|∂g1(γ, q)
∂γ

| = (1− q)π1e
−γπ1/q

((1− q) + qe−γπ1/q)2

≥ π1e
−1

2((1− q) + qe−γπ1/q)2
since q ≤ 1

2

≥ π1e
−1

2
=: Dπ1 using that 1− q + qe−γπ1/q ≤ 1.

Similarly, using (22), for all q ∈ [ε, 1
2 ],

∂g1(γ, q)

∂q
=

e−γπ1/q(1 + 1−q
q γπ1)

((1− q) + qe−γπ1/q)2

≥ e−γπ1/ε

((1− q) + qe−γπ1/q)2

≥ e−γπ1/ε.

Lemma A.11. Let δ1, δ2, ε1, ε2 be positive numbers. Let X and Y be two random variables such that P(X ≥ ε1) ≤ δ1
and P(Y ≥ ε2) ≤ δ2. Then,

P(X + Y ≥ ε1 + ε2) ≤ δ1 + δ2.

Proof. It is a direct consequence from the inclusion {X+Y ≥ ε1+ε2} ⊂ {X ≥ ε1}∪{Y ≥ ε1} and the union bound.

A.3.2. PROOF OF PROPOSITION 5.2: AN UPPER BOUND ON THE ESTIMATION ERROR.

Let An :
Υn(Υn − 1)(2Υn − 1)

96
. By Lemma A.12, for all y > 0,

Pηn

(
An −

(2
5

√
2 log

2Υn

y
Υ

5
2
n +Υ2

n log
2Υn

y

)
≥

Υn∑
t=1

N2
t−1

)
≤ y. (28)

By Proposition 4.2, for all n ≥ (R/ε2)1/α and x ≥ 0,,

Pηn

(
Υn∑
t=1

∥pηn

t − pη̂n

t ∥22 <
9c

ε

(√
(x+ 1)Υn + x+ 1

))
≥ 1− e−x. (29)

By Proposition 5.1, there exists a constant mπ1,ε > 0, such that for all η0, η̂0 ∈ Θ,

Υn∑
t=1

|pη̂n

1,t − pηn

1,t|2 ≥ mπ1,ε|η̂n − ηn|2
Υn∑
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Since
Υn∑
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|pη̂n

1,t − pηn

1,t|2 =
1

2

Υn∑
t=1

∥pηn

t − pη̂n

t ∥22, injecting this result in Equation (29),
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(
2mπ1,ε|η̂n − ηn|2
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ε

(√
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≤ e−x,
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that is,

Pηn

(
|η̂n − ηn|2

Υn∑
t=1

N2
t−1 >

9c

2mπ1,εε

(√
(x+ 1)Υn + x+ 1

))
≤ e−x. (30)

Combining (28) and (30) with Lemma A.11,

Pηn

(
|η̂n − ηn|2An >

9c

2mπ1,εε

(√
(x+ 1)Υn + x+ 1

)
+ |η̂n − ηn|2
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Υ
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n log
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Υn∑
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(√
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y
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5
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n log
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))
≤ e−x + y.

Therefore, with probability at least 1− (e−x + y),
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5
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n log
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.

Recall that Υn =
(1
2
− ε
)nα

R
and that

|η̂n − ηn| =
1

nαπ1
|η̂0 − η0| =

1
2 − ε

Rπ1
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1

Υn
.

Let Bn :=
An
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n

. Then, with probability at least 1− (e−x + y),

|η̂0 − η0|2
(
Bn −

(2
5

√
2 log

2Υn

y
Υ

1
2
n + log

2Υn

y

))
≤ 9c(Rπ1)

2

2( 12 − ε)2mπ1,εε

(√
(x+ 1)Υn + x+ 1

)
,

that is,
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Choose y = e−x, then with probability at least 1− 2e−x,
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1
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√
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Lemma A.12. Let An :=
Υn(Υn − 1)(2Υn − 1)

96
. For all y > 0,

Pηn

(
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Υ

5
2
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Proof. For t ≥ 0, let M0 = 0 and Mt =
∑t

s=1

(
1Is=1 − pηn

1,s

)
if t ≥ 1. Then (Mt) is an (Ft)-martingale. Indeed,

Eηn

[
Mt|Ft−1

]
=

t−1∑
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(
1Is=1 − pηn

1,s

)
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[
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]
− pηn

1,t︸ ︷︷ ︸
=0

= Mt−1.
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Using Lemma 3.3 in (Houdré & Reynaud-Bouret, 2002), for all λ,

Et := exp

λMt −
∑
k≥2

λk

k!

t∑
s=1

Eηn

[
(Ms −Ms−1)

k|Fs−1

]
is an (Ft)-supermartingale. Therefore,
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that is,
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]
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Eηn
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≤ Eηn

exp
∑
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|λ|k

k!
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Eηn

[
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] (32)

using the monotonicity of exp and the triangle inequality. The difference |Ms −Ms−1| is almost surely bounded:

|Ms −Ms−1| = |1Is=1 − pηn

1,s| ≤ 1, (33)

and it conditional variance can be controlled by
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=
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1,s ≤ 1
2 . Therefore, (33) and (34) imply
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]
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Injecting this equation in (31) shows that for all λ,
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]
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∑
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t

4

 = exp
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 .

Given that (k + 2)! ≥ 2k+1 for all k ≥ 0, for all λ ∈ (−2, 2),
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Let x > 0 and λ ∈ (0, 2). Then,

Pηn

(
|Mt| ≥ x

)
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Mt ≥ x

)
+ Pηn

(
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)
.

Using (37) and Chernoff’s bound,
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(
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)
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.
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It can be shown that

sup
λ∈[0,2)

(
λx− λ2/2t

4(1− λ/2)

)
= t · h(2x/t) ≥ 2x2

t+ 2x

where h(u) = 1 + u−
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2(1+u) for u > 0. Therefore,

Pηn

(
|Mt| ≥ x

)
≤ 2 exp

(
− 2x2

t+ 2x

)
.

That is
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For all t ≤ Υn, 0 ≤ Nt ≤ t and 0 ≤
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s=1 p
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Lemma A.13 (Inequality Reversal (Lemma 1 in (Peel et al., 2010))). Let X be a random variable and a, b > 0, c, d ≥ 0
such that

∀x > 0,P(|X| ≥ x) ≤ a exp
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− bx2
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)
.

Then,
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Using this Lemma, the previous equation implies: for all u > 0,
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Choosing y = Υnu, (39) becomes
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From the proof of Proposition 4.1 (see Section A.2.1), for s ≤ Υn, pηn
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Injecting this equation in Equation (40),
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B. NUMERICAL ILLUSTRATIONS
The numerical illustrations have been realized using R. All the material necessary for the reproduction of the simulations of
the article can be found on ArXiv or on GitHub : https://github.com/JulienAubert3/Exp3R. Let’s explain the link between
the different data files and the available algorithms.

• All the necessary functions are in the file myfunctions.R. It contains in particular the procedure Exp3, but also the
functions which calculate the MLE for a constant learning rate and the truncated MLE for a decreasing learning rate.

• The algorithm est etaconstant nveclarge.R generates the data file Data eta03 nveclarge1.Rdata
containing the estimators for a constant learning rate necessary for Figure 2.

• The algorithm Tmax comp.R generates the data file Tmax eta03 dec K41.Rdata containing the Υmax necessary
for Figure 3.

• The algorithm est etadecreasing.R generates the data file Data eta03 dec1.Rdata or
Data eta03 dec K41.Rdata (depending on the number of arms) containing the estimators for a decreasing
learning rate respectively for 2 arms and 4 arms. These data are used in Figures 4 and 5.

• The Markdown file Test Exp3.Rmd reproduces all the figures from the article for these different data files. To spare
the reader lengthy computations, the output of the functions est etaconstant nveclarge.R, Tmax comp.R
and est etadecreasing.R, is made available in the previous enumerated data files.
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