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Miscellaneous series with Cauchy and harmonic
numbers and their interpretation as Ramanujan

summation

Marc-Antoine Coppo
Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract We provide an overview of several series identities involving Cauchy
numbers and harmonic numbers, all of which are closely linked to certain alternat-
ing series with zeta (or harmonic zeta) values; we then give, for each of them, their
interpretation in terms of Ramanujan summation. We believe that this unusual
interpretation of still little-known formulas should be useful for further research
on the topic.

1 Reminder of some basic definitions
We first recall some basic facts about the Cauchy numbers (also known as Bernoulli
numbers of the second kind) and introduce various types of harmonic numbers.

a) The non-alternating Cauchy numbers {λn}n≥1 are defined explicitely by the
formula

λn :=
∫ 1

0
x(1− x) · · · (n− 1− x) dx .

Alternatively, they can be defined recursively by means of the relation
n−1∑
k=1

λk

k! (n− k) = 1
n

(n ≥ 2) .

The first ones are the following:

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.
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The non-alternating Cauchy numbers λn are closely linked to the Bernoulli num-
bers of the second kind bn through the relation

λn = n! |bn| (n ≥ 1) .

Otherwise, with the current notation cn used in [1], we simply have

λn = (−1)n−1 cn (n ≥ 1) .

b) The classical harmonic numbers {Hn}n≥1 are defined by

Hn =
n∑

j=1

1
j

= ψ(n+ 1) + γ ,

where ψ denotes the digamma function and γ = −ψ(1) is the Euler constant.

c) For any integer k ≥ 2, the generalized harmonic numbers {H(k)
n }n≥1 are defined

by

H(k)
n =

n∑
j=1

1
jk

= (−1)k−1

(k − 1)!∂
k−1ψ(n+ 1) + ζ(k) .

d) For any integer k ≥ 0, the (ordinary) Roman harmonic numbers {Hn,k}n≥1 are
defined by

Hn,0 = 1, and Hn,k =
∑

n≥j1≥···≥jk≥1

1
j1 j2 · · · jk

for k ≥ 1.

The Roman harmonic numbers can be expressed as polynomials in the generalized
harmonic numbers Hn, H

(2)
n , · · · , H(k)

n . More precisely, Hn,1 = Hn , and

Hn,k = 1
k! (Hn)k + · · ·+ 1

k
H(k)

n = Pk(Hn, · · · , H(k)
n ) (k ≥ 2) ,

where Pk are the modifed Bell polynomials (cf. [4, Eq. (18)]). In particular, we
have

Hn,2 = 1
2(Hn)2 + 1

2H
(2)
n ,

Hn,3 = 1
6(Hn)3 + 1

2HnH
(2)
n + 1

3H
(3)
n ,

etc.
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2 Overview of some known formulas
In this section, we review a number of more or less well-known identities with some
comments.

a) The formula
∞∑

n=1

λn

n!n = γ =
∞∑

n=2

(−1)n

n
ζ(n) (1)

is a classical representation of γ due to Mascheroni (for the first equality) and
Euler (for the second) which can be slightly modified as follows:

∞∑
n=1

λn

(n+ 1)!n = γ + log 2− 1 =
∞∑

n=2

(−1)n

n
{ζ(n)− 1} . (2)

b) The formula
∞∑

n=1

λn Hn

n!n = ζ(2)− 1 (3)

is a fairly known representation of ζ(2) = π2

6 which is in fact a particular case of
the more general formula

∞∑
n=1

λn Hn,k

n!n = ζ(k + 1)− 1
k

(k ≥ 1) ,

sometimes called Hermite’s formula (cf. [4]).

c) A non-trivial generalization of (1) consists of the following formula:
∞∑

n=1

λn

n!n2 = 1
2γ

2 + 1
2ζ(2) + γ1 −

∞∑
n=2

(−1)n

n
ζ(n+ 1) , (4)

where γ1 denotes the first Stieltjes constant. This notable identity is already known
(cf. [6]).

d) A non-trivial generalization of (3) consists of the following formula:
∞∑

n=1

λn H
(2)
n

n!n = ζ(3) + {γ + log(2π)− 12 log(A)} ζ(2) +
∞∑

n=2

(−1)n

n
ζ(n+ 2) (5)

where A is the Glaisher-Kinkelin constant. This identity results directly from [6,
Eq. (19)] and the well-known relation:

ζ ′(2) = (γ + log(2π)− 12 log(A)) ζ(2) .
Remark 1. No explicit formula, even conjectural, appears to be known for the sum
∞∑

n=1

λn H
(k)
n

n!n for k > 2 (see however Remark 4 below).
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3 Two additional formulas
We now give two new formulas deduced from [1, Proposition 1] which is a powerful
tool for obtaining identities with Cauchy numbers.
a) Applying [1, Eq. (5)] with f(x) = ψ(x+ 1) + γ

x
, and using the binomial identity

H(2)
n =

n∑
k=1

(−1)k−1
(
n

k

)
Hk

k
,

we obtain this new formula:
∞∑

n=1

λn H
(2)
n

n! = ζ(2)−
∞∑

n=2

(−1)n

n
ζ(n+ 1) . (6)

Moreover, writingH(2)
n = H

(2)
n−1+ 1

n2 and using (4) leads to another notable identity:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = 1
2ζ(2)− 1

2γ
2 − γ1 . (7)

As a consequence of [5, Eq. (14)]), this last identity may also be rewritten as
follows:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = ζ(2)−
∞∑

n=2

(−1)n

n
ζH(n) , (7 bis)

where ζH denotes the harmonic zeta function defined by

ζH(s) =
∞∑

n=1

Hn

ns
(Re(s) > 1) .

Remark 2. It should be noted that, in contrast to series
∑
n≥1

λn H
(k)
n

n! for k ≥ 2,

∑
n≥1

λn Hn

n! is a divergent series since λn Hn

n! ∼ 1
n log(n) , n→ +∞ .

b) Applying [1, Eq. (5)] with f(x) = ψ(x+ 1) + γ

x+ 1 , and using the binomial identity

Hn

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 ,

we deduce the identity
∞∑

n=1

λnHn

(n+ 1)! = 1
2ζ(2) + log 2− 1 +

∞∑
n=3

(−1)n

n

{
n∑

k=2
(ζ(k)− 1)

}
(8)
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which is a refinement of a formula previously given by Boyadzhiev ([1, Example
5]). Moreover, substracting (8) from (3) allows us to write the following formula:

∞∑
n=1

λn Hn

(n+ 1)!n = 1
2ζ(2)− log 2−

∞∑
n=3

(−1)n

n

{
n∑

k=2
(ζ(k)− 1)

}
(9)

which is a modification of (3) quite similar to (2).

4 Interpretation as Ramanujan summation

If ∑Rn≥1 denotes the R-sum of the series (i.e. the sum of the series in the sense of
Ramanujan’s summation method), then, under certain appropriate conditions of
growth and analyticity, we can make use of the transformation formula given by
[3, Theorem 18] and write the formula (cf. [6, Eq. (10)]):

∞∑
n=1

λn

n!n

n∑
k=1

(−1)k−1
(
n

k

)
k f(k) =

R∑
n≥1

f(n) . (10)

This allows us to give, for each of the previous series identities, an interesting
interpretation in terms of Ramanujan summation.

a) Thus, by means of the identities

1 =
n∑

k=1
(−1)k−1

(
n

k

)

and
1

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
k

k + 1 ,

we obtain respectively
∞∑

n=1

λn

n!n =
R∑

n≥1

1
n

(A)

and the shifted formula
∞∑

n=1

λn

(n+ 1)!n =
R∑

n≥1

1
n+ 1 (B)

b) By means of the binomial identity

Hn =
n∑

k=1
(−1)k−1

(
n

k

)
1
k
,
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we obtain
∞∑

n=1

λn Hn

n!n =
R∑

n≥1

1
n2 (C)

and, by inversion of this identity,

∞∑
n=1

λn

n!n2 =
R∑

n≥1

Hn

n
(D)

Remark 3. Formula (D) is a particular case of the more general formula (cf. [6,
Eq. (12)]):

∞∑
n=1

λn

n!nk
=
R∑

n≥1

Hn,k−1

n
(k ≥ 1) .

c) By means of the identity

H(2)
n =

n∑
k=1

(−1)k−1
(
n

k

)
Hk

k
,

we obtain
∞∑

n=1

λn H
(2)
n

n!n =
R∑

n≥1

Hn

n2 (E)

and, by inversion of this identity,

∞∑
n=1

λn Hn

n!n2 =
R∑

n≥1

H(2)
n

n
(F)

Remark 4. Formulas (C) and (E) are two particular cases of the more general
formula (cf. [6, Eq. (11)]):

∞∑
n=1

λn H
(k)
n

n!n =
R∑

n≥1

Hn,k−1

n2 (k ≥ 1) .

d) By means of the binomial identity

Hn

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 ,
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we obtain the self-reciprocal identity

∞∑
n=1

λn Hn

(n+ 1)!n =
R∑

n≥1

Hn

n(n+ 1) (G)

e) In order to give an interpretation of the series
∞∑

n=1

λn H
(2)
n

n! in terms of Ramananu-

jan summation, we can make use of the binomial identity

nH(2)
n = n+

n∑
k=2

(−1)k−1
(
n

k

)
1−Hk

k − 1 (11)

which is obtained by inversion of the identity ([2, Eq. (5.24)]):

n∑
k=1

(−1)k−1
(
n

k

)
kH

(2)
k = 1−Hn

n− 1 for n ≥ 2 .

Applying (10) to the function

f(x) = ψ(x+ 1) + γ − 1
x(x− 1) ,

which verifies
f(1) = lim

x→1

ψ(x+ 1) + γ − 1
x(x− 1) = ζ(2)− 1 ,

and
f(n) = Hn − 1

n(n− 1) for n ≥ 2 ,

we deduce, by means of the binomial identity (11), the formula

∞∑
n=1

λn H
(2)
n

n! = ζ(2)−
R∑

n≥1

Hn − 1
n(n− 1) (H)

Remark 5. Very recently, Young [7] has established the following identity:

∞∑
n=1

λn H
(k+1)
n

n! = ζ(k + 1)−
R∑

n≥1

Hn,k −Hn,k−1

n(n− 1) (k ≥ 1)

which is a deep generalization of our formula (H).
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