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On some constants related to the harmonic zeta
function

Marc-Antoine Coppo∗ and Bernard Candelpergher
Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract Using Ramanujan’s summation method applied to certain specific di-
vergent series involving harmonic numbers and powers of logarithms, we define a
variety of noteworthy constants and study their properties. In particular, we clar-
ify their close connection with the Stieltjes constants of the harmonic zeta function
ζH .

Keywords Harmonic zeta function; Stieltjes constants; zeta values; Bernoulli
numbers; digamma function; Ramanujan summation of divergent series.

1 Introduction
The harmonic zeta function ζH is defined for Re(s) > 1 by

ζH(s) :=
∞∑

n=1

Hn

ns
,

where, for all integers n ≥ 1,

Hn = 1 + 1
2 + · · ·+ 1

n

are the classical harmonic numbers. Four decades ago, completing Euler’s original
research [11], Apostol and Vu [1] and Matsuoka [12] showed that this function
could be continued as a meromorphic function with a double pole at s = 1, and
simple poles at s = 0 and at odd negative integers. The Laurent expansion of the
harmonic zeta function ζH around its double pole can be written as

ζH(s) = 1
(s− 1)2 + γ

s− 1 +
∞∑

k=0

(−1)k

k! γ
(k)
H (s− 1)k (0 < |s− 1| < 1) ,
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where γ = −Γ ′(1) is Euler’s constant, and the coefficents γ(k)
H are called harmonic

Stieltjes constants by analogy with the classical Stieltjes constants γk. From now
on and throughout the text, we will use the lighter notation γ(k) in place of γ(k)

H .
An explicit expression of γ(0) is given by the following formula [6, Equation (6)]:

γ(0) = 1
2γ

2 + 1
2ζ(2) = 1

2 Γ(2)(1) . (1)

As pointed out by Young, in view of the relation ζH(s) = ζ(s, 1) + ζ(s + 1), this
nice expression is nothing else than a special case of a more general formula which
applies to height one multiple zeta functions ζ(s, 1, . . . , 1) of arbitrary depth [13,
Equation (28)].

Regarding the classical Stieltjes constants, we recall the well-known asymptotic
representation of γk (see e.g. [7]):

γk = lim
N→∞

{
N∑

n=1

(lnn)k

n
− (lnN)k+1

k + 1

}
(k ≥ 0) .

From the point of view adopted here, the constant γk can be interpreted as the

R-sum of the divergent series
∑
n>1

(lnn)k

n
[4, p. 67], i.e. the sum of the series in the

sense of Ramanujan’s summation method, following the exposition in [4] (see also
[5, Chapter IX]). The existence of a similar asymptotic representation for γ(k):

γ(k) = lim
N→∞

{
N∑

n=1

Hn(lnn)k

n
− (lnN)k+2

k + 2 − γ (lnN)k+1

k + 1

}
(k ≥ 0) ,

which results from a generalization of a formula of Briggs and Buschman [2, 3],
strongly suggests that the constants γ(k) are closely linked to the R-sum of the

divergent series
∑
n>1

Hn (lnn)k

n
for arbitrary k. As we shall see, this is indeed the

case: such a relation exists (see Proposition 1 below) although far less simple than
in the previous case. In earlier studies [6, Equation (4)], [8, Equation (5.1)], we
have already drawn attention to the interesting relation:

r1 = γ1 + τ1 + γ(0) − ζ(2) = γ1 + τ1 + 1
2γ

2 − 1
2ζ(2) , (2)

where

τ1 :=
∞∑

n=1

(−1)n+1

n
ζ(n+ 1) = −

∞∑
n=2

ζ ′(n) , and r1 :=
R∑

n≥1

Hn

n
.
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it should be noted that the constant τ1 arises in several contexts in number theory
(see e.g. [14] for a summary of these occurrences). The main purpose of this
article is to determine to what extent this formula can be generalized. This can be
done in several ways. A fairly natural way of extending formula (2), involving the
Roman harmonic numbers Hn,k in place of the classic harmonic numbers Hn, was
successfully explored by Young [13, Theorem 6.1]. More precisely, for arbitrary
k ≥ 1, if

Hn,k :=
∑

n≥n1≥···≥nk≥1

1
n1 n2 · · ·nk

=
n∑

j=1
(−1)j−1

(
n

j

)
j−k ,

τ
[k]
1 :=

∞∑
n=1

(−1)n+1

n
ζ(n+ 1, 1, . . . , 1︸ ︷︷ ︸

k−1

) ,

and γ[k]
1 denotes the first Stieltjes constant of the height one zeta function of depth

k, ζ(s, 1, . . . , 1︸ ︷︷ ︸
k−1

), then it can be shown that the following general relation holds

true:
R∑

n≥1

Hn,k

n
= γ

[k]
1 + τ

[k]
1 + Pk+1(γ,−ζ(2), . . . , (−1)kζ(k + 1)) ,

with Pn denoting the modified Bell polynomials defined by means of their gener-
ating function:

∞∑
n=0

Pn(x1, . . . , xn) tn = exp
( ∞∑

k=1
xk
tk

k

)

= 1 + x1t+ 1
2(x2

1 + x2) t2 + 1
6(x3

1 + 3x1x2 + 2x3) t3 + · · ·

In the simplest case k = 1, formula (2) is regained since Hn,1 = Hn, τ
[1]
1 = τ1,

and γ[1]
1 = γ1. Note that this remarkable identity may also be rewritten under the

following equivalent form:

R∑
n≥1

Pk(Hn, . . . , H
(k)
n )

n
= γ

[k]
1 + τ

[k]
1 + Pk+1(γ,−ζ(2), . . . , (−1)kζ(k + 1)) ,

with H(k)
n =

n∑
j=1

j−k.

We now present another natural way of generalizing formula (2), starting with
the following definitions:
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Definition 1. For any positive integer k, the constants τk and rk are defined by

τk :=
∞∑

n=1

(−1)n+k

nk
ζ(n+ 1) , and rk =

R∑
n>1

Hn(lnn)k−1

n
.

Although not used afterwards, we also mention another expression of the constant
τk which can be easily deduced from the definition above:

τk = (−1)k
∞∑

n=1

1
n

Lik
(
− 1
n

)
(k ≥ 1) ,

where Lik denotes the kth polylogarithm. In particular, for k = 1, the formula

τ1 =
∞∑

n=1

1
n

ln
(

1 + 1
n

)

is regained. In the following section, we clarify the link between the constants τk,
rk and γ(k) defined above.

2 How the constants τk, rk and γ(k) are linked
together

As announced, the forthcoming Proposition 1 successfully generalizes formula (2).

Proposition 1. For any positive integer n, the following relations hold true:

r2n = γ2n

2n + (2n− 1)! τ2n + γ(2n−1)

+
n∑

k=1

(2n− 1)!
(2n− 2k)! ×

(22k−1 − 1)
22k−2 γ2n−2k ζ(2k) , (3)

and

r2n+1 = γ2n+1

2n+ 1 + (2n)! τ2n+1 + γ(2n)

+
n∑

k=1

(2n)!
(2n− 2k + 1)! ×

(22k−1 − 1)
22k−2 γ2n−2k+1ζ(2k)

− (2n)!(2
2n+1 − 1)

22n
ζ(2n+ 2) . (4)
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In particular, we have

r1 = γ1 + τ1 + γ(0) − ζ(2) ,

r2 = 1
2γ2 + τ2 + γ(1) + γζ(2) ,

r3 = 1
3γ3 + 2τ3 + γ(2) + 2γ1ζ(2)− 7

2ζ(4) ,

r4 = 1
4γ4 + 6τ4 + γ(3) + 3γ2ζ(2) + 21

2 γζ(4) ,

r5 = 1
5γ5 + 24τ5 + γ(4) + 4γ3ζ(2) + 42γ1ζ(4)− 93

2 ζ(6) .

Numerical evaluations of the constants τk, rk, and γ(k) for small values of k are
given below.

τ1 = 1.257746 . . . r1 = 0.529052 . . . γ(0) = 0.989055 . . .
τ2 = −1.424248 . . . r2 = −0.078850 . . . γ(1) = 0.400761 . . .
τ3 = 1.523800 . . . r3 = −0.008095 . . . γ(2) = 0.971304 . . .

Proof of Proposition 1. The key formula to derive the general relations (3) and (4)

is the splitting of
R∑

n>1

Hn

ns
given by [6, Theorem 1] which is recalled below:

R∑
n>1

Hn

ns
= π

sin(πs) ζ(s) +
∫ 1

0

ψ(x+ 1) + γ

xs
dx+ ζH(s) , (5)

where ψ = Γ′/Γ is the digamma function. This formula applies to all complex
numbers s such that Re(s) < 2 and s 6= 1, 0, and 1− 2k for each positive integer
k. Fortunately, the Laurent expansion of each component in (5) can be written
explicitly.

a) The expansion of π

sin(πs) ζ(s) at s = 1 can be obtained as follows: first, we
write the successive equations:

−π
sin(πs) = π

sin(π(s− 1)) = exp(iπ(s− 1))
s− 1

2iπ(s− 1)
exp(2iπ(s− 1))− 1

= 1
s− 1

∑
k≥0

ikπk 1
k! (s− 1)k

∑
k≥0

ik(2π)kBk

k! (s− 1)k


= 1
s− 1 +

∑
k≥1

(−1)k

 2k∑
j=0

(
2k
j

)
2jBj

 π2k

(2k)!(s− 1)2k−1 ,
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where the Bj are the Bernoulli numbers. Euler’s identity:

ζ(2k) = (−1)k+122k−1B2k
π2k

(2k)! (k ≥ 1),

then allows us to rewrite this expansion as follows:

−π
sin(πs) = 1

s− 1 −
∑
k≥1

21−2k

B2k

2k∑
j=0

(
2k
j

)
2jBj ζ(2k)(s− 1)2k−1 .

Morover, the latter expression can be simplified thanks to the identity

k∑
j=0

(
k

j

)
2jBj = 2kBk(1

2) = 2(1− 2k−1)Bk (k ≥ 2) .

Hence, the expansion of π

sin(πs) at s = 1 is given by

π

sin(πs) = − 1
s− 1 −

∞∑
k=1

22k−1 − 1
22k−2 ζ(2k)(s− 1)2k−1 .

On the other hand, the expansion of ζ(s) at s = 1 is

ζ(s) = 1
s− 1 + γ +

∞∑
k=1

(−1)k

k! γk(s− 1)k ,

where γk are the Stieltjes constants. The expansion of π

sin(πs) ζ(s) is then obtained
by Cauchy product. We have

π

sin(πs) ζ(s) = − 1
(s− 1)2 −

γ

(s− 1) + γ1 − ζ(2)

−
(1

2γ2 + γζ(2)
)

(s− 1) +
(1

6γ3 + γ1ζ(2)− 7
4ζ(4)

)
(s− 1)2

−
( 1

24γ4 + 1
2γ2ζ(2) + 7

4γζ(4)
)

(s− 1)3

+
( 1

120γ5 + 1
6γ3ζ(2) + 7

4γ1ζ(4)− 31
16ζ(6)

)
(s− 1)4 − · · · (6)

In (6), the coefficient of (s− 1)2k and (s− 1)2k−1 are respectively

γ2k+1

(2k + 1)! +
k∑

j=1

γ2k−2j+1

(2k − 2j + 1)! ×
(22j−1 − 1)

22j−2 ζ(2j)− (22k+1 − 1)
22k

ζ(2k + 2) ,
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and
− γ2k

(2k)! −
k∑

j=1

γ2k−2j

(2k − 2j)! ×
(22j−1 − 1)

22j−2 ζ(2j) .

b) The well-known Taylor series expansion of the digamma function:

ψ(x+ 1) + γ =
∞∑

n=1
(−1)n+1ζ(n+ 1)xn (|x| < 1),

allows us write ∫ 1

0

ψ(x+ 1) + γ

xs
dx =

∞∑
n=1

(−1)n+1 ζ(n+ 1)
n− (s− 1) .

This leads to the following expansion:

∫ 1

0

ψ(x+ 1) + γ

xs
dx =

∞∑
k=0

( ∞∑
n=1

(−1)n+1 ζ(n+ 1)
nk+1

)
(s− 1)k

=
∞∑

k=0

(−1)k

k! × k! τk+1 (s− 1)k (|s− 1| < 1). (7)

c) To obtain the expansion of
R∑

n>1

Hn

ns
at s = 1, we proceed as follows: first we

write the identities

Hn

ns
= Hn

n
e−(s−1) ln n =

∞∑
k=0

(−1)k

k! × Hn(lnn)k

n
(s− 1)k ,

so that
R∑

n>1

Hn

ns
=
R∑

n≥1

( ∞∑
k=0

(−1)k

k! × Hn(lnn)k

n
(s− 1)k

)
.

Moreover, [4, Theorem 9] allows us interchange ∑Rn>1 and ∑∞k=0. This leads to the
expansion:

R∑
n>1

Hn

ns
=
∞∑

k=0

(−1)k

k!

 R∑
n≥1

Hn(lnn)k

n

 (s− 1)k =
∞∑

k=0

(−1)k

k! rk+1 (s− 1)k . (8)

The desired formulas (3) and (4) are then easily derived by combining the previous
expansions (6), (7), and (8).
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3 Another expression of rk
For arbitrary n, let bn be the Bernoulli numbers of the second kind defined by
means of their generating function

x

ln(x+ 1) =
∞∑

n=0
bn x

n = 1 + x

2 −
x2

12 + x3

24 −
19x4

720 + · · · (|x| < 1).

The following formula is well-known [4, Equation 4.29]:

r1 =
R∑

n>1

Hn

n
=
∞∑

n=1

|bn|
n2 = 0.529052 . . .

More generally, for each natural number k, we deduce from [10, Equation (10)] the
following identity:

rk+1 =
R∑

n>1

Hn(lnn)k

n
=
∞∑

n=1

|bn|
n

n∑
j=1

(−1)j−1
(
n

j

)
Hj (ln j)k (k ≥ 0). (9)

This expression should be compared with a similar formula for γk which is also
quite well known [9]:

γk =
R∑

n>1

(lnn)k

n
=
∞∑

n=1

|bn|
n

n∑
j=1

(−1)j−1
(
n

j

)
(ln j)k (k ≥ 0).
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