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Introduction
The study of Euler sums has a fairly long history dating back to the middle of the
18th century. In response to a letter from Goldbach dated from december 1742,
Euler considered infinite sums of the form

Sp,q =
∞∑

n=1

H(p)
n

nq
,

where p and q are positive integers, and H(p)
n = ∑n

k=1
1

kp are generalized harmonic
numbers. For p = 1, the generalized harmonic numbers reduce to classical har-
monic numbers Hn = H(1)

n . The importance of harmonic numbers comes from
the fact that they appear (sometimes quite unexpectedly) in different branches of
number theory and combinatorics. In our times, the sums Sp,q are called the linear
Euler sums. Euler discovered that for all pairs (p, q) with p = 1, or p = q, or p+ q
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odd, these sums have expressions in terms of zeta values (i.e. the values of the
Riemann zeta function ζ(s) = ∑

n≥1 n
−s at positive integers), a remarkable result

that will be also found and completed later by Nielsen [14]. Among the beautiful
formulas discovered by Euler [10], the following two are particularly noteworthy:

– Euler’s reciprocity formula:

Sp,q + Sq,p = ζ(p)ζ(q) + ζ(p+ q) for p ≥ 2 and q ≥ 2

(called “prima methodus”) that allows to express Sq,p as a function of Sp,q and
vice versa. In particular, for p = q, it results that

Sp,p = 1
2
{

(ζ(p))2 + ζ(2p)
}

;

– Euler’s formula:

S1,2 = 2ζ(3) and 2S1,p = (p+ 2)ζ(p+ 1)−
p−2∑
j=1

ζ(p− j)ζ(j + 1) for p > 2

that Euler derives from his “secunda methodus”, this famous formula will be sev-
eral times rediscovered throughout the 20th century: see [12, Remark 3.1] for
historical details.

Ramanujan’s method of summation of series appears in Chapter VI of Ra-
manujan’s second notebook [11]. Because of the ambiguities (observed by Hardy1)
contained in the definition of the “constant of a series” that made its use very
tricky, Ramanujan’s method, based on the Euler-MacLaurin summation formula,
had fallen into neglect. The method has known a revival of interest at the end
of the 20th century when a clear and rigorous definition of the sum of a series in
the sense of Ramanujan summation was given by Candelpergher et al. [5] at the
same time as the link with usual summation was completely clarified. The reader
will find in the recent monograph [2] a masterful synthesis of main definitions,
fundamental properties, and scope of application of the Ramanujan summation.

Ramanujan’s method is particulary well appropriate to linear Euler sums, al-
lowing to easily handle both the convergence case and the divergence case, however
this process of regularization is unusual and remains little known. In the remainder
of this article, we give a complete evaluation of the sums in the sense of Ramanujan
summation (which will be noted SR1,p, SRp,1 and SRp,p) corresponding respectively to
the sums S1,p, Sp,1 and Sp,p (the reader should note that Sp,1 is only defined as a
divergent series). This enables us to provide a number of relations similar (though
more complicated) to the classical relations mentioned above (see Propositions 1
to 4). Some nice applications of these formulas are given in [8].

1. See Chapter XIII of Hardy’s classical treatise on divergent series.
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1 Ramanujan summation of Euler sums

Let us recall that the generalized harmonic numbers H(p)
n are defined by

H(p)
n =

n∑
k=1

1
kp

for n ≥ 1 and p ≥ 1 .

When p = 1, they reduce to classical harmonic numbers denoted Hn = H(1)
n . It is

convenient to express them in the form

Hn = ψ(n+ 1) + γ ,

where ψ(z) = ∂ ln(Γ(z)) is the digamma function and γ = −ψ(1) is the Euler
constant; in the same way, we have for p ≥ 2 the following expression [4, 6]:

H(p)
n = (−1)p−1

(p− 1)!∂
p−1ψ(n+ 1) + ζ(p) .

Definition 1. For any positive integer p, the function s 7→ Fp(s) is defined as the
analytic continuation of the function defined in the half-plane Re(s) > 1 by

Fp(s) =
+∞∑
n=1

H(p)
n n−s −

∫ +∞

1
ψp(x)x−s dx ,

where ψ1(x) = ψ(x+ 1) + γ, and

ψp(x) = (−1)p−1

(p− 1)!∂
p−1ψ(x+ 1) + ζ(p) for p ≥ 2 .

It follows from [2, Theorem 9] that this function can be analytically continued
as an entire function in the whole C. For each integer q ∈ Z, we define SRp,q

by SRp,q := Fp(q). The value SRp,q is thus well-defined and may be interpreted as
the R-sum (i.e. the sum in the sense of Ramanujan summation) of the (possibly
divergent) series ∑n≥1 H

(p)
n n−q.

2 Evaluation of SR1,p
For p = 1, the function F1(s) is closely linked to the harmonic zeta function ζH [4]
which is defined for Re(s) > 1 by

ζH(s) =
∞∑

n=1
Hn n

−s ,
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through the relation

F1(s) = ζH(s)−
∫ ∞

1
x−s (ψ(x+ 1) + γ) dx for Re(s) > 1 .

In particular, since
ζH(p) = S1,p for p ≥ 2 ,

it follows that

SR1,p = S1,p −
∫ ∞

1

ψ(x+ 1) + γ

xp
dx (p ≥ 2) . (1)

Definition 2. For any positive integer p, let τp be the real constant defined by
the series representation

τp :=
∞∑

k=1
(−1)k+p ζ(k + p)

k
. (2)

Remark 1. The sequence {τp}p first appeared in [4, 9]. The constant τ1 = 1.25774688 . . .
has been thoroughly studied by Boyadzhiev [1] (see also [6, Ex. 92 (b), p. 142]).
Several formulas for the constants τp for p ≥ 2 are provided by Dil et al. [9, Section
4].

To give an evaluation of the R-sum SR1,p, we first prove the following lemma:

Lemma 1. For p > 2, we have the relation

∫ ∞
1

ψ(x+ 1) + γ

xp
dx =

p−2∑
j=1

(−1)p−j

j
ζ(p− j)− (−1)pζ ′(p)− τp . (3)

For p = 2, this relation reduces to∫ ∞
1

ψ(x+ 1) + γ

x2 dx = −ζ ′(2)− τ2 .

Proof. For p ≥ 2, the convergent series ∑n≥1
ln(n+1)

np may be splitted into the two
series ∞∑

n=1

ln(n+ 1)
np

=
∞∑

n=1

ln(n)
np

+
∞∑

n=1

1
np

ln
(

1 + 1
n

)
.

The well-known expansion of ln(1 + 1/n) in power series leads to the identity

∞∑
n=1

1
np

ln
(

1 + 1
n

)
=
∞∑

n=1

1
np

[ ∞∑
k=1

(−1)k−1

k

( 1
n

)k
]

= (−1)p−1 τp ,
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then it follows that
∞∑

n=1

ln(n+ 1)
np

= −ζ ′(p)− (−1)p τp . (4)

On the other side, for p > 2, the finite Taylor expansion of the logarithm allows
us to write

ln(x+ 1) =
p−2∑
j=1

(−1)j−1

j
xj + (−1)pxp−1

∫ ∞
1

1
tp−1(t+ x) dt ,

and thus, for any positive integer n, we have

ln(n+ 1)
np

=
p−2∑
j=1

(−1)j−1

j

1
np−j

+ (−1)p
∫ ∞

1

1
tp−1n(t+ n) dt .

By summing this identity, we get

∞∑
n=1

ln(n+ 1)
np

=
p−2∑
j=1

(−1)j−1

j
ζ(p− j) + (−1)p

∫ ∞
1

ψ(x+ 1) + γ

xp
dx .

Hence, formula (3) follows from (4) by substitution. For p = 2, it reduces to
∫ ∞

1

ψ(x+ 1) + γ

x2 dx =
∞∑

n=1

ln(n+ 1)
n2 = −ζ ′(2)− τ2 . (5)

Proposition 1. For any positive integer p > 2, we have

SR1,p = S1,p −
p−2∑
j=1

(−1)p−j

j
ζ(p− j) + (−1)pζ ′(p) + τp , (6)

where τp is defined by formula (2). For p = 2, it reduces to

SR1,2 = S1,2 + ζ ′(2) + τ2 = 2ζ(3) + ζ ′(2) + τ2 .

More generally, for p ≥ 2, we have the formula

SR1,2p = (p+1)ζ(2p+1)−
p−1∑
j=1

ζ(2p−j)ζ(j+1)−
2p−2∑
j=1

(−1)j

j
ζ(2p−j)+ζ ′(2p)+τ2p . (7)
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Proof. By formula (1), we have the relation

SR1,p = S1,p −
∫ ∞

1

ψ(x+ 1) + γ

xp
dx ,

and, by (3), we have

(−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx = −ζ ′(p)− (−1)pτp +

p−2∑
j=1

(−1)j

j
ζ(p− j) .

Then formula (6) follows immediately by substitution, and (7) results from the
expression of S1,2p given by Euler’s formula [14, Eq. (3.6)]:

S1,2p = (p+ 1)ζ(2p+ 1)−
p−1∑
j=1

ζ(2p− j)ζ(j + 1) (p > 1) . (8)

Example 1.

SR1,2 = 2ζ(3) + ζ ′(2) + τ2 ,

SR1,4 = 3ζ(5)− ζ(3)ζ(2) + ζ(3)− 1
2ζ(2) + ζ ′(4) + τ4 ,

SR1,6 = 4ζ(7)− ζ(3)ζ(4)− ζ(2)ζ(5) + ζ(5)− 1
2ζ(4) + 1

3ζ(3)− 1
4ζ(2)

+ ζ ′(6) + τ6 .

Remark 2. We point out here the analogy between formula (7) above and the
“dual” formula

SR1,−2p = 1− 2p
2 ζ(1− 2p) + ζ ′(−2p) + ν2p

given in [7, Eq. (8)] where, for p ≥ −1, νp is defined by the series representation

νp =
∞∑

k=1
(−1)k+1 ζ(k + 1)

k + p+ 1 (note that ν−1 coincides with τ1) .

3 Evaluation of SRp,1
We now give an evaluation of the “reciprocal” sum SRp,1 corresponding to the
divergent Euler sum Sp,1.
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Definition 3. Let σp defined by σ2 = 1 and, for p > 2,

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)jζ(p− j)
[

(j − 1)!(p− 1− j)!
(p− 1)! − 1

j

]
. (9)

Example 2. The first values of σp are

σ2 = 1 ,

σ3 = 1
2ζ(2) ,

σ4 = 2
3ζ(3)− 1

3ζ(2) + 1
2 ,

σ5 = 3
4ζ(4)− 5

12ζ(3) + 1
4ζ(2) ,

σ6 = 4
5ζ(5)− 9

20ζ(4) + 9
10ζ(3)− 1

5ζ(2) + 1
3 .

Remark 3. We can deduce from [3, Eq. (27)] another interesting expression of σp.
Let us define the infinite sum Z(i, j) by

Z(i, j) =
∞∑

n=1

1
ni (n+ 1)j

for i, j ≥ 1 .

Partial fraction decomposition of 1
ni (n+1)j shows that Z(i, j) have an expression as

Z-linear combinations of zeta values and integers. Explicitly,

Z(1, j) = j −
j−2∑
r=0

ζ(j − r) (j ≥ 2) ,

Z(i, 1) = (−1)i−1 +
i−2∑
r=0

(−1)rζ(i− r) (i ≥ 2) ,

Z(i, j) = (−1)i
j−2∑
r=0

(
i+ r − 1
i− 1

)
ζ(j − r) +

i−2∑
r=0

(−1)r

(
j + r − 1
j − 1

)
ζ(i− r)

+ (−1)i−1
(
i+ j − 1
j − 1

)
(i, j ≥ 2) .

Then, formula [3, Eq. (27)] may be translated into the identity

σp =
∑

i+j=p

1
j
Z(i, j) .

Proposition 2. For any positive integer p ≥ 2, we have

SRp,1 = γζ(p) + ζ(p+ 1)− S1,p − σp − ζ ′(p)− (−1)pτp , (10)
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where τp and σp are respectively defined by formulas (2) and (9). It follows that,
for p ≥ 2,

SR2p,1 = γζ(2p)− p ζ(2p+ 1) +
p−1∑
j=1

ζ(2p− j)ζ(j + 1)− σ2p − ζ ′(2p)− τ2p . (11)

Proof. By summing (in the sense of Ramanujan summation) the following equa-
tions :

H(p)
n

n
− 1
n
ζ(p) = − 1

n

+∞∑
m=n+1

1
mp

= 1
n

(−1)p−1

(p− 1)!∂
p−1ψ(n+ 1) ,

we get
R∑

n≥1

(
H(p)

n

n
− ζ(p)

n

)
= −

R∑
n≥1

1
n

+∞∑
m=n+1

1
mp

=
R∑

n≥1

1
n

(−1)p−1

(p− 1)!∂
p−1ψ(n+ 1)

= −
+∞∑
n=1

1
n

+∞∑
m=n+1

1
mp

+ (−1)p

(p− 1)!

∫ +∞

1
∂p−1ψ(x+ 1)1

x
dx ,

where the symbol ∑Rn≥1 denotes the R-sum of the series (see [2] for a precise
definition). Since

+∞∑
n≥1

1
n

+∞∑
m=n+1

1
mp

=
+∞∑
n=1

Hn

np
− ζ(p+ 1) ,

this can be rewritten
R∑

n≥1

(
H(p)

n

n
− ζ(p)

n

)
= ζ(p+ 1)−

+∞∑
n=1

Hn

np
+ (−1)p

(p− 1)!

∫ +∞

1
∂p−1ψ(x+ 1)1

x
dx .

Thus we have
R∑

n≥1

H(p)
n

n
= γζ(p) + ζ(p+ 1)−

+∞∑
n=1

Hn

np
+ (−1)p

(p− 1)!

∫ +∞

1
∂p−1ψ(x+ 1)1

x
dx ,

i.e.
R∑

n≥1

H(p)
n

n
= γζ(p) + ζ(p+ 1)− S1,p + (−1)p

(p− 1)!

∫ +∞

1

∂p−1ψ(x+ 1)
x

dx . (12)

We evaluate the integral in the right member of (12) by integrating p− 1 times by
parts. When p = 2, this is just∫ +∞

1

∂ψ(x+ 1)
x

dx =
∫ ∞

1

ψ(x+ 1) + γ

x2 dx − 1 ,
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which, by (5), is −ζ ′(2)− τ2 − 1. Hence, by (12), we have

R∑
n≥1

H(2)
n

n
= γζ(2) + ζ(3)− S1,2 − σ2 − ζ ′(2)− τ2 .

We now assume that p > 2. We have the identity

∂p−kψ(2) = (−1)p−k(p− k)! + (−1)p−k+1(p− k)!ζ(p− k + 1) (p− k ≥ 1)

[6, Proposition 9.6.41] from which results the relation

(−1)p

(p− 1)!

∫ +∞

1

∂p−1ψ(x+ 1)
x

dx = (−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx

+ 1
(p− 1)!

p−3∑
k=0

(−1)kk!(p− k− 2)! ζ(p− k− 1)− 1
(p− 1)!

p−2∑
k=0

(−1)kk!(p− k− 2)! .

In this expression, the last term can be simplified by means of the formula

1
(p− 1)!

p−2∑
k=0

(−1)kk!(p− k − 2)! = 1
p− 1

p−2∑
k=0

(−1)k(
p−2

k

) = 1 + (−1)p

p

[13, Eq. (14)]. After reindexation, we can also write

1
(p− 1)!

p−3∑
k=0

(−1)kk!(p−k−2)! ζ(p−k−1) = −
p−2∑
j=1

(−1)j (j − 1)!(p− j − 1)!
(p− 1)! ζ(p−j) .

Moreover, by (3), we have

(−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx =

p−2∑
j=1

(−1)j

j
ζ(p− j)− ζ ′(p)− (−1)pτp .

Thanks to these simplifications, formula (12) can then be rewritten

R∑
n≥1

H(p)
n

n
= γζ(p) + ζ(p+ 1)− S1,p − ζ ′(p)− (−1)pτp − σp ,

with

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)j (j − 1)!(p− j − 1)!
(p− 1)! ζ(p− j)−

p−2∑
j=1

(−1)j

j
ζ(p− j) .

This completes the demonstration of the expected formula (10). Formula (11) is
immediately deduced from Euler’s formula (8).
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Example 3.

SR2,1 = γζ(2)− ζ(3)− 1− ζ ′(2)− τ2

SR3,1 = γζ(3)− 1
4ζ(4)− 1

2ζ(2)− ζ ′(3) + τ3 ,

SR4,1 = γζ(4)− 2ζ(5) + ζ(3)ζ(2)− 2
3ζ(3) + 1

3ζ(2)− 1
2 − ζ

′(4)− τ4 ,

SR5,1 = γζ(5)− 3
4ζ(6)− 3

4ζ(4) + 1
2(ζ(3))2 + 5

12ζ(3)− 1
4ζ(2)− ζ ′(5) + τ5 .

4 Values of SRp,p
4.1 The case p = 1
The following formula [2, Eq. (3.23)] allows to extend formula (10) to the case
p = 1. We have

SR1,1 = 1
2γ

2 − 1
2ζ(2) + γ1 + τ1 , (13)

where γ1 is the first Stieltjes constant and τ1 is the constant defined by (2).
A new proof of this formula is given below.

Proof. The relation

SR1,1 = 1
2γ

2 + 1
2ζ(2)− 1

2 + 1
2

∫ 1

0
ψ2(x+ 1) dx

[2, Eq. (2.6)] is a direct consequence of [2, Theorem 3]. Since ψ(x+1) = ψ(x)+1/x,
this relation can be rewritten∫ 1

0

(
ψ2(x) + 2ψ(x)

x
+ 1
x2

)
dx = 2ζR(1, 1)− γ2 − ζ(2) + 1 .

Moreover, from [6, p. 145], we have∫ 1

0

(
ψ2(x)− 2γ

x
− 1
x2

)
dx = 2γ1 − 2ζ(2) + 1 .

Subtracting these two expressions, we obtain the following

2
∫ 1

0

(
(ψ(x) + γ) 1

x
+ 1
x2

)
dx = ζR(1, 1)− γ2 − ζ(2) + 1− (2γ1 − 2ζ(2) + 1) .

Since
(ψ(x) + γ) 1

x
+ 1
x2 = ψ(x+ 1) + γ

x
,
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we deduce the relation

2
∫ 1

0

ψ(x+ 1) + γ

x
dx = 2ζR(1, 1) + ζ(2)− γ2 − 2γ1 .

An integration of the expansion of ψ in power series

ψ(x+ 1) + γ =
∞∑

n=2
(−1)nζ(n)xn−1 (|x| < 1)

shows that the integral in the left member of the previous relation is nothing else
than the series τ1, i.e.∫ 1

0

ψ(x+ 1) + γ

x
dx =

∞∑
n=1

(−1)n+1 ζ(n+ 1)
n

= τ1.

Hence we obtain formula (13) after division by 2.

4.2 The case p > 1
For p ≥ 2, the R-sums SRp,p may be easily evaluated by means of the relation

SRp,p = Sp,p −
∫ ∞

1

ψp(x)
xp

dx ,

with
ψp(x) = (−1)p−1

(p− 1)!∂
p−1ψ(x+ 1) + ζ(p) ,

and the expression
Sp,p = 1

2ζ(p)2 + 1
2ζ(2p)

which results directly from Euler’s reciprocity formula. By performing p−1 succes-
sive integrations by parts, we deduce an expression of SRp,p in terms of zeta values
ζ(2p), ζ(2p− 2), · · · , ζ(2), as well as ζ ′(2p− 1), τ2p−1 and a rational constant. For
instance, we obtain

SR2,2 = 7
4ζ(4) + ζ(2) + 2ζ ′(3)− 2τ3 − 1 , (14)
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and the general formula is given by

SRp,p = 1
2ζ(p)2 + 1

2ζ(2p)− ζ(p)
p− 1

+ (−1)p

(
2p− 2
p− 1

)2p−3∑
j=1

(−1)j+1

j
ζ(2p− 1− j) + ζ ′(2p− 1)− τ2p−1


+ 1

((p− 1)!)2

p−1∑
k=2

(−1)k(p− k)!(p+ k − 3)! ζ(p+ 1− k)

− 1
((p− 1)!)2

p∑
k=2

(−1)k(p− k)!(p+ k − 3)! (p ≥ 3) . (15)

Remark 4. Using the “transformation formula”(cf. [2, Theorem 18]), one can show
that

SR1,1 =
∞∑

n=1

(−1)n−1 cn

n!n2 and SR2,2 =
∞∑

n=1

(−1)n−1 cn

n!n

n∑
j=1

Hj

j2 ,

where
cn =

∫ 1

0
x(x− 1) · · · (x− n+ 1) dx (n ≥ 1)

are the Cauchy numbers [3, 8].

5 Reciprocity formulas

5.1 The even case
Proposition 3. For any integer p ≥ 1, we have

SR1,2p + SR2p,1 = γζ(2p) + ζ(2p+ 1)−
2p−2∑
j=0

(−1)jAj ζ(2p− j)− 1
p

(16)

with
A0 = 0 , and Aj = (j − 1)!(2p− 1− j)!

(2p− 1)! for j ≥ 1 .

Proof. By adding identities (7) and (11), we get for p ≥ 2,

SR1,2p + SR2p,1 = γζ(2p) + ζ(2p+ 1)−
2p−2∑
j=1

(−1)j

j
ζ(2p− j)− σ2p .

Thus, for p > 1, formula (16) follows immediately by replacing σ2p by its expression
given by (9) and is extendable to the case p = 1 by setting A0 = 0.
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Example 4. We have the following relations:

SR1,2 + SR2,1 = γζ(2) + ζ(3)− 1 ,

SR1,4 + SR4,1 = γζ(4) + ζ(5) + 1
3ζ(3)− 1

6ζ(2)− 1
2 ,

SR1,6 + SR6,1 = γζ(6) + ζ(7) + 1
5ζ(5)− 1

20ζ(4) + 1
30ζ(3)− 1

20ζ(2)− 1
3 .

5.2 The odd case
Proposition 4. For any integer p ≥ 2, we have

SR1,2p−1 + SR2p−1,1

= γζ(2p− 1) + ζ(2p)−
2p−3∑
j=1

(−1)jCj ζ(2p− 1− j)

− 2ζ ′(2p− 1) + 2τ2p−1 (17)

with
Cj = (j − 1)!(2p− 2− j)!

(2p− 2)! − 2
j

for j ≥ 1 .

Proof. By adding identities (6) and (10), we get

SR1,p + SRp,1 = γζ(p) + ζ(p+ 1)− σp − (−1)p
p−2∑
j=1

(−1)j

j
ζ(p− j)

+ (1− (−1)p)τp + ((−1)p − 1)ζ ′(p) .

Hence we have the following relation

SR1,2p−1 + SR2p−1,1 = γζ(2p− 1) + ζ(2p)− σ2p−1 +
2p−3∑
j=1

(−1)j

j
ζ(2p− 1− j)

− 2ζ ′(2p− 1) + 2τ2p−1 ,

from which formula (17) is derived by replacing σ2p−1 by its expression given by
(9). Note that, in the odd case, the constant term of σ2p−1 is null.
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Example 5. We have the following relations:

SR1,3 + SR3,1 = γζ(3) + ζ(4)− 3
2ζ(2)− 2ζ ′(3) + 2τ3 ,

SR1,5 + SR5,1 = γζ(5) + ζ(6)− 7
4ζ(4) + 11

12ζ(3)− 7
12ζ(2)− 2ζ ′(5) + 2τ5 ,

SR1,7 + SR7,1 = γζ(7) + ζ(8)− 11
6 ζ(6) + 29

30ζ(5)− 17
30ζ(4) + 2

5ζ(3)− 11
30ζ(2)

− 2ζ ′(7) + 2τ7 .

Remark 5. The reader will note that the reciprocity formula linking SR1,p and SRp,1
involves the constants ζ ′(p) and τp only in the odd case.
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