

Factor Validity and Reliability of the Sport Friendship Quality Scale in a French adolescent sample

Stéphanie Scoffier-Mériaux, Christophe Maïano, Fabienne

d'Arripe-Longueville

► To cite this version:

Stéphanie Scoffier-Mériaux, Christophe Maïano, Fabienne d'Arripe-Longueville. Factor Validity and Reliability of the Sport Friendship Quality Scale in a French adolescent sample. International Journal of Sport Psychology, 2009, 40, pp.324-350. hal-02524698

HAL Id: hal-02524698 https://univ-cotedazur.hal.science/hal-02524698v1

Submitted on 3 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Running head: SPORT FRIENDSHIP QUA	LITY S	SCALE FRENCH VERSION
2			
3	Factor Validity and Reliability of the Spor	t Friend	ship Quality Scale in a French Adolescent
4		Sample	
5			
6			
7 8 9 10	Stéphanie Scoffier University of Nice Sophia-Antipolis, France	11 12 13 14	Christophe Maïano UMR 6233 « Institute Movement Sciences », Université Aix-Marseille II Marseille, France
15 16 17 18 19 20	Fabienne d' University of Ni	Arripe- ce Soph France	Longueville ia-Antipolis,
21	Corresp	ondent	author:
22 23 24 25 26 27 28 29 30	Stéph UFR STAPS – Universi 261 Route de O 06205 Nice c Phone: ++ 3 Fax: ++ 33 E-mail: sco	anie Sc té de N Grenobl edex 03 3 4 92 2 5 4 92 2 offier@	offier ice Sophia-Antipolis e, BP 3259 3 – France 29 65 29 9 65 37 unice.fr
31	Submitted: April 3, 2020		

1

Abstract

2 The main aim of the present series of studies was to test the factor validity and 3 reliability of the Sport Friendship Quality Scale (SFQS; Weiss & Smith, 1999) in a French 4 adolescent sample. Four studies, involving a total sample of 589 participants, were performed 5 in order to translate items from the SFQS into French (SFQS-FR) and evaluate their clarity 6 (Study 1) and to assess (a) the concurrent validity (Study 2), (b) the factor validity and 7 reliability (Study 3), and (c) the temporal stability (Study 4) of the SFQS-FR. Study 1 8 provided support for the item content of the preliminary version of the SFQS-FR for 9 adolescents. Study 2 supported the convergent validity of both the SFQS and SFQS-FR. 10 Finally, Studies 3 and 4 provided (a) support for the factorial structure and reliability (i.e., 11 internal consistency and temporal stability) of a seven-factor model of the SFQS-FR, (b) 12 partial support for the factorial invariance for the aforementioned model across gender and 13 age, and (c) support and partial support for the latent mean invariance of the seven-factor 14 model across age and gender, respectively. The present results thus provide preliminary 15 evidence of the appropriateness of the SFQS-FR for adolescents. Nevertheless, further 16 evaluation of this instrument is warranted to establish the robustness of the present findings.

17

18 Key-Words: Friendship quality, peer relationships, adolescence, invariance, validation.

19

20

Factor Validity and Reliability of the Sport Friendship Quality Scale in a French Adolescent
 Sample

3 The peer experiences of children and adolescents have been considered on three levels 4 of social complexity in psychosocial literature (Hinde, 1987; Rubin, Bukowski, & 2006): 5 interactions, relationships, and groups. Interactions are the simplest order of complexity and 6 refer to a social exchange of some duration between two individuals. Then, relationships 7 introduce a higher order of complexity to youth experiences with peers as this into account 8 the meanings, expectations, and emotions stemming from several interactions between 9 individuals (Rubin et al., 2006). This level thus includes privileged dyadic relations and the 10 concept of friendship. Finally, groups have been defined as collections of interacting 11 individuals who have some degree of reciprocal influence over one another (Rubin et al., 12 2006). This level includes the concept of popularity or social acceptance by peers.

13 For many authors, a basic characteristic of friendship is that it is a reciprocal 14 relationship that must be recognized by both parties (Bukowski & Hoza, 1989; Hartup, 1983; 15 Rubin et al., 2006). Furthermore, reciprocity of affection is essential, rather than there being 16 instrumental motives. Friendships are thus voluntary and not prescribed (Bukowski & Hoza, 17 1989; Rubin et al., 2006). Several aspects of friendship have been examined in psychosocial 18 literature (Hartup, 1996): (a) having friends versus not having friends, (b) the identity of one's 19 friends, and (c) friendship quality. In their meta-analytic review, Newcomb and Bagwell 20 (1995) reported that friendships compared with non friendly relations are characterized by 21 more intense social activity, more frequent conflict resolution and more effective task 22 performance. Research examining who one's friends are, suggest that similar value 23 characteristics are a favorable factor to friendship forming and keeping (Fehr, 1996; Hartup, 24 1995). Finally, friendship quality refers to values such as satisfaction, construction, intimacy, symmetry and emotional substrates in a dyadic relation (Hartup, 1996). Research has shown 25

that friendship quality in a school context is positively related to self-esteem and school
adjustment (Berndt, 1996). Friendship quality is also positively related to peer group
acceptance and negatively with the feeling of loneliness and social dissatisfaction (Parker &
Asher, 1993). Friendship quality thus appears as an important variable to understand
children's cognitions, emotions and behaviors.

6 In the past twenty years, several instruments have been devoted to assessing the 7 features of children's friendships through their own reports (e.g., Berndt & Perry, 1986; 8 Furman & Buhrmester, 1992; Parker & Asher, 1993). Although observational techniques have 9 also been used (e.g., Landsford & Parker, 1999), assessments of friendship quality are 10 essentially conducted with questionnaires or interview procedures (Rubin et al., 2006). These 11 measures generally capture perceived friendship quality and are based on the belief that a 12 child's perception of a relationship is the best index of this relationship (Furman, 1996). 13 Several tools can be identified in developmental psychology literature. For example, the 14 "Network of Relationships Inventory" (Furman & Buhrmester, 1985) comprised 10 15 dimensions, yielding three factor scores: social support, negative interaction, and power 16 imbalance. The social support factor taps into companionship, instrumental aid, intimacy, 17 nurturance, affection, admiration, and alliance. The negative interaction factor taps into 18 conflict and antagonism. In addition, Bukowski, Hoza and Boivin (1994) developed the 19 "Friendship Quality Scale". This instrument includes 23 items and was designed to identify 20 the following five components of friendship in children: (a) companionship, (b) help, (c) 21 security, (d) closeness, and (e) conflict. In parallel, Parker and Asher (1993) developed the 22 "Friendship Quality Questionnaire", which was partially based on an early version of 23 Bukowski et al. (1994). This instrument includes 40 items and six subscales: (a) 24 companionship and recreation, (b) help and guidance, (c) caring, (d) intimate exchange, (e) 25 conflicts and betraval, and (f) conflict resolution.

1	As the sport domain holds abundant opportunities for self-esteem enhancement and
2	conflict situations with friends and teammates, investigating the nature of friendship quality in
3	the social context of physical activity was also deemed important by sport psychology
4	researchers (Weiss & Smith, 1999; Weiss, Smith, & Theeboom, 1996). Because the
5	psychometric instruments and the conclusions of developmental psychology studies were
6	established in specific contexts such as the school context, they are not necessarily applicable
7	to another context (Zarbatany, Guesquière, & Mohr, 1992), such as the sport context.
8	To address the need for sport-specific instruments, Weiss and her colleagues (Weiss et
9	al., 1996; Weiss & Smith, 1999) conducted a series of studies to explore youth friendship in
10	the sport context. In a first study, Weiss et al. (1996) interviewed children aged 8 to 16 years
11	about the positive and negative aspects of, as well as their expectations regarding, their best
12	friendship in sport. Content analysis of these interviews identified 12 positive and 4 negative
13	dimensions of sport friendship in adolescents. The 12 positive dimensions of friendship
14	quality were the following: (a) companionship (e.g., "we do many things together"), (b)
15	pleasant play/association (e.g., "we enjoy doing things together"), (c) self-esteem
16	enhancement and supportiveness (e.g., "we positively reinforce each other"), (d) help and
17	guidance (e.g., "we help each other in sport"), (e) prosocial behavior (e.g., "we do nice things
18	for each other"), (f) intimacy (e.g., "we feel comfortable with each other"), (g) loyalty (e.g.,
19	"he/she sticks up for me"), (h) things in common (e.g., "we have similar interests in sport"),
20	(i) attractive personal qualities (e.g., I like her/his personality in general"), (j) emotional
21	support (e.g., "we care about each other"), (k) absence of conflict (e.g., "we rarely
22	argue/fight"), and (l) conflict resolution (e.g., "we resolve our conflicts"). The four negative
23	dimensions of sport friendship were: (a) conflict (e.g., "verbal insults"), (b) unattractive
24	personal qualities (e.g., "negative characteristics"), (c) betrayal (e.g., "says she will stop being
25	my friend"), and (d) inaccessibility (e.g., "we don't play much together"). Analysis of the

percentage of respondents (Weiss et al., 1996) citing these dimensions showed relatively few differences across gender and age categories (i.e., 8-9 years, 10-12 years, 13-16 years). Results revealed that (a) females referred more than males to emotional support; (b) the two younger groups referred to prosocial behavior and loyalty more than the oldest group; (c) the two older groups referred to attractive personal qualities more than the youngest group; and (d) there was a progressive increase in the percentage of individuals citing intimacy as age increased (Smith, 2007).

8 In a subsequent work, Weiss and Smith (1999) examined whether the general 9 friendship quality measure, Parker and Asher's (1993) "Friendship Quality Questionnaire" 10 (FOO), was suitable for use in the physical domain. However, the results indicated that 11 applying the FQQ to the context of best sport friendships was problematic. Therefore, the 12 authors considered the good performing items of Parker and Asher (1993), and the children's 13 description of the features of their best sport friendships (Weiss et al., 1996) to develop the 14 "Sport Friendship Quality Scale (SFQS)". The factorial validity and reliability of this 15 instrument was tested within a sample of 196 children and adolescents (82 males and 114 16 females) aged from 8 to 16 (M_{age} = 11.3, SD_{age} = 2.5). Results from this series of studies 17 provided support for a six-factor model comprising 22 items [(a) Things in Common (TC, 4 items;); (b) Loyalty and Intimacy (LI, 4 items); (c) Companionship and Pleasant Play (CPP, 4 18 19 items); (d) Self-esteem Enhancement and Supportiveness (SE, 4 items); (e) Conflict 20 Resolution (CR, 3 items); and (f) Conflict (C, 3 items)]. Because several phi values (i.e., 21 correlations among factors) were high in this model (i.e., seven > .70), two additional models 22 (i.e., single first-order model and six factors composing a higher-order factor) comprising the 23 same number of items were also investigated. Nevertheless, results from these analyses 24 provided lowest goodness of fit indices than the six-factor model.

1 Given that the SFQS is a relatively new measure, a recent interest has flourished, in 2 sport psychology literature, on the factorial structure of this instrument. Analysis of this 3 literature revealed that most of the studies were conducted with English-speaking samples 4 (Martin & Smith, 2002; McDonough & Crocker, 2005; Weiss & Smith, 2002) and only one 5 with non-English-speaking samples (Ommundsen, Roberts, Lemyre, & Miller, 2005). These 6 study results did not provide further support for the six-factor structure of Weiss and Smith's 7 (1999) SFQS. Indeed, Weiss and Smith (2002) conducted a similar Confirmatory Factorial 8 Analysis (CFA) of the SFQS within a sample of North American adolescents ($M_{age} = 13.8$, 9 $SD_{age} = 2.3$) comprising 191 tennis players (77 girls and 114 boys). Findings from this study 10 failed to replicate the six-factor structure of the SFQS. Analysis of modification indices 11 identified that both the loyalty and intimacy and companionship and pleasant play subscales 12 contributed to misfit in the SFQS measurement model. In order to improve the goodness of fit 13 of the original six-factor model, these authors decided to allow errors in the loyalty and 14 intimacy subscale of both items 2 and 20 and in the companionship and pleasant play subscale 15 of items 10 and . Subsequent analysis with this alternative model revealed a satisfactory fit of 16 the model to the data, as most fit indices met statistical criteria. However, because phi values 17 among the positive friendship subscales were moderate to large in magnitude (i.e., > .70), in 18 this model a latent two factors model was also tested (i.e., positive friendship dimensions and 19 conflict friendship dimension). Results revealed an unsatisfactory fit of the model to the data. 20 Parallel work conducted by Martin and Smith (2002) within a sample of 150 disabled athletes also failed to support the six-factor model from Weiss and Smith's (1999) study. 21 22 Indeed, these authors rather provided a satisfactory factor structure for a two latent construct 23 model: (a) a global positive scale that combines the positive subscales of the SFQS, and (b) 24 the conflict friendship quality subscale. In a most recent investigation, Ommundsen et al. 25 (2005) tested the factorial structure of the SFOS using a Norwegian back-translation of this

1 instrument. The subscale "things in common" was not used as it was deemed irrelevant for the 2 research purpose of their study. Results performed within a Norwegian adolescent sample 3 including 1719 (488 girls: $M_{age} = 13.9$, $SD_{age} = 1.8$ years; 1231 boys: $M_{age} = 14.3$, $SD_{age} = 2.3$) 4 soccer players provided support for a three-factor model comprising 16 items: (a) loyalty and 5 free discussion (7 items), (b) companionship (6 items), and (c) conflict (3 items). For these 6 authors, the discrepant findings from this study and the previous studies with English-7 speaking samples may stem from translation issues and cultural differences. 8 Lastly, McDonough and Crocker (2005) using a sample of 227 female adolescents 9 aged from 11 to 14 years failed to found support for the original six-factor model of the SFOS. As already demonstrated by Weiss and Smith (2002), results revealed that the loyalty 10 11 and intimacy subscale was problematic and responsible for misfit in the SFQS measurement 12 model. However, the strategies used to treat this problem were different in both of these 13 studies. Indeed, while Weiss and Smith (2002) chose to modify their model by allowing error 14 terms to correlate, McDonough and Crocker (2005) rather decided to separate loyalty and 15 intimacy into two subscales. This strategy is theoretically consistent with developmental 16 psychology literature in friendship quality scales (e.g., Furman & Buhrmester, 1985; Parker & 17 Asher, 1993) and the qualitative work of Weiss et al. (1996) on sport friendship quality. A seven-factor model including these modifications (i.e., loyalty and intimacy as two separate 18 19 constructs) was thus rerun and provided a better fit to the data than the six-factor model with 20 loyalty and intimacy combined. However, according to these authors (p. 462) "these results...must be interpreted with caution...Any modifications suggested by the data, 21 22 regardless of whether they are conceptually plausible, have a tendency to capitalize on 23 chance, providing a better model fit for this data set but inhibiting generalizability of the 24 results. As such, these modifications are presented as preliminary possibilities for further study rather than as evidence confirming the validity of the modified model". They thus 25

concluded that "more work needs to be done to explore whether the seven-factor solution
provides similar results with other samples" (p. 465).

3 In spite of these recommendations, to our knowledge, the factorial structure of the 4 SFOS was not further examined in any of the subsequent studies. When the research question 5 was not specific to particular components of friendship qualities, a global positive sport 6 friendship quality scale was used instead of specific subscales. This strategy was encouraged 7 by the high correlations between the positive friendship quality subscales. This global scale is 8 a composite latent of the five positive friendship quality subscales [i.e., (a) Things in 9 Common; (b) Loyalty and Intimacy; (c) Companionship and Pleasant Play; (d) Self-esteem 10 Enhancement and Supportiveness; (e) Conflict Resolution]. Furthermore, several studies have 11 provided support for the convergent validity of the SFQS with other measures such as 12 adaptive motivational orientations (Smith, Balaguer, & Duda, 2006; Smith, Ullrich-French, 13 Walker II, & Hurley, 2006), perceived physical competence and self-determined motivation 14 (Ullrich-French & Smith, 2006), and peer leadership (Moran & Weiss, 2006). 15 Only a handful of studies have specifically looked at age and gender differences in 16 sport friendship quality. Age-based differences using the original factor structure of the SFQS 17 showed that 10- to 13-year-olds perceived significantly higher companionship and pleasant play, and significantly lower loyalty and intimacy, things in common, and conflict than 14- to 18 19 18-year-old (Weiss & Smith, 2002). According to these authors, these age differences 20 encountered during this developmental period exhibited that (a) young adolescents focus on 21 more concrete and overt elements of the social relationship (i.e., having things in common, 22 spending time together playing); and (b) older adolescents concentrate more on complex and 23 psychological qualities (i.e., loyalty, intimacy, and emotional support). 24 Gender-based differences using the six-factor model of sport friendship showed that

25 girls reported significantly higher self-esteem enhancement and supportiveness, loyalty and

intimacy, and things in common and significantly lower conflict than boys (e.g., Weiss &
Smith, 2002). Additional studies using a two-factor model of the SFQS (Martin & Smith,
2002; Smith et al., 2006a, 2006b; Ullrich-French & Smith, 2006) exhibited that girls also
reported significantly higher global positive friendship quality than boys. However, no
gender-based differences were found for the friendship conflict scale. The significant
differences observed by age or gender in sport context are consistent with the developmental
psychology findings (e.g., Newcomb & Bagwell, 1995; Parker & Asher, 1993).

8 Although the SFQS provides theoretical bases for studying sport friendship quality in 9 youth, all the studies (McDonough & Crocker, 2005; Ommundsen et al., 2005; Weiss & 10 Smith, 2002) that attempted to replicate Weiss and Smith's (1999) six-factor structure failed 11 to attain this objective. Analysis of the studies revealed that part of this failure to replicate the 12 original six-factor model in previous research might be due to, (a) the association of loyalty 13 and intimacy in a common subscale; and (b) the high associations among the positive 14 friendship quality subscales. To cope with these limitations, sport psychology researchers 15 (McDonough & Crocker, 2005; Ullrich-French & Smith, 2006) recommended rather using a 16 seven factor-model incorporating loyalty and intimacy in two separate subscales, or a global 17 positive scale of the SFQS when the research question is not specific to particular components 18 of friendship quality.

Given that the seven-factor solution was presented by McDonough and Crocker
(2005) as a preliminary possibility for further study rather than as evidence confirming the
validity of the modified model, more work needs to be done to explore the appropriateness of
this alternative SFQS model in other adolescent samples. Additionally, this research exhibited
several limitations. First, because this study was only performed with young adolescent girls
(i.e., 11-14 years old), the generalizability of the factorial structure across both gender and age
sub-samples (i.e., young adolescents: 11-13 years; older adolescents: 14-18 years) is not

1 established. Then, this study did not examine the factorial latent mean invariance of this 2 alternative SFQS model across gender and age categories. It is thus unknown whether gender 3 and age-based differences reported in the literature could be replicated with the seven-factor 4 model. Finally, this study has been confined to English-speaking samples. Whether the seven-5 factor structure of the SFQS can be generalized to other cultures and non-English-speaking 6 countries is thus an open question. The replication of this alternative seven-factor structure of 7 the SFQS in another country, such as France, would ensure that the sport friendship quality 8 construct is not biased by colloquialisms and idiosyncrasies of the language in which it was 9 originally developed. An accurate French version of the SFQS would also help sport 10 psychology researchers to expand studies in French-speaking samples. 11 Given the previous results and limitations, the present series of studies attempted to: 12 (a) develop a preliminary French version of the SFQS (SFQS-FR) and test its suitability in 13 samples of children and adolescents; (b) address the aforementioned limitations by examining 14 the SFQS-FR's factorial validity (i.e., factorial structure and invariance), reliability (i.e., 15 internal consistency and temporal stability) and the latent mean invariance across gender and 16 age in an adolescent sample. Based on the aforementioned research, it was thus hypothesized 17 that (a) McDonough and Crocker's (2005) seven-factor model would provide acceptable 18 goodness of fit indices regarding total and gender and age sub-samples; (b) the seven-factor 19 structure of the SFOS would hold across gender and age categories; (c) young adolescents 20 (i.e., 11- to 13 year-olds) would rate significantly higher companionship and pleasant play, and significantly lower loyalty, intimacy, things in common, and conflict than older 21 22 adolescents (i.e., 14- to 18 year-olds), and (d) girls would rate significantly higher self-esteem 23 enhancement and supportiveness, loyalty, intimacy, and things in common, and significantly 24 lower conflict than boys.

Given the absence of a validated French version of the SFQS, the purpose of the first
 study was two-fold: (a) to develop a preliminary version of the SFQS-FR, and (b) to verify its
 content clarity in a sample of French children and adolescents.

4 Method

5 A committee approach (Vallerand, 1989) was used for translation. Thus, the 6 preliminary SFQS-FR version was developed by four bilingual individuals including three 7 sport psychology researchers and a specialist in the field of friendship research. Two criteria 8 guided the translation process: (a) conformity with the original questionnaire intentions and 9 (b) clarity of the items in the French language. A decision was also made to use language that 10 would make the items understandable to children and adolescents and to use International 11 French to avoid colloquialism (e.g., Fournier, Gaudreau, Demontrond-Behr, Visioli, Forest, & 12 Jackson, 2007). Equivalent to the SFQS scale, the reference point for responses was one 13 person rather than friends on the team in general, as reflected by the following stem: "Think 14 of your best friend in sports". Then, as suggested by Brislin (1986), two English teachers 15 reverse-translated this experimental questionnaire. The reversed translation proved to be 16 satisfactory, since the new version was identical to the original version of the SFQS. The 17 French experimental version, which was to be tested, was called the SFQS-FR.

18 To evaluate the clarity of the SFQS-FR items, 20 children and early adolescents aged from 8 to 12 [10 girls ($M_{age} = 10.62$; $SD_{age} = 1.67$) and 10 boys ($M_{age} = 11.04$; $SD_{age} = 1.02$)] 19 20 were recruited. This age bracket was chosen in order to ensure the design of a questionnaire 21 accessible to children as well as to adolescents (Weiss & Smith, 1999). These young athletes 22 participated in a variety of activities such as sailing, soccer and gymnastics. The questionnaire 23 included 22 items accompanied by a five-point Likert scale (from 1 = not at all clear to 5 =24 completely clear) to assess item clarity. The participants were invited to respond as honestly 25 as possible to the questions; anonymity was guaranteed. The youths and their parents had

been informed of the study protocol one week earlier and parental consent was obtained.
Questionnaire completion was carried out under standardized conditions (i.e., isolation, paper,
pencil, help for reading if necessary, and prohibition to communicate). The procedure did not
exceed 15 minutes. Following completion of the questionnaires, individual interviews were
held to identify problems related to the items (e.g., comprehension, relevance).

6 *Results and Discussion*

7 The items with a score lower than four were considered unsatisfactory following 8 Vallerand's (1989) recommendations. The results indicated that the following items were 9 problematic: TC3 = 3.10, RC11 = 2.90, C12 = 3.10, TC15 = 2.50 and C18 = 2.60. A number 10 of criteria were adopted to retain or disregard items. Some of the English words in the 11 translated version of the SFQS scale were too hard to understand or contained a double 12 meaning for French youths (i.e., TC3: "My friend and I have common interests"; C18: "My 13 friend and I stick up for each other in sports"; RC11: "My friend and I try to work things out 14 when we disagree"; TC15: "My friend and I have the same values"). To ensure the same 15 meaning in French and English, we adapted the vocabulary for the troublesome items. Moreover, the items on the conflict scale were also adapted because the language level was 16 17 misunderstood by adolescents (C12: "Mon ami(e) et moi nous nous battons" was changed to 18 "Mon ami(e) et moi on se bagarre", which better corresponds to the way French adolescents 19 actually speak).

Following these modifications, a new evaluation of item clarity was carried out with a sample of 25 children and adolescents from 10 to 16 years old [10 boys playing ice hockey $(M_{age} = 13.50; SD_{age} = 1.65)$ and 15 girls practicing figure skating ($M_{age} = 13.50; SD_{age} =$ 1.71). The procedure was the same as described above. The degree of item clarity was again scored on the same five-point Likert scale. The global average of item clarity ($M_{age} = 4.45;$ SD_{age} = 1.26) revealed that all the SFQS-FR items were easily understandable and the scores

1	of the items which had been misunderstood were satisfactory (TC3 = 4.35 , RC11 = 4.60 , C12
2	= 4.20, TC15 $= 4.50$, and C18 $= 4.70$).

3	The clarity assessment thus required two stages because of the difficulty in translating
4	some of the items and adapting the vocabulary to French youths. Seventeen items from the
5	original translated version remained unchanged, three items were slightly modified, and two
6	items were substantially reworded, as often reported in cross-cultural translation studies (e.g.,
7	Fournier et al., 2007; Heuzé & Fontayne, 2002). As a result, this study allowed us to assume
8	that the preliminary version of the SFQS-FR was appropriate for French-speaking children
9	and adolescents. This version is provided in Table 1.
10	Study 2
11	The purpose of Study 2 was to assess the concurrent validity of the SFQS-FR
12	(Vallerand, 1989). To this end, responses from the original English version (i.e., the SFQS)
13	were compared with those from the translated French version (i.e., the SFQS-FR) using
14	bilingual respondents.
15	Method
16	As recommended by Gonzales-Reigosa (1976) and Vallerand and Halliwell (1983),
17	the degree of participant bilingualism was evaluated through four items (i.e., being able to
18	read English/French; being able to write English/French; being able to understand an
19	English/French conversation; being able to express oneself in English/in French)
20	accompanied by a four-point Likert scale (i.e., from $1 = not$ at all true to $4 = completely true)$.
21	For this study, 14 voluntary adults practicing a variety of sports were recruited ($M_{age} = 20.10$;
22	SD _{age} = 3.20). Adults were recruited for this specific study because, in France, it is a lot easier
23	to find a high degree of bilingualism in adults than in adolescents. The degree of bilingualism
24	$(M_{French} = 15.00, SD_{French} = 20.00; M_{English} = 16.00, SD_{English} = 20.00)$ was satisfactory

(Vallerand, 1989) and no mean differences were found between the French and English
languages [t(13) = -.86, p = .40]. All participants were thus characterized by a degree of
bilingualism that was homogeneous and sufficient to complete the questionnaires in both
languages. For seven participants, the questionnaire was first completed in its original version
and then, half an hour later, in its experimental version. The seven other participants followed
the opposite order. The items were presented in a different order in both versions.

7 Results and Discussion

8 A correlational analysis was used to evaluate the relations between the responses 9 obtained on the SFQS and SFQS-FR versions and thereby determine the concurrent validity. 10 The results indicated that the subscales were perceived in a similar way in the original (i.e., 11 SFQS) and translated versions (i.e., SFQS-FR). The correlation coefficients between the 12 SFQS and the SFQS-FR subscales ranged from .89 to .97 and were significant for all items 13 $(p < .05)^1$. A series of Student t tests for matched samples was also computed (Triandis & 14 David, 1965). This allowed us to observe differences in the scores of each item response in the original and the translated scale. These results were non-significant and indicated that the 15 responses to the SFOS and SFOS-FR items were equivalent². They thus confirmed the 16 17 concurrent validity between the original and the preliminary translated version. 18 Study 3 19 The purpose of the third study performed with the SFQS-FR was to test its factorial (a) 20 structure using a series of CFA, (b) reliability (i.e., internal consistency and temporal 21 stability), and (c) latent mean invariance across gender and age categories. 22 Method

The sample included 422 adolescents from four middle schools in the Southeast of France [207 girls ($M_{age} = 13.69$; $SD_{age} = 1.58$) and 215 boys ($M_{age} = 13.69$; $SD_{age} = 1.58$)]. All adolescents regularly attended physical education classes and some also practiced a club

1	sport. The SFQS-FR was administered to the participants at the beginning of a physical
2	education class. The adolescents had been informed on an earlier occasion that: (a) study
3	participation was not obligatory and their identities would remain anonymous; (b) the
4	questionnaire was not a test (i.e., "there are no good or bad answers; you answer what you
5	think"); and (c) the data obtained would be used only for research purposes and would remain
6	strictly confidential. The participants were invited to think about their sport context and a
7	person they considered to be their best friend in sports (on a team in their club sport or in
8	physical education classes) while responding to the questionnaire. All parents and school
9	directors gave informed consent before the study began. The questionnaires were completed
10	within 20 minutes under the same standardized conditions as in Study 1.
11	Analyses
12	Because of the significant multivariate non-normality of the data (normalized
13	skewness: 63.56; normalized kurtosis: 11.50), the series of CFA was performed using
14	bootstrapped maximum likelihood estimation with the AMOS 7.0 program (Arbuckle, 2006).
15	Based on the aforementioned literature, three distinct models were tested on pooled sample
16	data: (a) a six-correlated factor model (i.e., model 1, Weiss & Smith, 1999); (b) a two-factor
17	model (i.e., model 2; Weiss & Smith, 2002); and (c) a seven-correlated factor model (i.e.,
18	model 3; McDonough & Crocker, 2005). The Weiss and Smith (2002) six-factor correlated
19	errors model and the Ommundsen et al. (2005) three-factor model were excluded from the
20	CFA analyses because of their limits (i.e., correlated uniquenesses and incomplete factor
21	testing).
22	The first model (i.e., Model 1, Weiss & Smith, 1999) hypothesized that: (a) answers to
23	the SFQS-FR would be explained by six first-order factors labeled: things in common (4
24	items), loyalty and intimacy (4 items), companionship and pleasant play (4 items), self-esteem
25	enhancement and supportiveness (4 items), conflict resolution (3 items), and conflict (3

items); (b) each item would have a non-zero loading on the SFQS-FR factor that it was
 designed to measure and zero loadings on all other factors; (c) the six factors would be
 correlated; (d) the following items would be fixed to 1.0: SE1, LI2, TC3, CPP4, CR5, C6; and
 (e) error terms would be uncorrelated.

5 The second model (i.e., Model 2, Weiss & Smith, 2002) hypothesized that: (a) answers 6 to the SFQS-FR would be explained by two first-order factors labeled: positive dimension of 7 friendship quality (19 items) and negative dimension of friendship quality (3 items); (b) each 8 item would have a non-zero loading on the SFQS-FR factor that it was designed to measure 9 and zero loadings on the other factor; (c) the two factors would be correlated; (d) error terms 10 would be uncorrelated; and (e) the following items would be fixed to 1.0: SE1; C6 and (e) 11 error terms would be uncorrelated.

12 The third model (i.e., Model 3, McDonough & Crocker, 2005) hypothesized that: (a) 13 answers to the SFQS-FR would be explained by seven first-order factors labeled: things in 14 common (4 items), loyalty (2 items), intimacy (2 items), companionship and pleasant play (4 15 items), self-esteem enhancement and supportiveness (4 items), conflict resolution (3 items) 16 and conflict (3 items); (b) each item would have a non-zero loading on the SFQS-FR factor 17 that it was designed to measure and zero loadings on all other factors; (c) the seven factors 18 would be correlated; (d) the following items would be fixed to 1.0: SE1, I2, L8, TC3, CPP4, 19 CR5, C6; and (e) error terms would be uncorrelated. At the end of this series of tests, the best 20 CFA model would be retained.

Factorial and latent mean invariance tests through gender and age categories (i.e., 11-13 years and 14-18 years) were performed on the best CFA model and in the sequential order recommended by Gregorich (2006): (a) dimensional/configural (i.e., no invariance), (b) metric (i.e., equal loadings), (c) strong (i.e., equal intercepts), (d) strict (i.e., equal

25 uniquenesses), and (e) equal means.

1	Assessment of model fit was based on multiple indicators (e.g., Hu & Bentler, 1999;
2	Vandenberg & Lance, 2000): the chi square (χ^2), the Comparative Fit Index (CFI), the
3	Tucker-Lewis Index (TLI), the Root Mean Square Error of Approximation (RMSEA) and the
4	90% Confidence Interval of the RMSEA (RMSEA 90% CI). Values greater than .90 for CFI
5	and TLI are considered to be indicative of acceptable model fit (Hu & Bentler, 1999;
6	Vandenberg & Lance, 2000), although values approaching .95 are preferable. In addition,
7	values equal to or lower than .08 and .05 for RMSEA indicate, respectively, acceptable and
8	good model fit (Hu & Bentler, 1999; Vandenberg & Lance, 2000). Concerning the RMSEA
9	90% CI, values less than .05 for the lower bound (left side) and less than .08 for the upper
10	bound (right side) or containing 0 for the lower bound and less .05 for the upper bound (right
11	side) provide, respectively, acceptable and good model fit (MacCallum, Browne, &
12	Sugawara, 1996). Because χ^2 difference tests cannot be legitimately performed on non-nested
13	models, the Expected Cross Validation Index (ECVI) and Akaike Information Criterion (AIC)
14	were used. The AIC value was computed based on the chi-square value for the model minus
15	two times the number of estimated parameters (Akaike, 1987). The ECVI is a single sample
16	estimate that indicates how well the current solution would fit in an independently drawn
17	sample (Browne & Cudeck, 1993). The AIC and ECVI are not normed on a zero to one scale.
18	Reductions of their values, in comparison with other competing models, demonstrated an
19	improved and more parsimonious fit of a model (Motl & Conroy, 2000).
20	Intercorrelations, factor loadings, standardized residuals, square multiple correlations,
21	standard error, t values and modification indices were also inspected for appropriate signs
22	and/or magnitude. Critical values for the gender invariance tests performed on the best CFA
23	model were evaluated by examination of several criteria: χ^2 difference tests and CFI and

- 24 RMSEA changes (Chen, 2007; Cheung & Rensvold, 2002; Vandenberg & Lance, 2000). A
- 25 CFI difference of .01 or less and RMSEA differences of .015 or less between a reference and

1 a resulting model indicated that the invariance hypothesis should not be rejected. Analysis of 2 the discriminant validity of the SFQS-FR was realized using latent factor correlations as suggested by Bagozzi and Kimmel (1995). According to these authors, the validity of two 3 4 distinct constructs is supported when the result of the multiplication of the standard error of the factor correlation by 1.96 is less than unity. Finally, reliability was computed with both 5 6 Cronbach's alpha and the model's standardized parameter estimates, using the formula 7 provided by Bagozzi and Kimmel (1995): $\rho = (\Sigma \lambda i)^2 / ([\Sigma \lambda i]^2 + \Sigma \delta ii)$ where λi are the factor 8 loading and δ ii the error variances.

9 Results and Discussion

10 Factorial validity. The results from the series of CFA are presented in Table 2. All 11 models exhibited significant bootstrapped χ^2 values. As displayed in Table 2, goodness of fit 12 indices were acceptable (i.e., > .90 for CFI and TLI; $\le .06$ for RMSEA) for models 1 and 3. 13 Loadings and uniqueness of models 1 and 3 are presented in Table 3 and were significant and 14 substantial in both models. Comparison of acceptable models (i.e., models 1, 2 and 3) 15 revealed that the third one (McDonough & Crocker, 2005) provided the best goodness of fit 16 indices, as well as the lowest ECVI and AIC indices. This model, which is the best, was thus 17 retained for subsequent analysis: gender and age invariance tests and test-retest reliability. 18 Internal consistency and latent intercorrelations. The results regarding the internal 19 consistency, latent intercorrelations and standard error of model 3 are provided in Tables 4 20 and 5. First, all scales presented modest to acceptable Cronbach's alpha (i.e., ranging from .68 21 to .80) and composite reliability coefficients (i.e., ranging from $\rho = .70$ to .88) (see Table 4). Second, latent variable intercorrelations were moderate to large in magnitude ($\Phi = -.43$ to .86; 22 23 8 values > .70) and statistically significant (see Table 5). They were similar to those found by Weiss and Smith (2002) and McDonough and Crocker (2005). Thus, these results provided 24 25 evidence for the discriminant validity of the SFQS-FR in a French population, according to

Bagozzi and Kimmel (1995) criteria. These criteria state that the validity of two distinct
 constructs is confirmed when the result of the multiplication of the standard error of the factor
 correlation by 1.96 is less than unity (Bagozzi & Kimmel, 1995; Hagger, Biddle, & Wang,
 2005).

5 Factorial and latent mean invariance tests across gender. The results from the gender 6 sub-samples and gender invariance tests are provided in Table 6. CFA performed with sub-7 samples of boys and girls using the best SFQS-FR model (i.e., model 3) showed significant 8 bootstrapped χ^2 values (see Table 6). Nevertheless, as displayed in Table 6 the CFI, TLI and 9 RMSEA fit indices were acceptable (i.e., > .90 for CFI and TLI; < .06 for RMSEA). The first model of invariance (i.e., dimensional) provided significant bootstrap χ^2 and 10 acceptable indices for CFI (i.e., > .90) and RMSEA (i.e., < .05), with the exception of TLI 11 (i.e., < .90). The next model (i.e., equal factor loadings) provided (a) significant bootstrap χ^2 ; 12 (b) acceptable fit indices for CFI (i.e., > .90) and RMSEA (i.e., < .05), with the exception of 13 TLI (i.e., < .90); and (c) evidence of metric invariance [i.e., $\Delta ML \chi^2(10.10)$, df = 15, p = 14 15 .812; $\Delta CFI < .01$; $\Delta RMSEA < .015$]. The third model (i.e., intercepts equal) revealed significant bootstrap χ^2 and acceptable CFI (i.e., > .90) and RMSEA (i.e., < .05) indices, with 16 the exception of TLI (i.e., < .90). Nevertheless, this model of strong invariance was rejected 17 based on changes in ML chi square [i.e., $\Delta ML \chi^2(38.80)$, df = 15, p = .001]. Modification 18 19 indices provided by AMOS 7.0 suggested that the gender-group equality constraint in the intercept for item 12 contributed most strongly to the lack of fit. The fourth model freely 20 21 estimated this parameter in both gender groups and provided evidence of partial strong 22 invariance [i.e., $\Delta ML \chi^2(20.80)$, df = 14, p = .11; $\Delta CFI < .01$; $\Delta RMSEA < .015$]. The next 23 model tested the partial strict factorial invariance by imposing equality gender-group constraints on all corresponding uniquenesses, except for those for item 12. Based on changes 24

1	in ML chi square [i.e., Δ ML χ^2 (96.90), df = 21, $p < .001$], this model was also rejected.
2	Analysis of modification indices provided by AMOS 7.0 revealed that freely estimate
3	uniqueness for items 6, 8, 13, 14, 15, 18, 20, and 21 would significantly improve goodness of
4	fit indices. The model was thus re-specified according to these suggestions and the CFA was
5	rerun. The sixth model provided thus: (a) significant bootstrap χ^2 , (b) acceptable fit indices
6	for CFI (i.e., $>$.90) and RMSEA (i.e., $<$.05), with the exception of TLI (i.e., $<$.90); and (c)
7	evidence of partial strict invariance [i.e., $\Delta ML \chi^2(20.80)$, df = 13, p = .08; $\Delta CFI < .01$;
8	Δ RMSEA < .015]. Finally, the seventh model exhibited: (a) significant bootstrap χ^2 , (b)
9	acceptable fit indices for CFI (i.e., >.90) and RMSEA (i.e., < .05), with the exception of TLI
10	(i.e., <.90); and (c) evidence of lack of latent mean invariance across genders [i.e., ΔML
11	$\chi^2(26.20)$, df = 7, p = .001]. Examination of latent mean revealed that boys do indeed present
12	significantly lower scores of companionship and pleasant play (Latent mean =12, t = -2.27,
13	p = .02, d = .22), conflict (Latent mean =26, $t = -2.58, p = .01, d = .25$) and intimacy (Latent
14	mean =24, t = -3.51, p <.001, d = .34) than girls. However, no differences were found in
15	self-esteem enhancement and supportiveness (Latent mean =03, $t =43$, $p = .61$, $d = .04$),
16	loyalty (Latent mean =11, t = -1.55, p = .12, d = .15), things in common (Latent mean = -
17	.02, $t =30$, $p = .76$, $d = .03$), and conflict resolution (Latent mean =14, $t = -1.63$, $p = .10$,
18	<i>d</i> = .16).

19 *Factorial and latent mean invariance tests across age categories*. The results from the 20 age sub-samples and age invariance tests are provided in Table 7. CFA performed with sub-21 samples of youngster from 11 to 13 years old (N = 132) and from 14 to 18 years old (N = 290) 22 using the best SFQS-FR model (i.e., model 3) showed significant bootstrapped χ^2 values (see 23 Table 7). Nevertheless, as displayed in Table 7, the CFI, TLI and RMSEA fit indices were

1	acceptable in most cases (i.e., > .90 for CFI and TLI; < .06 for RMSEA) with an exception for
2	the TLI values for the 11-13 year old participants that were $< .90$.
3	The first model of invariance (i.e., dimensional) provided significant bootstrap χ^2 and
4	acceptable indices for CFI and TLI (i.e., > .90) and RMSEA (i.e., < .05). The next model (i.e.,
5	factor loadings equal) provided (a) significant bootstrap χ^2 ; (b) acceptable fit indices for CFI
6	and TLI (i.e., > .90) and RMSEA (i.e., < .05); and (c) evidence for metric invariance [i.e.,
7	Δ ML $\chi^2(13)$, df = 15, p = .60; Δ CFI < .01; Δ RMSEA < .015]. The third model (i.e., intercepts
8	equal) revealed (a) significant bootstrap χ^2 ; (b) acceptable CFI and TLI (i.e., > .90) and
9	RMSEA (i.e., < .05) indices; and (c) evidence of strong invariance [i.e., Δ ML χ^2 (15.4), df =
10	15, $p = .42$; $\Delta CFI \le .01$; $\Delta RMSEA < .015$]. The next model tested the strict factorial
11	invariance by imposing equality age-group constraints on all corresponding uniquenesses.
12	Based on changes in ML chi square [i.e., Δ ML $\chi^2(40.4)$, df = 22, $p < .01$], this model was
13	rejected. Analysis of modification indices provided by AMOS 7.0 revealed that freely
14	estimate uniqueness for item 10 would significantly improve goodness of fit indices. The
15	model was thus re-specified according to these suggestions and the CFA was rerun. The fifth
16	model provided: (a) significant bootstrap χ^2 , (b) acceptable fit indices for CFI and TLI (i.e., >
17	.90) and RMSEA (i.e., < .05); and (c) evidence of partial strict invariance [i.e., Δ ML χ^2 (31.8),
18	df = 21, p = .06; Δ CFI \leq .01; Δ RMSEA $<$.015]. Finally, the sixth model exhibited: (a)
19	significant bootstrap χ^2 , (b) acceptable fit indices for CFI and TLI (i.e., >.90) and RMSEA
20	(i.e., < .05); and (c) evidence of a lack of latent mean invariance across age categories [i.e.,
21	Δ ML $\chi^2(14.4)$, df = 7, p = .04]. Examination of latent mean revealed that 11 to 13 year old
22	participants do indeed present significantly higher scores of things in common (Latent mean =
23	.16, $t = 2.06$, $p = .04$, $d = .22$) and intimacy (Latent mean = .19, $t = 2.82$, $p = .005$, $d = .30$) than
24	the 14 to 18 year old participants. However, no differences were found in companionship and

1	pleasant play (Latent mean = $.10$, $t = 1.87$, $p = .06$, $d = .20$), conflict (Latent mean = $.17$, $t =$
2	1.55, $p = .12$, $d = .16$), self-esteem enhancement and supportiveness (Latent mean = .12, t
3	=1.84, p = .07, d = .19), loyalty (Latent mean = .14, $t = 1.85$, $p = .06$, $d = .19$) and conflict
4	resolution (Latent mean =.10, $t = 1.08$, $p = .28$, $d = .11$)
5	Study 4
6	The purpose of the last study was to test the temporal stability of the best SFQS-FR
7	model retained in Study 3 in a new adolescent sample over a five-week period.
8	Method
9	This new sample included 105 adolescents [53 boys ($M = 13.22$, $SD = 1.46$) and 52
10	girls ($M_{age} = 12.97$, $SD_{age} = 1.32$)] who attended both physical education classes and club
11	sport sessions every week. The SFQS-FR was administered to the participants twice over a
12	five-week period. The questionnaires were completed under the same standardized conditions
13	as in Study 1. For the second time, the participants were asked to keep in mind the same best
14	friend as the first time. Both times, they were asked to indicate the initials of the best friend,
15	which allowed us to verify the consistency of their choice. The nine participants who did not
16	consider the same friend were not included in the analyses.
17	Analyses
18	The temporal stability of model 3 was assessed using the Intraclass Correlations
19	Coefficients (ICC), 95% Confidence Interval of the ICC (ICC 95% CI) and a series of Student
20	t tests for matched samples.
21	Results and Discussion
22	The results from the ICC, ICC 95% CI and the Student <i>t</i> tests are provided in Table 4.
23	The ICC were statistically significant in all cases. The ICC for each subscale were ranging
24	from .66 to .80, demonstrating for each subscales an acceptable inter-rater reliability. These
25	reliability analyses confirmed thus the temporal stability of the instrument. Moreover, as

reported in Table 4, none of the Student *t* tests for matched samples were significant (*p* > .05).
 In sum, these results revealed that the adolescents' SFQS-FR responses were highly
 consistent through time.

4

General Discussion

5 The main purpose of the present series of studies was to test the factor validity and 6 reliability of Weiss & Smith's (1999) SFQS in a French adolescent sample. To this end, 7 several factorial structure models based on those found in the literature were tested 8 (McDonough & Crocker, 2005; Weiss & Smith, 2002). It was hypothesized that McDonough 9 and Crocker's (2005) seven-factor model would provide acceptable goodness of fit indexes 10 across total and gender and age sub-samples. Results from CFA revealed that two models 11 provided acceptable fit indexes: Weiss and Smith's (1999) six-factor structure and 12 McDonough and Crocker's (2005) seven-factor structure (i.e., separating the loyalty and 13 intimacy factor into two subscales). Both of these models confirmed the multi-dimensional 14 structure of the concept of friendship quality identified in developmental psychology 15 literature (Bukowski et al., 1994; Parker & Asher, 1993). They are consistent with the dimensions typically found in questionnaires assessing friendship quality through (a) the 16 17 functions of friendship (e.g., provision of companionship, level of intimate disclosure, degree 18 of helpfulness and advice), (b) conflict and disagreements, and (c) the affective properties of 19 friendship (Rubin et al., 2006).

Analysis of goodness of fit indices (i.e., CFI, TLI, RMSEA) and specifically those
used to compare non-nested models (i.e., ECVI and AIC) revealed that McDonough and
Crocker's (2005) seven-factor model would be the most appropriate for French youths.
Subsequent analyses performed with this model provided evidence of adequate to good
factorial reliability (i.e., internal consistency and temporal stability). The suitability of
McDonough and Crocker's (2005) seven-factor structure for the present data thus reactivates

the theoretical rationale for splitting loyalty and intimacy into two separate dimensions
 (Furman & Buhrmeister, 1985; Parker & Asher, 1993).

3 Furthermore, it was hypothesized that the seven-factor structure of the SFQS would 4 hold across gender and age categories. The findings from this study provide support for the 5 partial factorial structure invariance of a 21-item version of the SFQS-FR across gender. 6 Indeed, analysis revealed that item 12 ("my friend and I fight") lacked invariance between 7 boys and girls. This lack invariance may stand out because of boys' and girls' conceptions of the term "fight"³. For boys this might invoke ideas about physical conflict, whereas girls 8 9 might think of relational conflict (Weiss & Stuntz, 2004). As observed in previous studies in both developmental and sport psychology (Parker & Asher, 1993; Weiss & Smith, 2002; 10 11 Zarbatany, McDougall, & Hymel, 2000), the subsequent latent mean analysis revealed that 12 girls scored higher than boys on the intimacy subscale, and that no gender differences were 13 observed in the things in common and conflict resolution subscales (Weiss & Smith, 2002). 14 Moreover, in contrast to the aforementioned literature (i.e., Weiss & Smith, 2002), girls also 15 presented higher scores than boys in both the conflict and companionship and pleasant play 16 subscales. Higher conflict ratings for girls in our study might mirror the tendency of 17 adolescent girls towards relational conflict, as a hidden culture of aggression (Simmons, 2002; 18 Weiss & Stuntz, 2004). The discrepant findings between the Weiss and Smith (2002) study 19 and the present research, regarding the self-esteem enhancement and supportiveness, and the 20 loyalty subscales, may emanate from the sample homogeneity with regard to activity level 21 and value toward sport (Weiss & Smith, 2002).

CFA revealed that the model was partially invariant across age: all items, except item 10 (i.e., "I like to play with my friend"), were invariant across young and older adolescents. It can be hypothesized that item 10 was not invariant because it would resonate with older youth less than younger youth, because of the phrase "play with"⁴. Younger children would use this

1 phrase freely, whereas older youth would either find the phrase babyish or, alternatively, 2 humorous because it carries a double meaning that is sexual in nature. In addition, it was 3 hypothesized that young adolescents (i.e., 11- to 13-year-olds) would rate significantly higher 4 companionship and pleasant play, and significantly lower loyalty, intimacy, things in 5 common, and conflict than older adolescents (i.e., 14- to 18-year-olds), and girls would rate 6 significantly higher self-esteem enhancement and supportiveness, loyalty, intimacy, and 7 things in common, and significantly lower conflict than boys. In contrary to the 8 developmental psychology literature (Newcomb & Bagwell, 1995) but consistent with Weiss 9 and Smith's (2002) results, we did not find any age-group differences for self-esteem 10 enhancement and supportiveness, and conflict resolution. These findings would confirm the 11 hypothesis of a specific influence of the nature and climate of youth sport programs (Weiss & 12 Smith, 2002; Zarbatany et al., 1992). Moreover, in contrast to Weiss and Smith's (2002) 13 results, the younger participants also scored higher on things in common and intimacy 14 subscales. The unexpected finding on the things in common suscale might be explained by the 15 fact that adolescents tend to affirm their difference and their identity, and would be more 16 sensible to complementary features in their friendships than to similarity (Sullivan, 1953). 17 Additionally, it can be hypothesized than the word "secret" included in item 20 of the 18 intimacy subscale was seen as too babyish by adolescents and thus not meaningful for them⁵. 19 Finally, we observed discrepant results with the Weiss and Smith (2002) study on the loyalty 20 and conflict subscales. As noted earlier, these differences may emanate from the sample 21 homogeneity with regard to activity level and value toward sport (Weiss & Smith, 2002). 22 A typical limitation of research approaches based on self-report measures concerns the 23 potential for social desirability bias. As aforementioned, however, several authors have 24 concluded that questionnaire or interview procedures are the most appropriate means (or even

25 the sole way) to capture perceived friendship quality (Furman, 1996; Rubin et al., 2006). Yet,

1 future studies could use observational approaches that rely on measurements of the 2 interpersonal behaviors between friends related to perceived friendship quality. Such studies 3 with French youth samples would provide additional support for the SFQS-FR construct 4 validity. There is also a need for further testing of the factorial and latent mean structure 5 invariance of this instrument with an independent sample, as well as with high skill-level 6 participants. Other critical steps would be, (a) to assess the construct validity of the SFQS-FR 7 by examining, in a French adolescent sample, the relationships of sport friendship quality 8 with other theoretically relevant variables or constructs, such as motivation (e.g., Smith et al., 9 2006), and (b) to examine the cross-cultural validity of the instrument responses. 10 In conclusion, this series of studies with French youth involved in sports provided 11 support for the factorial validity and reliability of the McDonough and Crocker (2005) seven-12 factor model of the SFQS-FR. This instrument appears to be an appropriate instrument for use 13 with French children and adolescents practicing club sports or attending physical education 14 classes. The French version of the SFQS comprises 22 items that measure seven dimensions: 15 (a) things in common (4 items), (b) loyalty (2 items), (c) intimacy (2 items), (d) 16 companionship and pleasant play (4 items), (e) self-esteem enhancement and supportiveness 17 (4 items), (f) conflict resolution (3 items), and (g) conflict (3 items). This instrument will both 18 (a) help sport psychology researchers to better understand peer relationships among French 19 adolescents, and (b) encourage cross-cultural studies highlighting the importance of peers as 20 social agents in youth sport.

21

1	References
2	Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.
3	Arbuckle, J. (2006). AMOS 7.0 User's Guide. Chicago, IL: SPSS.
4	Bagozzi, R.P., & Kimmel, S.K. (1995). A comparison of leading theories for the prediction of
5	goal directed behaviors. British Journal of Social Psychology, 34, 437-461.
6	Berndt, T.J. (1996). Exploring the effects of friendship quality on social development. In
7	Bukowski, W.M., Newcomb, A.F., & Hartup, W.W. (Eds.), The company they keep:
8	Friendship in childhood and adolescence (pp. 346-365). New York, NY: Cambridge
9	University Press.
10	Berndt, T.J., & Perry, T.B. (1986). Children's perceptions of friendships as supportive
11	relationships. Developmental Psychology, 22, 640-648.
12	Brislin, R.W. (1986). The wording and translation of research instruments. In Lonner W.J., &
13	Berry, J.W. (Eds.), Field methods in cross-cultural methods (pp. 137-164). Beverly
14	Hills, CA: Sage.
15	Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.A. Bollen
16	& J.S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury
17	Park, CA: Sage.
18	Bukowski, W.M., & Hoza, B. (1989). Popularity and friendship: Issues in theory,
19	measurement, and outcome. In T.J. Berndt & G.W. Ladd (Eds.), Peer relations in
20	child development (pp. 15-45). New York: Wiley.
21	Bukowski, W., Hoza, B., & Boivin, M. (1994). Measuring friendship quality during pre-and
22	early adolescence: The development and psychometric properties of friendship
23	qualities scale. Journal of Social and Personal Relationship, 11, 471-484.
24	Chen, F.F. (2007). Sensitivity of goodness of fit indexes to lack of measurement. Structural
25	Equation Modeling, 14, 464-504.

1	Cheung, G.W., & Rensvold, R.B. (2002). Evaluating goodness-of fit indexes for testing
2	measurement invariance. Structural Equation Modeling, 9, 233–255.
3	Fehr, B. (1996). Friendship processes. Thousand Oaks, CA: Sage.
4	Fournier, J., Gaudreau, P., Demontrond-Behr, P., Visioli, J., Forest, J., & Jackson, S. (2007).
5	French translation of the Flow State Scale-2: Factor structure, cross-cultural
6	invariance, and associations with goal attainment. Psychology of Sport and
7	Exercise, 8, 897-916.
8	Furman, W. (1996). The measurement of friendship perceptions: Conceptual and
9	methodological issues. In W.M. Bukowski, A.F. Newcomb, & W.W. Hartup (Eds.),
10	The company they keep: Friendship in childhood and adolescence (pp. 41-65). New
11	York, NY: Cambridge University Press.
12	Furman, W., & Buhrmester, D. (1985). Children's perceptions of the personal relationships in
13	their social networks. Developmental Psychology, 21, 1016-1022. Furman, W., &
14	Buhrmester, D. (1992). Age and sex differences in perceptions of networks of
15	personal relationships. Child Development, 63, 103-115.
16	Gonzalez-Reigosa, F. (1976). The anxiety arousing effect of taboo words in bilinguals. In
17	Spielberger C. D., & Diaz-Guerrero R. (Eds.), Cross-cultural anxiety (pp. 89-105).
18	Washington, DC: Hemisphere.
19	Gregorich, S.E. (2006). Do self-report instruments allow meaningful comparisons across
20	diverse population groups? Testing measurement invariance using the confirmatory
21	factor analysis framework. Medical Care, 44, 78-94.
22	Hagger, M.S., Biddle, S.J.H., & Wang, C.K.J. (2005). Physical self-concept in adolescence:
23	Generalizability of a multidimensional, hierarchical model across gender and grade.
24	Educational and Psychological Measurement, 65, 297-322.

1	Hartup, W.W. (1983). Peer relations. In E.M. Hetherington (Ed.), Handbook of child
2	psychology, Vol. 4 (pp. 103-196). New York, NY: Wiley.
3	Hartup, W.W. (1996). The company they keep: Friendships and their developmental
4	significance. Child Development, 67, 1-13.
5	Heuzé, J.P., & Fontayne, P. (2002). Questionnaire sur l'Ambiance du Groupe: A French-
6	language instrument for measuring group cohesion. Journal of Sport & Exercise
7	Psychology, 24, 42-67.
8	Hinde, R.A. (1987). Individuals, relationships and culture. Cambridge: Cambridge University
9	Press.
10	Hu, L.T., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure
11	analysis: Conventional criteria versus new alternatives. Structural Equation
12	Modeling, 6, 1–55.
13	Lansford, J.E., & Parker, J.G. (1999). Children's interactions in triads: Behavioral profiles
14	and effects of gender and patterns of friendships among members. Developmental
15	Psychology, 35, 80–93.
16	MacCallum, R.C., Browne, M.W., & Sugawara, H.M. (1996). Power analysis and
17	determination of sample size for covariance structure modeling. Psychological
18	Methods, 1, 130-149.
19	Martin, J.J., & Smith, K. (2002). Friendship quality in youth disability sport: perceptions of a
20	best friend. Adapted Physical Activity Quarterly, 19, 472-482.
21	McDonough, M.H., & Crocker, P.R.E. (2005). Sport participation motivation in young
22	adolescent girls: The role of friendship quality and self-concept. Research Quarterly
23	for Exercise and Sport, 76, 456-467.

1	Moran, M.M., & Weiss, M.R. (2006). Peer leadership in sport: Links with friendship, peer
2	acceptance, psychological characteristics, and athletic ability. Journal of Applied
3	Sport Psychology, 18, 97-113.
4	Motl, R.W., & Conroy, D.E. (2000). Validity and factorial invariance of the Social Physique
5	Anxiety Scale. Medicine and Science in Sports and Exercise, 5, 1007-1017.
6	Newcomb, A. F., & Bagwell, C. L. (1995). Children's friendship relations: A meta-analytic
7	review. Psychological Bulletin, 117, 306-347.
8	Ommundsen, Y., Roberts, G.C., Lemyre, P.N., & Miller, B.W. (2005). Peer relationships in
9	adolescent competitive soccer: Associations to perceived motivational climate,
10	achievement goals and perfectionism. Journal of Sports Sciences, 23, 977-989.
11	Parker, J.G., & Asher, S. (1993). Friendship and friendship quality in middle childhood: Links
12	with peer group acceptance and feelings of loneliness and social dissatisfaction.
13	Developmental Psychology, 29, 611-621.
14	Rubin, K.H., Bukowski, W., & Parker, J. (2006). Peer interactions, relationships, and groups.
15	In N. Eisenberg (Ed.), Handbook of child psychology: Social, emotional, and
16	personality development (6 th ed; pp. 571-631). New York, NY: Wiley.
17	Simmons, R. (2002). Odd girl out: The hidden culture of aggression in girls. New York:
18	Harcourt.
19	Smith, A.L. (2007). Youth peer relationships in sport. In S.J. Jowett & D. Lavallee (Eds.),
20	Social Psychology in Sport (pp. 41-54). Champaign, IL: Human Kinetics.
21	Smith, A.L., Balaguer, I., & Duda, J.L. (2006a). Goal orientation profile differences on
22	perceived motivational climate, perceived peer relationships, and motivation-related
23	responses of youth athletes. Journal of Sports Sciences, 24, 1315-1325.

1	Smith, A.L., Ulrich-French, S., Walker II, E., & Hurley, K.S. (2006b). Peer relationship
2	profiles and motivation in youth sport. Journal of Sport & Exercise Psychology, 28,
3	362-382.
4	Sullivan, H.S. (1953). The interpersonal theory of psychiatry. New York: Norton.
5	Triandis, H.C., & David, E. (1965). Some methodological problems concerning research on
6	negotiations between monolinguals. Technical Report, 28. Urbana, I: Group
7	effectiveness Research laboratory.
8	Ullrich-French, S., & Smith, A.L. (2006). Perceptions of relationships with parents and peers
9	in youth sport: Independent and combined prediction of motivational outcomes.
10	Psychology of Sport and Exercise, 7, 193-214.
11	Vallerand, R.J. (1989). Vers une méthodologie de validation transculturelle de questionnaires
12	psychologiques : Implications pour la recherche en langue française [Towards a
13	methodology of transcultural validation of psychological questionnaires:
14	Implications for research in the French language]. Canadian Psychology, 4, 662-
15	680.
16	Vallerand, R.J., & Halliwell, W.R. (1983). Vers une méthodologie de validation
17	transculturelle de questionnaires psychologiques: Implications pour la psychologie
18	du sport [Towards a methodology of transcultural validation of psychological
19	questionnaires: Implications for the psychology of the sport]. Journal Canadien des
20	Sciences Appliquées au Sport, 8, 9-18.
21	Vandenberg, R.J., & Lance, C.E. (2000). A review and synthesis of the measurement
22	invariance literature: Suggestions, practices, and recommendations for
23	organizational research. Organizational Research Methods, 3, 4-70.
24	Weiss, M.R., & Smith, A.L. (1999). Quality of youth sport friendships: Measurement
25	development and validation. Journal of Sport & Exercise Psychology, 21, 145-166.

1	Weiss, M.R., & Smith, A.L. (2002). Friendship quality in youth sport: Relationship to age,
2	gender and motivation variables. Journal of Sport & Exercise Psychology, 24, 420-
3	437.
4	Weiss, M.R., Smith, A.L., & Theeboom, M. (1996). "That's what friends are for": Children's
5	and adolescents' perceptions of peer relationships in the sport domain. Journal of
6	Sport & Exercise Psychology, 18, 347-379.
7	Weiss, M.R., & Stuntz, C.P. (2004). A little friendly competition: Peer relationships and
8	psychosocial development in youth sport and physical activity contexts. In M.R.
9	Weiss (Ed.), Developmental sport and exercise psychology: A lifespan perspective
10	(pp. 165-196). Morgantown, WV: Fitness Information Technology.
11	Zarbatany, L., Guesquière, K., & Mohr, K. (1992). A context perspective on early
12	adolescents' friendship expectation. Journal of Early Adolescence, 12, 111-126.
13	Zarbatany, L., McDougall, P., and Hymel, S. (2000). Gender differentiated experience in
14	thepeer culture: Links to intimacy in preadolescence. Social Development, 9, 62-79.
15	

1	Author Notes
2	This study was financially supported by a grant from the University of Nice Sophia-
3	Antipolis. The authors are grateful to the children and adolescents for their participation. They
4	also sincerely thank Cyrine Ayeb for her assistance in the collection of the data, Catherine
5	Carmeni and Shahida Jacques for their help in the English translation, and two anonymous
6	reviewers for their helpful comments.
7	Correspondence regarding this article should be addressed to Stéphanie Scoffier,
8	University of Nice Sophia-Antipolis, Faculty of Sport Science, 261 route de Grenoble, BP
9	3259, 06205 Nice cedex 3, France. E-mail: scoffier@unice.fr
10	

1	Footnotes
2	^{1,2} Details about the results are available upon request from the first author.
3	^{3,4,5} The authors thank one of the reviewer for these interesting suggestions.
4	

2 Items of the SFQS-FR (Original English items are in parentheses).

Scales	Items
Estime de soi (Self-esteem Enhancement and supportiveness)	 Mon ami(e) me donne une seconde chance de faire une performance. (My friend gives me a second chance to perform a skill). Mon ami(e) et moi nous nous félicitons quand nous faisons de bonnes performances en sport. (My friend and I praise each other for doing sports well). Lorsque je fais des erreurs mon ami(e) m'encourage. (After I make mistakes, my friend encourages me). Mon ami(e) a confiance en moi en sport. (My friend has confidence in me during sport).
Loyauté (Loyalty)	 8. Mon ami(e) et moi nous nous soutenons en sport. (<i>My friend and I stick up for each other</i>). (<i>Loyalty</i>) 13. Mon ami(e) prend soin de moi. (<i>My friend looks out for me</i>).(<i>Loyalty</i>)
Intimité (Intimacy)	 Mon ami(e) et moi pouvons parler de tout. (<i>My friend and I can talk about anything</i>). Mon ami(e) et moi nous nous racontons des secrets. (<i>My friend and I tell each other secrets</i>).
Choses en commun (Things in Common)	 Mon ami(e) et moi nous nous intéressons à la même chose. (My friend and I have common interests). Mon ami(e) et moi faisons les mêmes choses. (My friend and I do similar things). Mon ami(e) et moi avons les mêmes idées de ce qui est bien ou mal en sport (comme par exemple tricher). (My friend and I have the same values). Mon ami(e) et moi pensons de la même manière. (My friend and I think the same way).
Compagnonage et Jeux plaisants (Companionship and Pleasant Play)	 4. Mon ami(e) et moi faisons des choses amusantes. (My friend and I do fun things). 10. J'aime m'amuser avec mon ami(e). (I like to play with my friend). 17. Mon ami(e) et moi jouons bien ensemble. (My friend and I play well together). 21. Mon ami(e) et moi passons du temps ensemble. (My friend and I spend time together).
Résolution de conflit (<i>Conflict Resolution</i>)	 5. Mon ami(e) et moi nous nous réconcilions facilement quand nous nous disputons (<i>My friend and I make up easily when we have a fight</i>). 11. Mon ami(e) et moi essayons d'éclaircir la situation quand nous ne sommes pas d'accord. (<i>My friend and I try to work things out when we disagree</i>). 16. Quand nous nous disputons mon ami(e) et moi en parlons afin de trouver une solution. (<i>When we have an argument, my friend and I talk about how to reach a solution</i>).
Conflit (Conflict)	 6. Mon ami(e) et moi on se fâche l'un(e) contre l'autre. (<i>My friend and I get mad each other</i>). 12. Mon ami(e) et moi on se bagarre. (<i>My friend and I fight</i>). 18. Mon ami(e) et moi on se dispute. (<i>My friend and I have arguments</i>).

3 4 5 Note. Instructions: "Please respond to the questions with one person in mind, your best sport friend.

Write the best sport friend in allotted space before proceeding with the question".

Model ^b	χ ² (B-S)	df	CFI	TLI	RMSEA	RMSEA 90% CI	ECVI	AIC
1	255.2*	194	.922	.907	.060	.053066	1.429	601.6
2	277.9*	208	.816	.796	.088	.082094	2.319	976.2
3	245.8*	188	.941	.927	.053	.046060	1.277	537.6

2 Goodness-of-Fit for the SFQS-FR Models^a.

3 *Note.* Model 1: Six correlated first-order factors (Weiss & Smith. 1999); Model 2: A two-factor

4 model (Weiss & Smith, 2002); Model 3: Seven correlated first-order factors (McDonough & Crocker,

5 2005); χ^2 (B-S): Bollen-Stine chi-square; df: Degrees of freedom; CFI: Comparative Fit Index;

6 TLI: Tucker-Lewis Index; RMSEA: Root Mean Square Error of Approximation; RMSEA 90% CI:

7 Root Mean Square Error of Approximation 90% Confidence Interval; ECVI: Expected Cross-

8 Validation Index; AIC: Akaike's Information Criterion; ^a Bootstrapped goodness of fit indexes are

9 reported in this table because of the significant multivariate non-normality within these data; $^{b}n = 425$;

10 * p < .01.

11

- 2 CFA Standardized Factor Loadings and Uniquenesses for Model 1 (Weiss & Smith,
- 3 1999), Model 2 (Weiss & Smith, 2002) and Model 3 (McDonough & Crocker, 2005).

				Models		
		1		2		3
Scales	les $\frac{\text{Item}}{n^{\circ}}$ $\text{Load}^{a}(U)$		Scales	Load ^a (Uniq)	Scales	Load ^a (Uniq)
Self-esteem	1	.67 (.37)†		.56 (.20)†	G 12	.66 (.37)†
Enhancement	7	.68 (.40)	.58 (.44)		Self-esteem	.68 (.40)
and	14	63 (.52)		.59 (.49)	ennancement	.64 (.52)
Supportiveness	22	.72 (.34)		.65 (.57)	supportiveness	.70 (.35)
	2	.66 (.40)†		.59 (.40)	T 1.	.73 (.32)†
Lovalty and	20	.73 (.61)		.64 (.57)	Loyalty	.80 (.43)
Intimacy	8	.60 (.55)		.58 (.64)		62 (50)+
	13	.79 (.50)		.72 (.45)	Intimacy	.78 (.51)
	3	.69 (.49)†		.57 (.73)		.69 (.50)†
Things in	9	.74 (.50)	Positive	.64 (.63)	Things in	.75 (.50)
Common	15	.60 (.71)	friendship	1ship .51 (.86) Co		.59 (.73)
	19	.77 (.41)		.67 (.83)		.76 (.41)
Companyation	4	.68 (.31)†		.58 (.56)	Commention at in	.67 (.31)†
and Pleasant	10	.75 (.21)		.63 (.38)	and Pleasant	.74 (.21)
Play	17	.67 (.26)		.63 (.29)	Play	.66 (.26)
Thuy	21	.74 (.32)		.69 (.28)	Thuy	.75 (.32)
Conflict	5	.53 (.53)†		.47 (.38)	Conflict	.53 (.53)†
Resolution	11	.75 (.46)		.59 (.58)	Resolution	.74 (.46)
Resolution	16	.81 (.43)		.58 (.68)	Resolution	.81 (.43)
	6	.81 (.39)†		.81 (.84)†		.81 (.38)†
Conflict	12	.45 (.92)	Conflict	.46 (.40)	Conflict	.46 (.92)
	18	.81 (.48)	frienship	.82 (.91)		.82 (.48)

4

5 Note. Load: loadings; Uniq: uniquenesses. 1: Six correlated first-order factors (Weiss &

6 Smith, 1999); 2: A two-factor model (Weiss & Smith, 2002); 3: Seven correlated first-order

7 factors (McDonough & Crocker, 2005). †: items fixed to 1.0. ^a All loadings and uniquenesses

- 8 are significant (p < .01).
- 9

	Scales										
	Self - esteem	Loyalty	Intimacy	Things in Common	Companionship and Pleasant Play	Conflict Resolution	Conflict				
М	4.15	3.97	4.31	3.82	4.43	4.03	1.90				
SD	.85	1.04	.97	1.02	.74	1.00	1.11				
ρ	.82	.72	.75	.88	.88	.76	.70				
α	.77	.72	.68	.79	.80	.74	.73				
ICC	.72*	.72*	.72*	.79*	.80*	.73*	.72*				
ICC 95% CI	.7380	.6777	.6777	.7682	.7683	.6877	.6776				
Student t(105) ^{tt} : ^a	49	-1.45	-1.48	-1.10	69	62	18				

2 Descriptive Statistics for Model 3 (McDonough & Crocker, 2005).

3 *Note*. M: Mean; SD: Standard deviations; ρ: Composite reliability estimate;

4 α : Cronbach's alpha; ICC: Intraclass correlation coefficient; ICC 95% CI: Intraclass

5 correlation coefficient 95% confidence interval; Student t^{tt}: Student t test; *p < .05; ^aAll

6 Student *t* tests are non-significant (p > .05).

7

8

9

- 2 Intercorrelations and Standard Error of Correlation for Model 3 (McDonough & Crocker,
- 3 2005).

Subscales	1	2	3	4	5	6	7
1. Self-esteem	_						
2. Loyalty	.86* (.04)	_					
3. Intimacy	.59* (.03)	.81* (.03)	_				
4.Things in Common	.74* (.04)	.69* (.04)	.59* (.03)	_			
5. Companionship and PleasantPlay	.72* (.03)	.74* (.03)	.80* (.03)	.76* (.03)	_		
6. Conflict Resolution	.66* (.04)	.80* (.04)	.59* (.04)	.56* (.04)	.58* (.03)	_	
7. Conflict	42* (.04)	33* (.04)	18* (.03)	36* (.04)	25* (.03)	43*(.05)	_

Note. Intercorrelations and (standard error of correlation); *p < .05. 4

5

6

Goodness-of-Fit indexes ? of Factorial and Latent Mean Invariance Tests across Gender for Model 3 (McDonough & Crocker, 2005)^a.

	Model	χ² (B-S)	χ² (ML)	df	р	CFI	TLI	RMSEA	RMSEA 90% CI	ECVI	AIC	Comparison model	$\Delta\chi^2$ (ML)	Δ df	Δp	Δ CFI	Δ RMSEA
	Girl s ^b	244.8	306.6	188	.001	.937	.922	.055	.044066	2.119	436.6	-	-	-	-	-	-
	Boys ^c	243.3	327.1	188	.001	.930	.915	.059	.067087	2.116	457.1	-	-	-	-	-	-
1	Dimensional (no invariance)	501.3	731.8	376	.001	.908	.887	.047	.042053	2.362	991.8	-	-	-	-	-	-
2	Metric (λ equal)	519.9	742.0	391	.001	.910	.893	.046	.041051	2.314	971.6	1	10.1	15	NS	.002	.001
3	Strong (τ equal)	534.4	780.8	406	.001	.903	.890	.047	.042052	2.545	1068.8	2	38.8	15	S	.007	.000
4	Partial strong (τ_{12} free)	533.5	762.8	405	.001	.908	.895	.046	.041051	2.507	1052.7	2	20.8	14	NS	.002	.000
5	Partial Strict (τ_{12} and δ_{12} free	575.9	859.7	426	.001	.888	.879	.049	.044054	2.637	1107.7	4	96.9	21	S	.020	.003
6	Partial Strict (τ_{12} , δ_6 , δ_8 , δ_{12} , δ_{13} , δ_{14} , δ_{15} , δ_{18} , δ_{20} , and δ_{21} free)	560.9	783.6	418	.001	.906	.896	.046	.041051	2.495	1047.8	4	20.8	13	NS	.002	.000
7	Equal factor means	568.1	809.8	425	.001	.901	.892	.046	.042051	2.523	1059.8	6	26.2	7	S	.005	.000

Note. τ : Intercept; δ : Uniqueness; χ^2 (B-S): Bollen-Stine chi-square; df: Degrees of freedom; CFI: Comparative fit index; TLI: Tucker-Lewis index; RMSEA: Root mean square error of approximation; $\Delta\chi^2$: Change in goodness-of-fit χ^2 ; Δ df: Change in degrees of freedom; Δ CFI: Change in comparative fit index; Δ RMSEA: Change in root mean square error of approximation; RMSEA 90% CI: Root mean square error of approximation 90% confidence interval; ECVI: Expected cross validation index; AIC: Akaike's information criterion; ^a Bootstrapped goodness of fit indexes are reported in this table because of the significant multivariate non-normality within these data; ^b n = 207; ^c n = 215; * *p* < .01

Table 7

Goodness-of-Fit indexes of Factorial and Latent Mean Invariance Tests across Age Categories for Model 3 (McDonough & Crocker,

$2005)^{a}$.

	Model	χ ² (B-S)	χ ² (ML)	df	р	CFI	TLI	RMSEA	RMSEA 90% CI	ECVI	AIC	Comparison model	Δχ² (ML)	Δdf	Δp	Δ CFI	Δ RMSEA
	11-13 years ^b	247.8	306.1	188	.001	.900	.877	.069	.055083	3.330	436.2	-	-	-	-	-	-
	14-18 years ^c	247.6	358.3	188	.001	.933	.918	.056	.047065	1.690	488.3	-	-	-	-	-	-
1	Dimensional (no invariance)	501.7	664.9	376	.001	.923	.905	.043	.037048	2.202	924.9	-	-	-	-	-	-
2	Metric (λ equal)	519.1	677.9	391	.001	.923	.909	.042	.036047	2.162	907.9	1	132	15	NS	.000	.001
3	Strong (τ equal)	534.5	693.3	406	.001	.923	.913	.041	.036046	2.336	981.21	2	15.4	15	NS	.000	.001
4	Strict (δ equal)	578.4	733.7	428	.001	.918	.912	.041	.036046	2.328	977.7	3	40.4	22	S	.005	.000
5	Partial Strict (δ_{10} free)	575.6	725.1	427	.001	.920	.914	.041	.036046	2.312	971.1	3	31.8	21	NS	.003	.000
6	Equal factor means	583.0	739.5	434	.001	.918	.913	.041	.036046	2.313	974.5	5	14.4	7	NS	.002	.000

Note. τ : Intercept; δ : Uniqueness; χ^2 (B-S): Bollen-Stine chi-square; df: Degrees of freedom; CFI: Comparative fit index; TLI: Tucker-Lewis index; RMSEA: Root mean square error of approximation; $\Delta\chi^2$: Change in goodness-of-fit χ^2 ; Δ df: Change in degrees of freedom; Δ CFI: Change in comparative fit index; Δ RMSEA: Change in root mean square error of approximation; RMSEA 90% CI: Root mean square error of approximation 90% confidence interval; ECVI: Expected cross validation index; AIC: Akaike's information criterion; ^a Bootstrapped goodness of fit indexes are reported in this table because of the significant multivariate non-normality within these data; ^b n = 132; ^cn = 290; * *p* < .01