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Abstract
Boolean automata networks, genetic regulation networks, and metabolic networks are just a few
examples of biological modeling by discrete dynamical systems (DDS). A major issue in modeling is
the verification of the model against the experimental data or inducing the model under uncertainties
in the data. Equipping finite discrete dynamical systems with an algebraic structure of commutative
semiring provides a suitable context for hypothesis verification on the dynamics of DDS. Indeed,
hypothesis on the systems can be translated into polynomial equations over DDS. Solutions to these
equations provide the validation to the initial hypothesis. Unfortunately, finding solutions to general
equations over DDS is undecidable. In this article, we want to push the envelop further by proposing
a practical approach for some decidable cases in a suitable configuration that we call the Hypothesis
Checking. We demonstrate that for many decidable equations all boils down to a “simpler” equation.
However, the problem is not to decide if the simple equation has a solution, but to enumerate all
the solutions in order to verify the hypothesis on the real and undecidable systems. We evaluate
experimentally our approach and show that it has good scalability properties.
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1 Scientific Background

Boolean automata networks have been heavily used in the study of systems biology [2, 6].
The main drawback of the approach by automata network is in the very first step, namely
when one induces the network from the experiments. Indeed, most of the time the knowledge
of about the network is partial and hypothesis are made about its real structure. Those
hypotheses must be verified either by further experiments or by the study of the dynamical
evolution of the network compared to the expected behaviour provided by the experimental
evidence.

In [3], Dennuzio et al. propose an abstract algebraic setting for representing the dynamical
evolution of finite discrete dynamical systems have been proposed. The basic idea is to
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identify a discrete dynamical system with the graph of its dynamics (finite graphs having
out-degree exactly 1) and then define operations + and · which compose dynamical systems
to obtain larger ones. Using dynamical systems to represent biological regulatory network is
not new and we redirect the reader to [7, 9] for more information.

Indeed, a discrete dynamical system (DDS) is a structure 〈X, f〉 where X is a finite set
called the set of states and f : X → X is a function called the next state map. Any
DDS 〈X, f〉 can be identified with its dynamics graph which is a structure G ≡ 〈V, E〉
where V = X and E = {(a, b) ∈ V × V, f(a) = b}. From now on, when speaking of a DDS,
we will always refer to its dynamics graph.

Given two DDS G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 their sum G1 + G2 is defined as
〈V1 ∪ V2, E1 ∪ E2〉. The product G1 · G2 is the structure 〈V ′, E′〉 where V ′ = V1 × V2
and E′ = {((a, x), (b, y)) ∈ V ′ × V ′, (a, b) ∈ E1 and (x, y) ∈ E2}. It is easy to see that F ≡
〈X, +, ·〉 is a commutative semiring in which 〈∅, ∅〉 is the neutral element w.r.t. + and
〈{a} , {(a, a)}〉 is the neutral element w.r.t. · operation.

Now, consider the semiring R[X1, X2, . . . , Xn] of polynomials over R in the variables Xi,
naturally induced by R. Let us go back to our initial motivation. Assume that some parts
of the overall dynamics a1, a2, . . . , ak are known, then the following equation represents a
hypothesis on the overall structure of the expected dynamical system C on the basis of the
known data a1, . . . , ak.

a1 ·X1 + a2 ·X2 + . . . + ak ·Xk = C (1)

The hypotheses are verified whenever the previous equation admits a solution,
therefore providing a way to solve such equation can be used to check hypotheses
against a given dynamical system. For the sake of clarity, we denote our unknown
variables as Xi, whereas they, in fact, represent any polynomial equation of the shape xwi

i .
The following fundamental result states that solving polynomial equations over DDS is not
an easy task.

I Theorem 1 (Dennuzio et al. [3]).
Given two polynomials P (X1, . . . , Xn) and Q(X1, . . . , Xn) over R[X1, . . . , Xn], consider the
following equation

P (X1, . . . , Xn) = Q(X1, . . . , Xn). (2)

The problem of finding a solution to Equation 2 is undecidable. Moreover, if Equation 2 is
linear or quadratic, then finding a solution is in NP. Finally, when P (X) = const, where the
polynomial is in a single variable and all its coefficients are systems consisting of self-loops
only, the equation is solvable in polynomial time.

According to Theorem 1, solving polynomial equations of the type P (X) = const is in
NP even for quadratic polynomials and no efficient algorithm is known unless P = NP. In
order to overcome this issue, one can follow at least two strategies: either further constrain
the polynomials or solve approximated equations which can provide information on the real
solution.

In this article, we follow the second option. Indeed, we focus on strongly connected
components (SCC) of the dynamics graph. Recall that SCC represents a very important
feature in finite DDS since they are the attracting sets. These sets contain the asymptotic
information about system evolution.



Dennuzio et al. XX:3

2 Methods

In the dynamics graph, each component of a system can be divided in two parts: the transient
part and the periodic part, see [5] for more details. A point x ∈ X of a dynamical system
〈X, f〉 belongs to a cycle if there exists a positive number p ∈ N such that fp(x) = x. The
smallest p is the period of the cycle, and x is periodic. The periodic part is the set of nodes
periodic. All the others nodes are transient, but in this work, X is a finite set hence any
state x is ultimately periodic and in each component of the graph there is only one cycle
of length at least 1.

Every finite DDS can be described as a sum of single components, and every component can
be described, for our purposes, with the length of its period (strongly connected components
in dynamics graphs are cycles). The transient part of a component is not relevant for the
result of the sum and product operations when the equation is over SCC.

A single component of period p is denoted C1
p , while Cn

p means that there are n components
of period p in the system. Therefore, if a system is composed by n components, each of
period pi with i ∈ {1, . . . , n}, then

n⊕
i=1

C1
pi

completely describes the system where
⊕

denotes

the sum of components since each component has only one period (see Figure 1).

a d eb c f

Figure 1 a DDS with three components: (C1
1 ⊕ C1

2 ⊕ C1
3 ) in our notation.

I Remark 2. When a system has several components with the same period, then their
representation can be added. As an example, we have C1

2 ⊕C1
2 = C2

2 . Otherwise, the sum ⊕
consists of a concatenation of components.

3 Contributions

From now on, R̄ will indicate the restriction of R to systems made by strongly connected
components only. First, we need to adapt the definition of product between two DDS in
terms of components and their period.

I Definition 3. For a system composed by m components Cm
p , multiplied by a system with n

components Cn
q , the result of the product operation depends only on the length of the periods

of the components involved according to the following formula

∀n, m, p, q ∈ N \ {0} Cm
p � Cn

q = C
m×n×gcd(p,q)
lcm(p,q) . (3)

One can also simplify the parameter of a component. The following definition provides a
formula to compact the notation of a DDS with n identical components.

I Definition 4. Consider a single component Cm
p , then ∀n, m, p ∈ N \ {0} it holds

Cmn
p = n · Cm

p . (4)

Let us remind that each Xi represents, in fact, a variable xwi
i . Therefore, it is necessary

to know how we can retrieve the solutions for the original xi. To do so, we will use the
following lemma:
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I Lemma 5. Given S ≡ C1
p1
⊕ C1

p2
⊕ · · · ⊕ C1

pm
with m components of period pi ∈ N \ {0},

∀i ∈ {1, ..., m}, let g(p1, p2, ..., pm, k1, k2, ..., km) the gcd between the pi for which ki 6= 0 and
l(p1, p2, ..., pm, k1, k2, ..., km) the lcm between the pi for which ki 6= 0.

(S)n =
m⊕

i=1
C

pn−1
i

pi ⊕
⊕

k1+k2+...+km=n
0≤k1,k2,...,km<n

(
n

k1, k2, ..., km

)
C

g·
∏m

t=1
kt 6=0

p
kt−1
t

l .

Proof.
Using the multinomial theorem one finds

(S)n = (C1
p1
⊕ C1

p2
⊕ ...⊕ C1

pm
)n =

⊕
k1+k2+...+km=n

(
n

k1, k2, ..., km

) m⊙
t=1

(C1
pt

)kt =

=
m⊕

i=1
(C1

pi
)n ⊕

⊕
k1+k2+...+km=n
0≤k1,k2,...,km<n

(
n

k1, k2, ..., km

) m⊙
t=1

(C1
pt

)kt (5)

The resulting formula 5 is obtained by extrapolating the cases in which a ki = n. Another
transformation is possible according with the Lemma 3.

m⊕
i=1

(C1
pi

)n ⊕
⊕

k1+k2+...+km=n
0≤k1,k2,...,km<n

(
n

k1, k2, ..., km

) m⊙
t=1

(C1
pt

)kt =

=
m⊕

i=1
(C1

pi
)n ⊕

⊕
k1+k2+...+km=n
0≤k1,k2,...,km<n

(
n

k1, k2, ..., km

)
C

g(p1,p2,...,pm,k1,k2,...,km)·
∏m

t=1
p

kt−1
t

l(p1,p2,...,pm,k1,k2,...,km) =

=
m⊕

i=1
C

pn−1
i

pi ⊕
⊕

k1+k2+...+km=n
0≤k1,k2,...,km<n

(
n

k1, k2, ..., km

)
C

g(p1,p2,...,pm,k1,k2,...,km)·
∏m

t=1
p

kt−1
t

l(p1,p2,...,pm,k1,k2,...,km) .

J

For k equal to 0 we assume that (S)0 is equal to C1
1 , the neutral element of the product

operation. Let us go back to Equation 1 which is the problem that we want to solve. It can
be rewritten as follows:

(
S1⊕

j=1
C1

p1j
�X1)⊕ (

S2⊕
j=1

C1
p2j
�X2)⊕ . . .⊕ (

Sk⊕
j=1

C1
pkj
�Xk) =

m⊕
j=1

Cnj
qj

(6)

with Si, the number of different components in the system i, pij is the value of the period of
the jth component in the system i. In the right term, there are m different periods, where
for the jth different period, nj is the number of components, and qj the value of the period.
However, Equation (6) is still hard to solve. We can simplify it performing a contraction
step which consists in cutting Equation (6) into two simpler equations: (C1

p11
�X1) = W ,

where W ⊆
m⊕

i=1
Cni

qi
and ((C1

1 � Y ) =
m⊕

i=1
Cni

qi
\W ) with Y = (

S1⊕
i=2

C1
p1i
�X1)⊕ (

S2⊕
j=1

C1
p2j
�

X2)⊕ . . .⊕ (
Sk⊕

j=1
C1

pkj
�Xk). By applying recursively a contraction step on all the partitions
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of W and on the second equation obtained (i.e. the one containing Y ) one finds that, solving
Equation (6) boils down to solving multiple times the following type of equation:

C1
p �X = Cn

q . (7)

If the variable X presents a power different from one, it is possible use the Lemma 5 in
order to study the squared by the power.

However, equations of the shape of Equation 7 will be numerous therefore an efficient
practical algorithm able to enumerate all its solutions is needed. In fact, we can propose
the following bounds to know how many times equations of the shape Equation 7 are solved
with the following lemma:

I Lemma 6. Let us denote by Z the number of times that we will solved equation of the shape

Equation 7, we have the following:
∏m

i=1
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
·m ≤ Z ≤

∏m
i=1
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
·

m ·
∑k

j=1 Sj.

The intuition is as follows: the contraction step is necessary in order to study all possible
way for produce the right term with the components in the left part of the equation.
Accordingly, it is necessary understand the number of possible decompositions of the right
term in order to discover the bounds for the number of the executions of the colored-tree
method (a decomposition corresponds to assign a subset of the components of the right part
to a product operation between a variable and a known component). For each period a Star
and Bars decomposition is applied (we redirect the reader unfamiliar with the Star and Bars
decomposition to [4]).

Proof. In general for a fixed qi, the ni components are divided in
∑k

j=1 Sj groups, in this

case there are
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
different ways for divide the components. Therefore we can

rewrite the lemma as follows: m ≤ Z∏m

i=1 (
ni+
∑k

j=1
Sj −1∑k

j=1
Sj −1

)
≤ m ·

∑k
j=1 Sj . And now, toward a

contradiction for the lower bound. Let us assume that we can solve less than m equations.
This implies that we solve less equations than the number of different periods on the right
term. Contradiction, we need at least all of them (not necessary all their combination) to
determine the solution of the equation. And now, toward a contradiction again to prove
the upper-bound. Firstly, we know for all the components in the right term there are∏m

i=1
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
feasible divisions. Now, let us assume that in the worst case, for

each coefficient the product operation must produce more than one components of each
possible periods in the right term. This is a contradiction from the definition of the equation,
where all the components must all have a different period. The second possibility to go
beyond this bounds is that it would exists more Si than the one present in the equation,
again a contradiction by definition of the equation. Therefore, we know that we have:∏m

i=1
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
·m ≤ Z ≤

∏m
i=1
(ni+

∑k

j=1
Sj−1∑k

j=1
Sj−1

)
·m ·

∑k
j=1 Sj , for Z being the number

of times that we will solved equation of the shape Equation 7. J

4 The Colored-Table Method

First of all, let us formally define the problem and analyze its complexity.
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I Definition 7 (DSECP). The (finite) Discrete Dynamical Systems Solving Equations on
Components Problem is a problem which takes in input C1

p and Cn
q and outputs the list of all

the solutions X to the equation C1
p �X = Cn

q .

Solving DSECP is hard but still tractable. Indeed, the following lemma classifies our
problem in EnumP. Recall that EnumP is the complexity class of enumeration problems for
which a solution can be verified in polynomial time [8]. It can be seen as the enumeration
counterpart of the NP complexity class.

I Lemma 8. DSECP is in EnumP.

Proof. One just needs to be able to check if a given value is a solution in polynomial time.
This can be done in linear time using Lemma 3. J

4.0.0.1 Notation.

For any n, p, q ∈ N?, let T n
p,q denote the set of solutions of Equation (7) and Sn

p,q the set of
solutions returned by the colored-tree method.

The colored-tree method is pretty involved, we prefer start to illustrate it by an
example.

I Example 9. Consider the following equation C1
2 � X = C6

6 . The algorithm consists
in two distinct phases: tree building and solution aggregation. In the first phase, the
algorithm enumerates all the divisors D of 6 i.e. {6, 3, 2, 1}. It then applies a making-change
decomposition algorithm (MCDA) [1] in which the total sum is 6 and the allowed set of coins
is D′ = D \ {6}. MCDA decomposes 6 as 3 + 3 (which is an optimal decomposition). MCDA
is then applied recursively (always using D \ {i} as the set of coins to decompose i). We
obtain (6 = 3+3), (3 = 2+1) and (2 = 1+1) as reported in Table 1. At this point, a check is

Node Splits Node solution Subtree solutions set

6 [3,3][2,2,2] C1
6

{C1
6 , C2

3 , C1
1 + C1

2 + C1
3 , C1

3 + C3
1 ,

C1
2 + C4

1 , C6
1 , C3

2 , C2
1 + C2

2}
3 [2,1] C1

3
{

C1
3 , C1

1 + C1
2 , C3

1
}

2 [1,1] C1
2

{
C2

1 , C1
2
}

1 ∅ C1
1

{
C1

1
}

Table 1 Final data-structure storing all the decompositions, each solution for each value and at
each step, the set of all solutions for a given value.

performed to ensure that all possible ways of decomposing 6 using D′ are present in the tree.
In our case, we already have [3, 3] found by the first run of MCDA. We also found: [3, 2, 1],
[2, 2, 1, 1], [1, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1] by the recursive application of MCDA. By performing
the check, we discover that the decomposition of 6 as [2, 2, 2] is not represented in the current
tree. For this reason, [2, 2, 2] is added to the set of decompositions of 6 as illustrated in
Figure 2, it is assigned a new color and a recursive application of MCDA is started on the
newly added nodes. A new check ensures that all decompositions are present. This ends the
building phase. The resulting tree is reported in Figure 2.

After this first phase of construction of the tree, the aggregation of solutions starts.
Remark that each node m represents the equation C1

p � X = Cm
q that we call the node

equation. The single component solution is called the node solution and it is obtained
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6

3 3 2 2 2

12 1 2 1 1 1 1 1 1

1 1 1 1

Figure 2 The colored tree for the equation C1
2 � X = C6

6 after the completeness check.

thanks to Lemma 3, C1
q
p×m whenever a feasible solution exists i.e. if gcd(p, q

p ×m) = m

and lcm(p, q
p ×m) = q. For example, for m = 3 one finds x = C1

3 . To find all the solutions
for the current node one must also take the Cartesian product of the solutions sets in the
subtrees of the same color and then the union of the solution sets of nodes of different colors
(different splits). All the solution can be found in Table 1.

I Example 10. Consider the equation C1
2 � X = C5

4 . In the first phase, the algorithm
enumerates all the divisors D of 4 i.e. {4, 2, 1}. It then applies a making-change decomposition
algorithm (MCDA) [1]. MCDA decomposes 5 as 4 + 1 (which is an optimal decomposition).
MCDA is then applied recursively always using D \ {i} as the set of coins to decompose i.
We obtain (5 = 4 + 1), (4 = 2 + 2) and (2 = 1 + 1) as reported in Table 2. At this point, a

Node Splits Node solution Subtree solutions set

5 [4,1] {} {}
4 [2,2] {} {C2

4}
2 [1,1] C1

4 {C1
4}

1 ∅ {} {}
Table 2 Final data-structure storing all the decomposition, each solution for each value and at

each step, the set of all solutions for a given value.

check is performed to ensure that all possible ways of decomposing 5 using D \ {i} as the set
of coins to decompose i. In our case, we already have [4, 1] found by the first run of MCDA.
We also found: [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] by the recursive application of MCDA. By
performing the check, we discover that all the possible decompositions of 5 are represented
in the current tree. This ends the building phase. The resulting tree is reported in Figure 3.
After this first phase of construction of the tree, the aggregation of solutions starts. In this
case the tree presents only one color. Remark that if in the cartesian product a empty set is
involved, the result of the operation is the empty set. For example, for m = 2 , one has that
the node solution is C1

4 . From the subtrees of the node one finds a empty set, but with the
union of the solution of the node, the subtree solutions set for m = 2 is

{
C1

4
}
. Moreover, the

final solution set for the node 5 is the empty set, in fact in the Cartesian product m = 1 is
involved (empty set) but also the solution node for m = 5 is empty. In this case the method
return a empty set of solutions, that represents the impossibility of the equation.

I Example 11. Consider the equation C1
2 �X = C12

6 . In the first phase, the algorithm enu-
merates all the divisors D of 6 i.e. {6, 3, 2, 1}. It then applies a making-change decomposition
algorithm (MCDA) [1]. MCDA decomposes 12 as 6 + 6 (which is an optimal decomposition).
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5

4 1

2 2

1 111

Figure 3 The tree represented in the table for C1
2 x = C5

4 , after the check of completeness.

MCDA is then applied recursively always using D \ {i} as the set of coins to decompose i.
We obtain (12 = 6 + 6), (6 = 3 + 3), (3 = 2 + 1) and (2 = 1 + 1) as reported in Table 3.

Node Splits Node solution Subtree solutions set

12 [6,6] {} {C4
3 + C4

6 , C12
3 , C6

6 , C6
3 + C3

6 ,

C2
6 + C8

3 , C2
3 + C5

6 , C1
6 + C10

3 }
6 [3,3] [2,2,2] {} {C6

3 , C2
6 + C2

3 , C4
3 + C1

6 , C3
6}

3 [2,1] {} {C3
3 , C1

6 + C1
3}

2 [1,1] C1
6 {C1

6 , C2
3}

1 ∅ C1
3 {C1

3}
Table 3 Final data-structure storing all the decomposition, each solution for each value and at

each step, the set of all solutions for a given value.

At this point, a check is performed to ensure that all possible ways of decomposing 12
using D′ is present in the tree. In our case, the decomposition of 6 in [2, 2, 2] is added in each
occurrence of 6. This ends the building phase. The resulting tree is reported in Figure 4.

12

6 6

3 3 2 2 2 3 3 2 2 2

Figure 4 The first two levels of the tree represented in the table for C1
2 x = C12

6 , after the check
of completeness.

After this first phase of construction of the tree, the aggregation of solutions starts. To
find the solutions for the current node one must also take the Cartesian product of the
solutions sets in the subtrees of the same color and then the union of the solution sets of
nodes of different colors (different splits). For example, for m = 12 (i.e. the root node), the
cartesian product between 6 and 6 is computed, but for m = 6 (in each occurrence) two
cartesian operations and a union are necessary. Therefore, the final solution set for the node
12 is

{
C4

3 + C4
6 , C12

3 , C6
6 , C6

3 + C3
6 , C2

6 + C8
3 , C2

3 + C5
6 , C1

6 + C10
3
}
.

Although we can describe our algorithm with a pseudocode, and then we can sketch some
proofs about its soundness, completeness and termination.
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Listing 1 Colored-Tree - Complete algorithm for the enumeration problem.
1 procedure Colored−Tree(p, n, q):
2 // input ’p,q,n’: the parameters of the equation
3 // enumerate all the solutions of the equation
4 node,splits,nodeSolution,SubTreeSolutions=[]
5 D=divisors(q)
6 node.add(n,1)
7 for i in node.length do
8 if (node[i]!=1) then
9 splits[i]=MCDA(node[i],D \ node[i])

10 generateNewNodes(splits[i])
11 SubTreeSolutions[i].add(nodeSolutions[i])
12 end
13 end
14 checkRepresented()
15 for i in node.length do
16 nodeSolution[i]=computeSingleSolution(node[i])
17 end
18 IncreaseOrder()
19 for i in node.length do
20 if (node[i]!=1) then
21 solutionsSplits=[]
22 for j in splits[i] do
23 solutionsSplits.add(cartesian(splits[i][j]))
24 end
25 SubTreeSolutions[i].add(union(solutionsSplits))
26 end
27 end
28 return SubTreeSolutions[node.length]

The Lisiting 1 presents the procedure using some particular functions:
generateNewNodes adds the elements of the split, the node necessary in order to
decompose but not yet represented as nodes in the nodes set.
MCDA computes the optimal solutions of the making-change problem for a node value
and a set of coins.
computeSingleSolution returns the node solution for a node equation represented with
a node.
checkRepresented check if all the possible decomositions of the root are represented,
otherwise add the corrisponding sub-tree.
IncreaseOrder permutes the row of the table in the increasing order according to the
value of the nodes.

Now we can sketch some proofs about its soundness, completeness and termination.

I Lemma 12 (Soundness). For all n, p, q ∈ N?, Sn
p,q ⊆ T n

p,q.

Proof. Let us prove the soundness by induction on the depth of the tree from leaves to root.
Induction base: if there is only one step, we know by Lemma 3, that a solution found is
feasible iff gcd(p, q

p ×m) = m and lcm(p, q
p ×m) = q, and because there is only one leaf

in the base, we therefore obtain all the solution. Induction hypothesis: let us assume that
we have all the solution possible at a depth n and let us show that we can obtain all the
solution at a depth n + 1. Induction step: It is easy to see that a solution exists if and only
if it comes from a decomposition. Thus, by performing a Cartesian product between the
set of solutions at depth n (which is true by IH) and the node solution (which is true by
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Induction base, since the node can be seen as a leaf), we know that we will obtain all the
solution coming from the possible decomposition in the sub-tree. If a solution is coming from
another sub-tree, since we perform an exhaustive check where we assign a different color to
the other sub-tree, we know again, by IH and because we are taking the union of all the
solutions possible, that we have all the solution possible at a depth n + 1. J

I Lemma 13 (Completeness). For all n, p, q ∈ N?, T n
p,q ⊆ Sn

p,q.

Proof. Toward a contradiction. Let us assume that it exists a solution r ∈ T n
p,q and that

r 6∈ Sn
p,q. This means that colored-tree method does not return it. This implies that it

exists a decomposition of n, which leads to r, such that this decomposition is not in the tree.
Contradiction, an exhaustive check is performed to assure that all the decompositions are
there. Therefore, all solutions are returned. J

I Lemma 14 (Termination). The colored-tree method always terminates.

Proof. The building phase always terminates since the colored-tree has maximal depth D′
and the number of different possible colors is bounded by 2k where k is the size of the
multiset containing n/pi copies of the divisor pi per each divisor in D′. The aggregation
phase always terminates since it performs a finite number of operations per each node of the
colored tree. J

Now that we have defined the problem, its complexity and a sound and complete algorithm
to solve it. It is time to experimentally evaluate it in order to study its scalability.

5 Experimental Evaluations

The colored-tree method provides a complete set of solutions of simple equations of type
Equation 7. Its complexity can be experimentally measured counting the number of nodes in
the colored tree.

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

n

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

q

 0

 50

 100

 150

 200

 250

 300

 350

Figure 5 The number of nodes in the colored tree as a function of n and q.

Figure 5 shows how the complexity grows as a function of n and q. For this case, we set
p = q to ensure that we always have at least one solution and therefore a tree-decomposition.
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Notice that, in some cases, the complexity is particularly high due to specific analytical
relations between the input parameters that we are going to study in the future. Notice
also that our method seems to have a weakness when q is an even number. This is easily
explained: in many cases, all the divisors can be expressed by the other ones. Therefore
the check that ensures that all the decompositions are present is particularly time- and
memory-consuming.
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Figure 6 The brute force approach vs. colored-tree method w.r.t. execution time (in seconds).

Since there is no other competitor algorithm at the best of our knowledge, we compared
the colored-tree method to a brute force algorithm. We test our algorithm with n from 1
to 20, p is also from 1 to 20 and at any time, p = q. Results are reported in Figure 6. As
expected, the colored-tree method outperforms the brute force solution, sometimes with
many orders of magnitude faster. However, when the input equation has small coefficients,
the colored-tree method performs worse. This can be explained considering that building
the needed data structures requires a longer time than the execution of the brute force
algorithm.

6 Conclusion

Dennuzio et al. in [3] introduced a formalism to study polynomial equations over finite DDS
as boolean automata networks used biological modelling for genetic regulatory networks and
metabolic networks.

They argued that polynomial equations are a convenient tool for the analysis of the
dynamics of a system. However, algorithmically solving such equations is an unfeasible task.
In this article, we propose a practical way to partially overcome those difficulties using a
couple of approaches which aims at studying separately the number of component (i.e. the
number of attractors) and the length of their periods. This paper proposes an algorithm for
the number of components of the solution of a polynomial equation over finite DDS.

One of the core routines of the algorithm uses a brute force check for the make-change
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problem which clearly affects the overall performances. Therefore, a natural research direction
consists in finding a better performing routine. Another way would be to parallelise the whole
computation, indeed it seems to have a nice parallelization property. Another interesting
research direction consists of better understanding the computational complexity of the
DSECP.

We are still hard-working to improve the performances of the algorithm to have strong
scalability properties in the perspective of providing a handy tool which can be exploited by
bioinformaticians to actually solve the Hypothesis Checking problem in their context.
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