

Interhemispheric processing in ambiguous word recognition

Audrey Deudon, Sylvane Faure, Pierre Thérouanne

▶ To cite this version:

Audrey Deudon, Sylvane Faure, Pierre Thérouanne. Interhemispheric processing in ambiguous word recognition. 2nd Meeting of the European Societies of Neuropsychology, 2006, Toulouse, France. 2006. hal-01740070

HAL Id: hal-01740070 https://univ-cotedazur.hal.science/hal-01740070v1

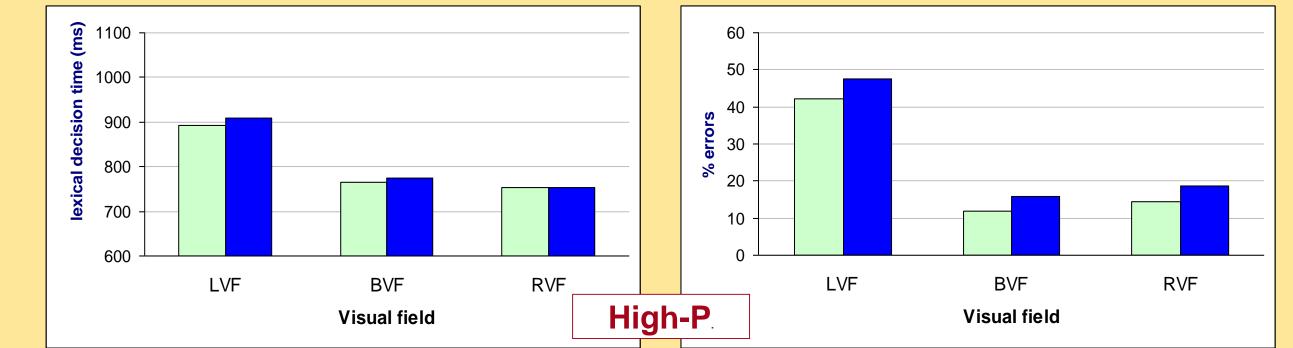
Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A. Deudon, S. Faure, & P. Thérouanne

adeudon@yahoo.fr - sfaure@unice.fr - therouan@unice.fr

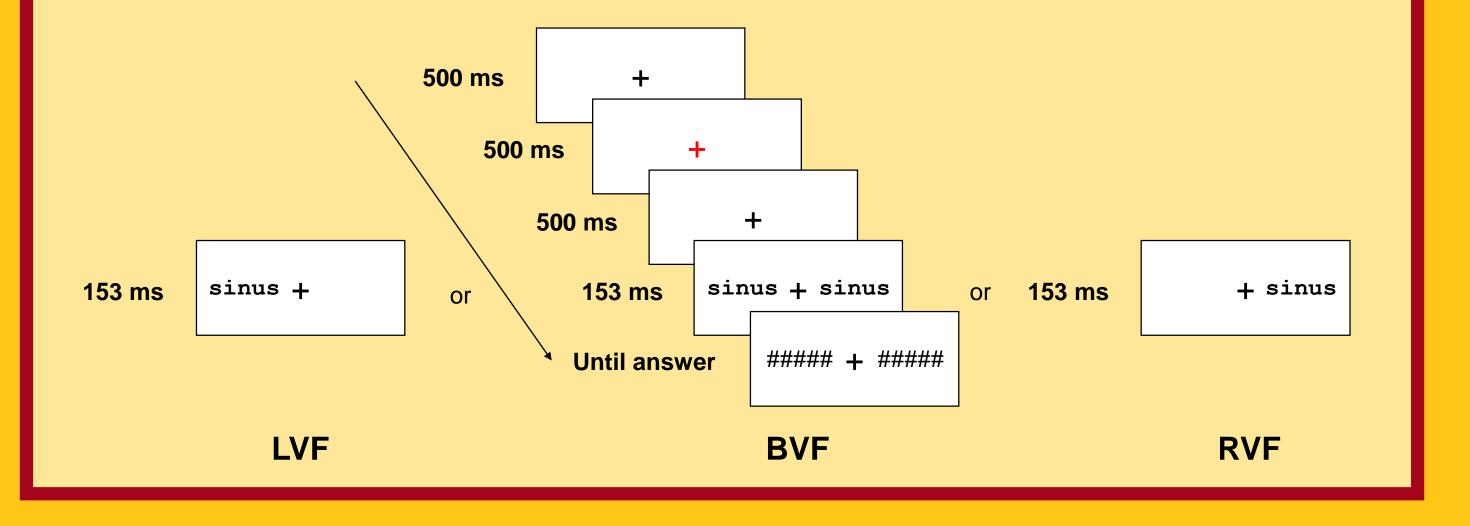
Université de Nice - Sophia Antipolis Laboratoire de Psychologie Expérimentale et Quantitative


Interhemispheric processing in ambiguous word recognition

Introduction

Several studies have shown that ambiguous words are recognized faster than unambiguous ones in central viewing conditions (Borowsky & Masson, 1996). Many accounts of this so-called ambiguity effect hypothesize an activation feedback from the different meanings to the lexical entry representing the ambiguous word. However, recent results challenged this account showing a disadvantage for ambiguous words having unrelated meanings (homonymy), and an advantage for polysemic words, having related senses (e.g., Rodd et al., 2002). A divided visual field study was conducted to test hypotheses about the contribution of interhemispheric processing to the ambiguity effect for homonyms.

Method			Results		
Material			Ambiguity effect		
	Low-polarity	High-polarity*	ambig		
ambiguous	sinus e.g. bat	parquet e.g. yellow	1100 1000 P's <.05		
Matched** unambiguous	argus e.g. bet	prairie <i>e.g. yarrow</i>	i i		
*dominant meaning frequer **on familiarity, frequency, orthographic & phonological neighborhoods, bigram freq	letters, phonemes & sylla unicity points, orthograp	ables number,	600 LVF BVF RVF LOW-P.		


ambiguous unambiguous 's <.05 P₁ <.05 P's <.05 **5** 30 <mark>*</mark> 20 RVF RVF LVF BVF Low-P Visual field

Procedure

1. Edinburgh test (subjects - N = 26 - were right-handed) 2. Alouette test (subjects were not dyslexic)

Bilateral gain (vs. the better of the two visual fields)

	ambig	guous	_	
Gain	Low-P.	High-P.	unambiguous	pseudowords
RT	no	no	no	yes
% errors	yes	no	no	no

Discussion

Only low-polarity ambiguous words exhibited a bilateral gain (Pulvermüller, 1999): Lexical decisions on these words were more accurate in the BVF condition than in the RVF condition. In addition, the ambiguity effect was only evidenced in bilateral presentation for low-polarity ambiguous words. Surprisingly, responses on pseudowords in the BVF condition were faster and more accurate than in the RVF condition: This bilateral gain is interpreted in the "horse race" model framework (Raab, 1962).

Our study confirms the ambiguity effect for homonyms, but this effect seems restricted to moderately polarized ambiguous words (e.g., bat) in BVF condition. Therefore, semantic feedback provided by bilateral activation of the two meanings (e.g., bat: animal; bat: baseball) to the lexical processing adequately explains the ambiguity effect. To conclude, our results suggest cooperative interhemispheric processing for words and competitive one for pseudowords (see Collins, 2002, for a different view).

References

Collins, M. (2002). Interhemispheric communication via direct connections for alternative meanings of Ambiguous Words. Brain and Language, 80, 77-96. Pulvermüller, F. (1999). Words in the brain's language. Behavioral & Brain Sciences, 22, 253-336. Raab, D. H. (1962). Statistical facilitation of simple reaction times. *Transactions of the New York Academy of Sciences*, 24, 574–590. Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making Sense of Semantic Ambiguity: Semantic Competition in Lexical Access. Journal of Memory and Language, 46, 245-266.

