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In a recent JCP paper [9], a higher order triangular spectral element method (TSEM) is proposed to
address seismic wave field modeling. The main interest of this TSEM is that the mass matrix is diagonal,
so that an explicit time marching becomes very cheap. This property results from the fact that, similarly
to the usual SEM (say QSEM), the basis functions are Lagrange polynomials based on a set of points that
shows both nice interpolation and quadrature properties. In the quadrangle, i.e. for the QSEM, the set of
points is simply obtained by tensorial product of Gauss-Lobatto-Legendre (GLL) points. In the triangle,
finding such an appropriate set of points is however not trivial. Thus, the work of [9] follows anterior works
that started in 2000’s [2, 6, 11] and now provides cubature nodes and weights up to N = 9, where N is the
total degree of the polynomial approximation. Here we wish to evaluate the accuracy of this cubature nodes
TSEM with respect to the Fekete-Gauss one, see e.g. [12], that makes use of two sets of points, namely the
Fekete points and the Gauss points of the triangle for interpolation and quadrature, respectively. Because
the Fekete-Gauss TSEM is in the spirit of any nodal hp-finite element methods, one may expect that the
conclusions of this Note will remain relevant if using other sets of carefully defined interpolation points.

First, recall that if two different sets of points are used for interpolation and quadrature, then the
space PN (T̂ ) of polynomials of maximal (total) degree N , defined on the reference triangle T̂ = {(r, s) :
r ∈ (−1, 1), s ∈ (−1,−r)}, is usually used as approximation space. The cardinality of this space equals
n = (N + 1)(N + 2)/2, that can be associated to n interpolation points if using Lagrange polynomials as
basis functions. If 3 of these nodes coincide with the vertices of the element, then 3N of these n points
should belong to the edges of T̂ and the remaining (N − 1)(N − 2)/2 are the inner nodes. Usually, the edge
nodes proposed in the literature coincide with the GLL points, see e.g. [1, 5, 15]. Since one does not know an
explicit formulation of the Lagrange basis functions, say ϕi(r, s), 1 ≤ i ≤ n, to compute their values or those
of their derivatives at a given point one generally makes use the orthogonal Kornwinder-Dubiner (KD) basis
[4], for which explicit formula exist. Gauss points for the triangle and the corresponding quadrature formula
may be found in the literature, up to degree M ≈ 20 if a symmetric distribution of the points is desired
[3]. In practice, one may choose M = 2N , so that both the stiffness and mass matrix are exactly computed,
since their entries are polynomials of degree 2N and 2N − 2, respectively. For details on the implementation
of the Fekete-Gauss approach, see e.g. [12].

If using a single set of points, as just mentioned, 3N of the interpolations points must belong to the
triangle boundary with 3 of them at the vertices. As demonstrated in [7, 16], such a strong constraint
forbids the possibility of finding a set of cubature points providing a sufficiently accurate cubature formula,
if looking for basis functions that span the space PN . To overcome this difficulty, as first developed in [2], the
idea is then to enrich the space PN by polynomial bubble functions of degree N ′ > N . This indeed allows to
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include new cubature points inside the triangle while keeping the element boundary nodes number equal to
3N . In the reference triangle T̂ , this may be achieved by introducing the polynomial space PN ∪ b× PN ′−3,
where b is the (unique) bubble function of P3(T̂ ), namely b(r, s) = (r + 1)(s + 1)(r + s). The cardinality
of this space then equals n′ = 3N + (N ′ − 1)(N ′ − 2)/2. Now, to compute the Lagrange polynomials at a
given points one should use an extended KD basis, composed of the usual KD basis of PN completed by
those KD polynomials of PN ′−3 which once multiplied by the bubble function b are of degree strictly greater
than N . Of course, N ′ should be chosen as small as possible to avoid a useless increase of the inner nodes
number: In [2] and posterior works, N ′ is chosen such that it exists a cubature rule exact for polynomials
of degree N + N ′ − 2. The determination of N ′, together with the cubature points and weights gives rise
to a difficult optimization problem, see [9] for details. It turns out that N ′ − N increases monotonically
with N : N ′ = N + 1, for 1 < N < 5, N ′ = N + 2 for N = 5 and N ′ = N + 3 for 5 < N < 10. It should
be noticed that with the cubature nodes based TSEM, neither the mass matrix nor the stiffness matrix are
exactly computed, since their entries are of degree 2N ′ and 2N ′− 2, respectively. This is why a comparative
study of the accuracy of these two different TSEMs is of interest.

Such a comparison has been carried out for elliptic problems, using the Fekete-Gauss TSEM software
that we have developed for a few years. A variant of this code has been easily implemented for the cubature
points based TSEM: Indeed, using a single set of points provides a simplification and extending the KD basis
only constitutes a minor task. Especially, the code makes use of the condensation technique, i.e. one first
computes the unknowns associated to the edges of the elements and then reconstructs the numerical solution
inside locally. Thus, the algebraic systems that result from the two TSEMs approximations are exactly of
same size, and so the computational times compare very well. They are simply solved by using a standard
conjugate gradient method, with Jacobi preconditionner in a matrix free implementation [8].
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Figure 1: Mesh of the computational domain (left) and max norm of the error (right) for the Poisson equation

The comparison has first been carried out for the Poisson equation, using the exact solution uex =
cos(10x) cos(10y) and the source term f = −∆uex, with a Dirichlet boundary condition. Computations
have been made in a quasi-circular computational domain with the spectral element mesh shown in Fig. 1
(left). The max norm of the error, computed at the interpolation (cubature or Fekete) points, with respect
to the polynomial degree is provided in Fig. 1 (right). In this semi-log scale plot, the expected exponential
convergences are clearly observed. Moreover, the fact that for the cubature points based TSEM the stiffness
matrix is only approximately computed has a negligible influence on the error.

Comparisons have also been carried out for the elliptic equation −∆u+σu = f , with σ = 1 and σ = 1000.
The high value of σ is of interest when thinking to unsteady diffusion problems, for which at each time step
one has to solve the equation with σ scaling like the inverse of the time step. Here again, see Fig. 2, one
observes that the cubature TSEM compares very well with the Fekete-Gauss approach. Some remarks may
be expressed:

- For the smaller values of the polynomial degree N , the error is very large and the curves are a little bit
erratic. Indeed, for small N the discretization is too rough to follow the oscillations of the exact solution.
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Figure 2: Max norm of the error for σ = 1 (left) and σ = 1000 (right)

- The two methods do not provide same errors for these small values of N . Indeed, the integrals are not
computed in a same way and for N = 2 the cubature based TSEM makes use of an inner point.

- For N = 9, the cubature TSEM does not provide results better than those obtained for N = 8. To
check that, we have made computations with the polynomial solution uex = (x2 + y2)/4, which of course is
of degree 2. For 2 ≤ N ≤ 8 the error is close to the error associated to the iterative solve, but this is not
the case for N = 9, see Table 1. An improvement in the determination of the cubature points and weights
is here clearly needed, even if in practice a so high value of N is rarely used.

N 2 6 7 8 9
Error 1.2778 10−12 3.1523 10−12 2.8451 10−12 3.4641 10−12 1.1012 10−7

Table 1: Max norm of the error for the Laplace equation with exact solution of degree 2 and various N .

Till now a Dirichlet condition was used to compare the two different TSEMs. Addressing homogeneous
Neumann conditions, as in [11], is trivial, since the boundary integral that appears in the variational formu-
lation cancels. This is however no longer true if the Neumann boundary value is not homogeneous or more
generally if a mixed (say Robin) condition should be implemented. In case of the Fekete-Gauss TSEM, the
boundary integrals can be easily computed since the edge Fekete nodes coincide with the GLL points. On
the contrary, the edge cubature points are not of Gauss type. In [9], where the wave equation is considered,
one only makes use of Dirichlet conditions via eventually a PML (perfectly matched layer) to address the
absorbing wall case. This is why it is of interest to consider again the previous elliptic problem but with now
the Robin condition ∂nu+ αu = g on the boundary. Two different approaches are investigated hereafter for
the cubature points TSEM.

The simplest (say naive) method consists in defining a quadrature rule based on the edge nodes. Since
such a quadrature rule will be only exact for polynomials of degree N , one may however expect a loss of
accuracy due to a not enough accurate computation of the boundary integrals of the products αϕiϕj , where
ϕi and ϕj are two of the Lagrange polynomials based on the cubature points, and gNϕi, with gN for the
piecewise polynomial approximation of degree N of g. For a more accurate method, the boundary integrals
must be computed by using on each element edge of the boundary a Gauss quadrature rule, e.g. the one
based on the GLL points. Since the restrictions of the Lagrange polynomials ϕi at the element edges of the
boundary are polynomials of degree N , one can span this polynomial space with the Legendre polynomials,
say Li(r) with r ∈ [−1, 1], for the reference edge, and 0 ≤ i ≤ N . Then, one can set up the Vandermonde
matrices of size (N + 1) × (N + 1) based on the cubature and GLL points, say VCub and VGLL. One has
e.g. (VCub)ij = Lj(ri), with ri ∈ [−1, 1] for the edge cubature points. Then, the matrix VGLLV

−1
Cub allows

to compute at the GLL points quantities known at the cubature points. Especially, each column of this
matrix provides the values of the edge Lagrange polynomials at the GLL points. Note that for straight
triangular elements, the edge Jacobian determinant is constant on each edge and proportional to its length.
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On the contrary, when considering curved triangular elements, see e.g. [13], some care is needed for a relevant
computation of the edge Jacobian determinants at the GLL points from those at the cubature points (the
edge Jacobian determinant being then a polynomial of degree greater than N). Finally, note that for the
naive approach the quadrature weights are simply proportional to the entries of the first line of the matrix
V −1Cub.
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Figure 3: Max norm of the error for the Robin problem (left) and when using hybrid approaches (right).

Computations have been carried out for the equation −∆u+u = f and the Robin condition ∂nu+u = g,
with f and g defined from uex = cos(10x) cos(10y). In Fig. 3 (left) the results obtained with the Fekete-
Gauss TSEM are compared to those obtained with the cubature points based one, using either the naive
or the more accurate method. Clearly, when using the naive approach the spectral convergence gets lost,
whereas with the accurate one the convergence curve compares quite well with the Fekete-Gauss one (for
N ≤ 8). Does the naive approach induce a similar loss of spectral accuracy for the pure Neumann problem,
i.e.with ∂nu = g on the boundary ? The answer of course depends on the boundary data: Thus, if g is
piecewise constant then the boundary integrals can be exactly computed. However, for the highly oscillating
g associated to the present exact solution very similar results are obtained for the Robin and Neumann
problems. Revisiting the Robin problem with hybrid approaches that consist of using the GLL quadrature
rule only for integrating either the gNϕi (hybrid 1) or the αϕiϕj (hybrid 2) kernels, one can indeed observe
that here the loss of accuracy is mainly associated with the boundary data, see Fig. 3 (right).

The cubature points based TSEM was essentially developed for the wave equation. However, as soon
as an explicit time stepping is involved, this TSEM is useful. In another context, the fact that the SEM
mass matrix is diagonal allows to define high order differential operators and thus to address efficiently
dispersive equations [10]. As a conclusion, a cubature points based TSEM may find interest in various
different situations, and progresses for the tetrahedron would be welcome.

Acknowledgments: The P1 FEM mesh has been generated with the free software “Triangle”. We are
grateful to Dr Youshan Liu, Chinese Academy of Sciences, Beijing, for transmitting us the cubature points
and weights used in [9].
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[5] G. Gassner, F. Lörcher, C.D. Munz, J. Hestaven, Polymorphic nodal elements for discontinuous spectralhp element methods,
J. Comput. Phys., 228 (5) (2009) 1573-1590.

4



[6] F.X. Giraldo, M.A. Taylor, A diagonal mass matrix triangular spectral element method based on cubature points, J. of
Engineering Mathematics 56 (2006) 307-322.

[7] B.T. Helenbrook, On the existence of explicit hp-finite element methods using Gauss-Lobatto integration on the triangle,
SIAM J. Numer. Anal., 47 (2009) 1304-1318.

[8] L. Lazar, R. Pasquetti, F. Rapetti, Fekete-Gauss spectral elements for incompressible Navier-Stokes flows: The two-
dimensional case, Comm. in Comput. Phys. 13 (2013) 1309-1329.

[9] Y. Liu, J. Teng, T. Xu, J. Badal, Higher-order triangular spectral element method with optimized cubature points for
seismic wavefield modeling, J. of Comput. Phys. 336 (2017) 458-480.

[10] S. Minjeaud, R. Pasquetti, High order C0 Galerkin schemes for high order PDEs, conservation of quadratic invariants and
application to the Korteweg-De Vries model, J. of Sci. Comput., (2017) doi:10.1007/s10915-017-0455-2.

[11] W.A. Mulder, New triangular mass-lumped finite elements of degree six for wave propagation, Progress in Electromagnetic
Research 141 (2013) 671-692.

[12] R. Pasquetti, F. Rapetti, Spectral element methods on unstructured meshes: comparisons and recent advances, J. Sci.
Comp. 27 (1-3) (2006) 377-387.

[13] R. Pasquetti, Comparison of some isoparametric mappings for curved triangular spectral elements, J. of Comput. Phys.
316 (2016) 573-577.

[14] M.A. Taylor, B. Wingate, R.E. Vincent, An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal.,
38 (2000) 1707-1720.

[15] T. Warburton, An explicit construction for interpolation nodes on the simplex. J. Eng. Math. 56 (3) (2006) 247-262.

[16] Y. Xu, On Gauss-Lobatto integration on the triangle, SIAM J. Numer. Anal., 49 (2011) 541-548.

5


