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Abstract

We present a new formulation of the classical two-dimensional stand-
ing wave problem which makes transparent the (seemingly mysterious)
elimination of the quadratic terms made in [6]. Despite the presence
of infinitely many resonances, corresponding to an infinite dimensional
kernel of the linearized operator, we solve the infinite dimensional bi-
furcation equation by uncoupling the critical modes up to cubic order,
via a Lyapunov-Schmidt like process. This is done without using a nor-
malization of the cubic order terms as in [6], where the computation
contains a mistake, although the conclusion was in the end correct.
Then we give all possible bifurcating formal solutions, as powers series
of the amplitude (as in [6]), with an arbitrary number, possibly infinite,
of dominant modes.

1 Introduction

The two-dimensional standing wave problem for a potential flow with a
free surface has attracted lot of interest since Stokes, and specially very
recently. In particular the existence question in the cae of finite depth has
a solution thanks to the work of Plotnikov and Toland [7]. They use, in an
essential way, the fact that for most of the values of the depth, the kernel
of the linearized operator is one dimensional. The complication there comes
from a small divisor problem in the control of the norm of the inverse of
the linearized operator near the solution (because, as seems unavoidable,
they use the Nash Moser theorem). In the present paper we consider the
infinite depth case and we do not prove the existence of a solution (still
an open problem), but instead we give a new formulation of the problem,
and use it to show the existence of formal solutions in the form of power
series in the amplitude, with infinitely many possibilities for the choice of
the dominant modes. This solves the algebraic problem of the infinitely
many resonances, which are not present in the finite depth case. This result
was also obtained in our previous work [6], where the formulation used is
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non so transparent. The presentation here is drastically different from [6].
We propose a new formulation in terms of analytic functions instead of
Fourier series. In addition a mistake (very hidden), which occured in the
computation of resonant cubic terms in [6], is corrected below. The results
are (miraculously) the same as in [6].

Let us notice in addition that we do not use here a hamiltonian formula-
tion, as it was introduced by Zakharov [9], and which was used in particular
in [5], [3], [4]. These authors consider the evolutionary problem for spatially
periodic solutions, and consider the normal form of the hamiltonian infinite
dimentional vector field. The absence of resonant terms at quadratic order
of the vector field is shown, and the resonant cubic terms in the vector field
are computed by Craig and Worfolk in [3], showing that the system is in-
tegrable if truncated at cubic order, as was announced by Dyachenko and
Zakharov in [5], and not integrable if considered at higher order. In the
present work, we give explicitely the complete form of the system without
quadratic terms, obtained after a simple change of variables not needing a
hamiltonian formulation. Moreover, the infinite set of bifurcation equations,
leading to the infinite set of formal solutions for the standing wave problem,
is obtained with no need of killing the non resonant terms by a new change
of variables. In principle the principal part of this set of equations might
be obtained directly with the work done in [3], since these authors have all
possible solutions of the system truncated at cubic order, however we prefer
to stay at a more elementary and explicit level, for preparing the work for
a future proof of the existence of all these standing waves.

Let us now explain in detail our result. We denote by y < h(x, t) the
region occupied by the liquid, where h is the height of the free surface and
we look for time periodic (period T ), and x-periodic flows (wave length λ).
Choosing respectively T/2π, λ/2π, λ/T, λ2/2πT as scales of time, length,
velocity and potential, we obtain the dimensionless system of equations for
the potential φ(x, y, t) and height h :

∆φ = 0, in −∞ < y < h(x, t), (1)

∂h
∂t + u∂h

∂x − v = 0
∂φ
∂t + 1

2(u2 + v2) + (1 + µ)h = 0

}
on y = h(x, t), (2)

where the velocity components (u, v) satisfy u = ∂φ/∂x, v = ∂φ/∂y, and
where 1 +µ = gT 2/2πλ, g being the acceleration due to gravity. We denote
by f(z, t) = φ(x, y, t) + iψ(x, y, t) the complex potential, analytic in the
domain Im z < h(x, t), where z = x + iy, and ψ is the stream function. In
the following we are interested in solutions such that

f(z + 2π, t) = f(z, t+ 2π) = f(z, t), (3)

h(x+ 2π, t) = h(x, t+ 2π) = h(x, t),
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with evenness properties in t

f(z,−t) = −f(z, t), (4)

h(x,−t) = h(x, t),

and invariant by vertical miror symmetry (as in [1])

f(−z, t) = f(z, t), (5)

h(−x, t) = h(x, t).

This analyticity imposes a special form of the Fourier expansions in x,
so that we can write

f(z, t) =
∑

p≥0

fp(t)e
−ipz,

φ(x, y, t) =
∑

p≥0

Re(fp(t)e
−ipx)epy,

h(x, t) =
∑

p≥0

Re(hp(t)e
−ipx).

The linearized system of (1), (2) near 0 (a flat free surface) with boundary
conditions (4,5) gives solutions of the form

h(x, t) = cos qt cos px,

φ(x, y, t) = −q
p
epy sin qt cos px,

provided that (1+µ)p = q2. This gives non zero solutions whenever (1+µ)
is a positive rational number r/s. Then q = kr, p = k2rs, k = 1, 2, .... give
infinitely many linearly independent solutions for the same values of µ. We
shall consider the case where (1 + µ) is near 1, since all other cases reduce
to this case after a suitable rescaling: dividing the scale of time by r, and
the length scale by rs, multiplies (1 + µ) by s/r.

The fact that at any rational µ, there is an infinite dimensional set
of solutions creates big difficulties, known as ”infinitely many resonances”.
Indeed, for any solution of the problem, the nonlinear terms of the system
have to satisfy infinitely many conditions!

In the paper [1], Amick & Toland justified the algorithmic approach
conjectured by Schwartz & Whitney [8]. Looking for solutions symmetric
under reflexion x→ −x and even in time t, they prove that if one chooses the
dominant mode as h(x, t) = ε cos t cos x, the resonances do not arise at any
stage of the computation of the expansion in powers of ε, where ε = 2

√
µ.

In this approach, the system is expressed in the form of an infinite system of
coupled ordinary differential equations in the time-periodic spatial Fourier
series components of the standing wave.
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In what follows, we start with the formulation of [8] and [1], and reformu-
late the problem in terms of analytic functions on the complex half plane.
In addition to the resonance problem mentioned above, the occurence of
quadratic terms in [1] is the source of major difficulties, due to the couping
of each mode with infinitely many other modes, and a direct application of a
Lyapunov-Schmidt like method does not seem tractable. We derive below a
new formulation without quadratic terms, using a suitable choice of variables
and coordinates. This formulation explains the mysterious change of vari-
ables made in [6] and has the advantage to be hopefully useful for further
analysis on the existence of standing waves (beyond what is done below).

With such a formulation, we are able to solve the infinitely - many -
resonances problem, using, as in [6] a Lyapunov-Schmidt type of method
for proving that one can construct the expansion in powers of ε = 2

√
µ, in

taking a dominant part of the height h(x, t) of the form

h(x, t) ∼ ε
∑

q∈I

(±1)q

q2
cos q2x cos qt

where the number of basic modes given by I ⊂ N may be infinite, and
(±1)q = ±1. This general result is in accordance with the numerical results
of Bryant and Stiassnie [2] who considered the cases I = {1, 2} and I =
{1, 2, 3}.

An important feature of our new approach is that we do not need to put
the cubic terms into normal form (contrary to the claim in [6], where, in
addition, a mistake was made in the calculation of the normal form, here
corrected in Appendix B, where the agebraic problem is completely solved).
Indeed, it appears that such a normal form contains too many terms to be
useful. A general Lyapunov-Schmidt technique is more flexible and better
adapted for dealing with periodic problems.

Finally, it should be noted that our result is only valid for the formal ex-
pansions of these various ”solutions” in powers of ε = 2

√
µ, the convergence

in some function space is still an open problem.

2 Notations

Let us denote by
Cδ = R× (−∞, δ), δ ≥ 0

a domain in the complex plane C shifted from the standard complex half
plane (denoted here by C0). Now, for any continuous function f : R → C,
2π− periodic in ξ, define the analytic function T f , for ζ ∈ C0, by

T f(ζ) =
1

2π

∫ 2π

0

f(θ)

ei(ζ−θ) − 1
dθ.

Then we have the following elementary properties.
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Lemma 1 For any Lipschitz continuous function f : R → C, 2π− periodic
in ξ, denote its Fourier series by

f(ξ) =
∑

p∈Z

fpe
−ipξ.

(a)

T f(ζ) =
∑

p≥1

fpe
−ipζ ,

holds, where ζ = ξ + iη ∈ C0.
(b) If f is real-valued, then

f(ξ) = [f ] + 2Re T f |η=0,

where [f ] denotes the average of f over one period. If f is imaginary valued,
then

f(ξ) = [f ] + 2i Im T f |η=0.

(c) If f is analytic on R with a radius of convergence δ, then T f(ζ) has
an analytic continuation, also denoted by T f(ζ), to Cδ.

(d) If f has an analytic continuation in C0, then

T f(ζ) = f(ζ)− [f ],

T f(ζ) = 0.

About the point (c) notice that T , as defined by the integral formula, is
zero on Cδ\{closure of C0} (by Cauchy’s integral formula). Another remark
is that the periodic Hilbert transform C is defined by

C(eipξ) = −isgn(p)eipξ, p ∈ Z\{0},
= 0 for p = 0,

and, for any Lipschitz continuous function f : R → C, 2π− periodic in ξ we
have the identity

f − iCf = [f ] + 2T f |η=0,

and when f is real-valued, the function f−iCf may be extended analytically
in C0, where our T f(ζ) gives the extension.

3 Formulation of the problem

We use a variation of the formulation used in [1] and [8]. Let us introduce
a time dependent conformal injection in Cδ, for each t ∈ R, defined by
I + Z̃(·, t) where I(ζ) = ζ, ζ = ξ + iη,

Z̃(ζ + 2π, t) = Z̃(ζ, t+ 2π) = Z̃(ζ, t),
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and define, for ||Z̃||∞ sufficiently small,

SZ̃ =
{(
ξ + Z̃(ξ, t), t

)
; (ξ, t) ∈ R

2
}
, (free boundary)

ΩZ̃ =
{(
ζ + Z̃(ζ, t), t

)
; ζ ∈ C0, t ∈ R

}
⊂ Cδ × R,

ΩZ̃t

= {z; (z, t) ∈ ΩZ̃} ⊂ Cδ.

The physical domain of the flow is then given by z = x + iy ∈ Ω
Z̃t

, which
may be transformed into C0 by the inverse mapping (we omit t in the writing
of the mappings)

(I + Z̃)−1 def
= I− Z : ΩZ̃t

→ C0. (6)

We denote the complex potential by F (ζ, t) (= f(z, t)), and the complex
velocity by

u− iv = f ′z(z, t) = W (z, t),

and the miror-symmetry condition (5) leads to

W (−z, t) = −W (z, t),

F (−ζ, t) = F (ζ, t), (7)

Z̃(−ζ, t) = −Z̃(ζ, t),

Z(−z, t) = −Z(z, t).

We also need the following notation for (ξ, t) ∈ R
2

D̃(ξ, t) = Z̃ ′t(ξ, t)Z̃
′

ξ(ξ, t)− Z̃
′

t(ξ, t)Z̃
′
ξ(ξ, t), (8)

C̃(ξ, t) =
∣∣∣f ′z

(
ξ + Z̃(ξ, t), t

)∣∣∣
2
. (9)

In this section we show the following

Lemma 2 With the above choice of variables, the system (1,2) for miror
symmetric solutions, may be transformed into the following system

f ′z + Z ′t +
(
1− Z ′z

){
T D̃ +

1

2
[D̃]

}
◦ (I− Z) = 0, (10)

f ′t − i(1 + µ)Z +

{
T C̃ +

1

2
[C̃]

}
◦ (I− Z) = 0, (11)

for (z, t) ∈ ΩZ̃ .

Proof: With our choice of coordinates and variables the kinematic bound-
ary condition (2)1 on S

Z̃
takes the following form (see [8],[1] for the first

equation)

Im

{(
1 + Z̃ ′ξ(ξ, t)

)
W (ξ + Z̃(ξ, t), t) + Z̃ ′t(ξ, t)

(
1 + Z̃

′

ξ(ξ, t)

)}
= 0, (12)
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while the dynamic boundary condition (2)2 , also on SZ̃ , takes the form

Re

{
f ′t(ξ + Z̃(ξ, t), t) − i(1 + µ)Z̃(ξ, t) +

1

2
|W (ξ + Z̃(ξ, t), t)|2

}
= 0. (13)

We then modify both these equations, by introducing our operator T with
the aim of rewriting the problem as a system of two analytic equations in
the half plane C0. First we have, from (12) and lemma 1,

0 = Im
{(

1 + Z̃ ′ξ(ξ, t)
)
W (ξ + Z̃(ξ, t), t) + Z̃ ′t(ξ, t) +

+
1

2
[Z̃ ′t(ξ, t)Z̃

′

ξ(ξ, t)− Z̃
′

t(ξ, t)Z̃
′
ξ(ξ, t)]

}
,

i.e.

0 = Im
{(

1 + Z̃ ′ξ(ξ, t)
)
W (ξ + Z̃(ξ, t), t) + Z̃ ′t(ξ, t)

}
+

+ Im
(
T D̃

)
(ξ, t) + Im

1

2
[D̃](t),

and, since we have the imaginary part of a holomorphic 2π− periodic func-
tion which is 0 on the real line η = 0, we deduce that

c(t) =
(
1 + Z̃ ′ζ

)
W (ζ + Z̃(ζ, t), t) + Z̃ ′t(ζ, t)+

+
(
T D̃

)
(ζ, t) + i Im

1

2
[D̃](t),

where c(t) is real. From the miror-symmetry conditions (7), it follows that
the average quantities [Z̃ ′t(ζ, t)] and [D̃] are imaginary. Now the average of
any T f is 0, and the average of

(
1 + Z̃ ′ζ

)
W (ζ + Z̃(ζ, t), t) = F ′ζ(ζ, t)

is 0 by construction, since the velocity W has zero average (due to the
periodicity of f in x). With this choice, there results that

0 =
(
1 + Z̃ ′ζ

)
W

(
ζ + Z̃(ζ, t), t

)
+ Z̃ ′t(ζ, t)+ (14)

+
(
T D̃

)
(ζ, t) +

1

2
[D̃](t),

holds for all (ζ, t) ∈ C0 × R and, if we now use the coordinates (z, t) =(
ζ + Z̃(ζ, t), t

)
where

ζ = z − Z(z, t),

and observe that

1− Z ′z = (1 + Z̃ ′ζ)
−1,

Z̃ ′t(ζ, t)

1 + Z̃ ′ζ
= Z ′t(z, t),
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we obtain the equation

0 = W (z, t) + Z ′t(z, t) +
(
1− Z ′z(z, t)

) {
T D̃ +

1

2
[D̃(·, t)]

}
(z − Z(z, t), t) ,

valid for (z, t) ∈ Ω
Z̃
. This may be written as (10).

In the same way, introducing the operator T into (13), leads to

0 = Re
{
f ′t(ξ + Z̃(ξ, t), t)− i(1 + µ)Z̃(ξ, t)

}
+

+ Re T C̃(ξ, t) +
1

2
[C̃](t).

Since we have the real part of an holomorphic 2π− periodic function which
is zero on the real line η = 0, this leads to

c1(t) = f ′t(ζ + Z̃(ζ, t), t)− i(1 + µ)Z̃(ζ, t)+

+
(
T C̃

)
(ζ, t) +

1

2
[C̃](t),

for ζ ∈ C0 and where c1(t) is purely imaginary. If f is replaced by

f(z, t)−
∫ t

0
c1(τ)dτ,

then equations (1),((2) are not affected because c1 is imaginary. Moreover,
as seen previously, due to the symmetry of the flow, the average i[Z̃] is real,
like [C̃], hence we take c1(t) ≡ 0. Then the above equation becomes

f ′t (z, t)− i(1 + µ)Z(z, t) +
(
T C̃(·, t)

)
(z − Z(z, t), t) +

1

2
[C̃(·, t)] = 0,

valid for (z, t) ∈ Ω
Z̃

and which may be written as (11). Notice that we can
also write the above equation, after differentiating with respect to z, as

W ′
t − i(1 + µ)Z ′z +

{(
T C̃

)
◦ (I− Z)

}′
z

= 0.

The system of two equations (10) (11) is the system on which we work
in the following sections. The advantage of this system, with respect to
the one used in [1] is that we have already eliminated the ”pure” analytic
terms (i.e. those which do not involve T ), which gave all the problems
appearing under the name of the ”Schwartz-Whitney conjecture”. This
leads to an understanding of why the change of variable made in [6] is able
to eliminate the pure analytic quadratic terms in the formulation of [8],[1]
(see the acknowledgments).
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4 Elimination of the remnent quadratic terms

The usual way for obtaining the bifurcating solutions in the search for peri-
odic solutions is to use the Lyapunov-Schmidt method (see section 8). The
presence of quadratic terms in the system (10) (11) implies that the terms
cubic in the critical modes (lying in the infinite dimensional kernel of the
linearized operator) are very difficult to compute explicitely in the bifur-
cation equation (infinite dimensional). We shall see that there is no term
quadratic in the critical modes in this bifurcation equation (see a remark at
section 8), hence the calculation of cubic order is really necessary. So, it is
fortunate that we already eliminated many quadratic terms thanks to our
new formulation. This is however not sufficient, and, as shown in [6], we can
eliminate all quadratic terms via a suitable near-identity polynomial change
of variable. We show the same property below, on our formulation of the
system (10) (11).

First, we show the following

Lemma 3 Considering functions analytic in Cδ, the change of variables
(Z, f) 7→ (U,G) defined implicitely near 0, by

Z = U + T (ZZ ′x) +
1

2

[
ZZ ′x

]
, (15)

f = G+ T (Zf ′x) +
1

2

[
Zf ′x

]
,

transforms the system (10) (11) into

G′z + U ′t +O(3) = 0,

G′t − i(1 + µ)U +O(3) = 0,

where O(3) means terms at least cubic in (G,U) (we will be precise about
the cubic terms later).

This result is the analogue of the one found in using Fourier series in [6]
at the beginning of section 3 (where the lengthy computations were hidden
to the reader!)

Proof: Let us first identify the quadratic terms in equations (10) (11):

(
1− Z ′z

){
T D̃ +

1

2

[
D̃

]}
◦ (I− Z) = (T D̃) +

1

2
[D̃] +O(3)

= T {Z ′tZ
′
x − Z

′
tZ

′
x}+

+
1

2
[Z ′tZ

′
x − Z

′
tZ

′
x] +O(3),
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{
T C̃ +

1

2
[C̃]

}
◦ (I− Z) = T C̃ +

1

2
[C̃] +O(3)

= T {
∣∣f ′z

∣∣2}+
1

2
[
∣∣f ′z (x, t)

∣∣2] +O(3).

Let us make the change of variables (15). The quadratic terms in the
new equation for (10) is

(
T (Zf ′x)

)′
z
+

(
T (ZZ ′x)

)′
t
+ T {Z ′tZ

′
x − Z

′
tZ

′
x}+

+
1

2

[
ZZ ′x

]′
t
+

1

2
[Z ′tZ

′
x − Z

′
tZ

′
x]

which may be also written as

T
((
Z(f ′z + Z ′t)

)′
x

)
+

1

2
[
(
ZZ ′t

)′
x
] =

(
T

(
Z(f ′z + Z ′t)

))′
z
,

which we notice is of cubic order, since f ′z + Z ′t = O(2).
The quadratic terms in the new equation for (11) is

T (Zf ′x)′t − i(1 + µ)T (ZZ ′x) + T {
∣∣f ′z

∣∣2}+

+
1

2

[
Zf ′x

]′
t
− i(1 + µ)

1

2

[
ZZ ′x

]
+

1

2

[∣∣f ′z
∣∣2

]

which may be also written as

T
(
Z

(
f ′t − i(1 + µ)Z

)′
z

)
+ T

(
f ′z(f

′
z + Z ′t)

)
+

+
1

2
[Z

(
f ′t − i(1 + µ)Z

)′
z
] +

1

2
[f ′z(f

′
z + Z ′t)],

which again is of cubic order, since f ′z+Z ′t = O(2) and f ′t−i(1+µ)Z = O(2).
As a consequence, the change of variables (15) suppresses all quadratic terms
in system (10),(11).

5 Computation of cubic terms of the new system

We now need to compute precisely at least the cubic terms of the new system,
because these cubic terms are crucial for the bifurcation analysis. First, we
give some elementary properties of the operator T , which are useful in the
sequel, and which complement those given at lemma 1:

Lemma 4 For any function f : C → C, 2π− periodic in x, analytic in C0,
Lipschitz continuous on R×{0}, and any function g : R → C, 2π− periodic
in x and Lipschitz continous on R, we have the following identities:

(a) T (fT g) = fT g,
(b) T (fT g) = T

(
fg

)
,

(c) T (fT g) = T (fg)− fT (g)− f [g].
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Proof: The two first identities are left to the reader. Let us show the
last one.

We first define the Fourier series

f(z) =
∑

p≥0

fpe
−ipz,

g(x) =
∑

q∈Z

gqe
−iqx,

then we have successively

fT g(x) =
∑

q≥1,p≥0

fpgqe
−i(p−q)x,

fT g(x) =
∑

q≤−1,p≥0

fpgqe
−i(p−q)x,

T fg(x) =
∑

p≥q+1

fpgqe
−i(p−q)x,

T
(
fT g

)
(x) =

∑

q≥1,p≥q+1

fpgqe
−i(p−q)x,

from which the lemma follows easily.
In the next lemma we show how a change of variable (Z, f) 7→ (U,G),

different from, but equivalent at quadratic order to, the one in lemma 3,
simplifies the system (10,11) and facilitates explicit calculation of terms in
a Taylor series expansion of the resulting equations. Another advantage of
this change of variable is that it is a priori defined for functions analytic in
the domain bounded by the free boundary S

Z̃
.

Lemma 5 The change of variables (Z, f) 7→ (U,G) given by

Z = U +
(
T

(
Z̃Z̃ ′ξ

))
◦ (I− Z) +

1

2
[Z̃Z̃ ′ξ], (16)

f = G+
(
T

(
Z̃f ′z(·+ Z̃(·, t), t)

))
◦ (I− Z) +

1

2
[Z̃f ′z(·+ Z̃(·, t), t)],

transforms the system (10,11) satisfied for (z, t) ∈ ΩZ̃ into the system
(19,21). Assuming that U and G are defined for z in Cδ, this system gives,
at cubic order, the system

U ′t +G′z =
1

2
U ′z [D] + U ′zT

(
D +

(
UG′z

)′
x

)
−G′z

(
T (UU ′z)

)′
z
+ (17)

+
(
T

{
U

(
D + U ′zG

′
z

)})′
z
+O(4),
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G′t − i(1 + µ)U = −G′zT
(
UG′z

)′
x

+G′z

(
T D +

1

2
[D]

)
+ (18)

+ T
{
U

(
G′zG

′′
zz + i(1 + µ)U ′zU

′
z

)}
+

+
1

2

[
U

(
G′zG

′′
zz + i(1 + µ)U ′zU

′
z

)]
+

− T
(
G′zD −

(
UC

)′
x

)
− 1

2

[
G′zD

]
+O(4),

where

D(x, t) = G
′
z(x, t)U

′
z(x, t)−G′z(x, t)U

′
z(x, t) +O(4),

C(x, t) = |G′z(x, t)|2,
the space average [U ] is constant, and O(4) means terms of order 4 and
higher in (U,G) and derivatives of (U,G) near 0.

Remark: More precision with estimates in suitable norms is necessary
when trying to solve the existence problem. It is however clear that the right
hand side of the system (17,18) has less regularity than the left hand side,
since it has derivatives of higher order than are to be found in the linear
left hand side. This strongly suggests that an argument like Nash Moser
theorem would be at least necessary for solving the existence problem. In
the present work, we don’t need these estimates, since we are interested in
finding solutions as power series of a small amplitude (ε = 2

√
µ), with no

result on their convergence.
Proof of the lemma: Using (16) in equation (10) leads to

0 = G′z + U ′t + (1− Z ′z)T
(
Z̃f ′z(ξ + Z̃(ξ, t), t)

)′
ξ
◦ (I− Z) +

1

2
[(Z̃Z̃ ′ξ)

′
t]+

+ T
(
Z̃Z̃ ′ξ

)′
t
◦ (I− Z)− Z ′tT

(
Z̃Z̃ ′ξ

)′
ξ
◦ (I− Z)+

+ (1− Z ′z)
(
T D̃

)
◦ (I− Z) + (1− Z ′z)

1

2
[D̃],

A manipulation in the spirit of the previous section and use of property (14)
in the form

f ′z

(
ξ + Z̃(ξ, t), t

)
+ Z̃ ′t(ξ, t) = −

(
T D̃

)
(ξ, t)− 1

2
[D̃](t)+

− Z̃ ′ξ(ξ, t)f
′
z

(
ξ + Z̃(ξ, t), t

)
,

with lemmas 1(d), 4(b), definition(8) and the periodicity of Z̃ yields

0 = G′z + U ′t − Z ′zT
{
D̃ +

(
Z̃f ′z(ξ + Z̃(ξ, t), t)

)′
ξ

}
◦ (I− Z)+

− T
(
Z̃

{
D̃ + Z̃ ′ξf

′
z(ξ + Z̃(ξ, t), t)

})′
ξ
◦ (I− Z)− Z ′z

1

2
[D̃]+

− Z ′tT
(
Z̃Z̃ ′ξ

)′
ξ
◦ (I− Z). (19)

12



This equation is of course implicit in the unknown functions G and U , but
it has the advantage of being exact, i.e. without approximation. We observe
from (19) that the space average [U ] is constant in t, while [Z] is not constant
in t. We can now write explicitely this new equation up to cubic terms:

G′z + U ′t = U ′zT
{
D +

(
UG′z

)′
x

}
+ U ′z

1

2
[D]+

+ T
(
U

{
D + U ′zG

′
z

})′
x

+ U ′tT
(
UU ′z

)′
x

+O(4), (20)

where
D(x, t) = U ′t(x, t)U

′
z(x, t) − U

′
t(x, t)U

′
z(x, t),

which may also be written as (17).
Considering now equation (11), we proceed in the same way to obtain

successively

0 = G′t − i(1 + µ)U − Z ′tT
(
Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
ξ
◦ (1− Z)+

+ T
((

Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
t
− i(1 + µ)Z̃Z̃ ′ξ + C̃

)
◦ (1− Z)+

+
1

2

[(
Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
t
− i(1 + µ)Z̃Z̃ ′ξ + C̃

]
,

from which it follows that

0 = G′t − i(1 + µ)U − Z ′tT
(
Z̃f ′z(ξ + Z̃(ξ, t), t)

)′
ξ
◦ (1− Z)+

+ T
(
Ẽ

)
◦ (1− Z) +

1

2
[Ẽ],

where

Ẽ
def
=

(
Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
t
− i(1 + µ)Z̃Z̃ ′ξ + C̃

= Z̃
{
f ′′zt(ξ + Z̃(ξ, t), t) − i(1 + µ)Z̃ ′ξ

}
+ Z̃ ′tZ̃f

′′
zz(ξ + Z̃(ξ, t), t)+

f ′z(ξ + Z̃(ξ, t), t)
{
f ′z(ξ + Z̃(ξ, t), t) + Z̃ ′t

}
.

We observe that (using lemma 1(b), and the fact that C̃ is real-valued)

[Z̃
(
T C̃

)′
ξ
+ Z̃

′

ξC̃] = [Z̃
′

ξ

(
C̃ − T C̃

)
]

= [Z̃
′

ξ

(
[C̃] + T C̃

)
]

= [Z̃ ′ξT C̃] = 0,

13



where the last identity follows by Cauchy’s integral formula. Since D is
imaginary, lemma 1(b) gives that

D̃ − T D̃ = [D̃]− T D̃

which is analytic in ξ, and so

[f ′z

(
ξ + Z̃(ξ, t), t

)
T D̃] = [f ′z

(
ξ + Z̃(ξ, t), t

)
D̃]

= −[f ′z

(
ξ + Z̃(ξ, t), t

)
D̃].

Differentiation of (11) along with (6) gives that

f ′′zt(ξ + Z̃(ξ, t), t)− i(1 + µ)Z̃ ′ξ = −
(
T C̃

)′
ξ
− Z̃ ′ξf

′′
zt(ξ + Z̃(ξ, t), t).

From this identity and (10) it follows that

0 = G′t − i(1 + µ)U − Z ′tT
(
Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
ξ
◦ (1− Z)+

− T
(
Z̃

{
Z̃ ′ξf

′′
zt

(
ξ + Z̃(ξ, t), t

)
+

(
T C̃

)′
ξ

})
◦ (1− Z)+

− T
(
f ′z

(
ξ + Z̃(ξ, t), t

) {
T D̃ + Z̃ ′ξf

′
z

(
ξ + Z̃(ξ, t), t

)
+

1

2
[D̃]

})
◦ (1− Z)+

+ T
(
Z̃ ′tZ̃f

′′
zz

(
ξ + Z̃(ξ, t), t

))
◦ (1− Z)+

+
1

2

[
Z̃

(
Z̃ ′tf

′′
zz

(
ξ + Z̃(ξ, t), t

)
− Z̃ ′ξf

′′
zt

(
ξ + Z̃(ξ, t), t

))]
+

+
1

2

[
f ′z

(
ξ + Z̃(ξ, t), t

)
D̃

]
,

and finally

0 = G′t − i(1 + µ)U − Z ′tT
(
Z̃f ′z

(
ξ + Z̃(ξ, t), t

))′
ξ
◦ (1− Z)− f ′z

1

2
[D̃]+

+ T
{
Z̃

(
Z̃ ′tf

′′
zz

(
ξ + Z̃(ξ, t), t

)
− Z̃ ′ξf

′′
zt

(
ξ + Z̃(ξ, t), t

))}
◦ (1− Z)+

− f ′z

(
T D̃

)
◦ (1− Z) + T

(
f ′z

(
ξ + Z̃(ξ, t), t

)
D̃ −

(
Z̃C̃

)′
ξ

)
◦ (1− Z)+

(21)

+
1

2

[
Z̃

(
Z̃ ′tf

′′
zz

(
ξ + Z̃(ξ, t), t

)
− Z̃ ′ξf

′′
zt

(
ξ + Z̃(ξ, t), t

))]
+

+
1

2

[
f ′z

(
ξ + Z̃(ξ, t), t

)
D̃

]
,

14



This is an exact implicit equation for G,U and µ only, which has no quadratic
term. Up to cubic order it is precisely the following

G′t − i(1 + µ)U = U ′tT
(
UG′z

)′
x

+G′z

(
TD +

1

2
[D]

)
+

− T
{
U

(
U ′tG

′′
zz − U ′zG

′′
zt

)}
− 1

2

[
U

(
U ′tG

′′
zz − U ′zG

′′
zt

)]
+

− T
(
G′zD −

(
UC

)′
x

)
− 1

2

[
G′zD

]
+O(4). (22)

This can also be written as (18).

6 Other representation of the cubic terms

In this section we derive another explicit form of the system (17,18), using
Fourier series, in the spirit of [6]. We are lead naturally to Fourier series
because of the structure of the kernel of the linearized operator

U ′t +G′z = 0,

G′t − iU = 0.

Let us define the Fourier series for U and G :

U(z, t) = i
∑

p≥0

ap(t)e
−ipz,

G(z, t) =
∑

p≥0

bp(t)e
−ipz.

Because of the symmetry properties

U(−z, t) = −U(z, t), G(−z, t) = G(z, t),

the coefficients ap and bp are real functions of t. We notice that a0 = [U ],
which is a constant by lemma 5. Moreover, we assume that

ap is even in t,

bpis odd in t,

since we are restricting our attention to solutions of (1,2) with h(x, t) even
in x and t, as in [8],[1],[6].

Definition 6 We denote by E the linear space of 2π-periodic, smooth func-
tions taking values in (RN∪{0})2, where the first element is even, the second
being odd, and denote by F the space of 2π-periodic, smooth functions taking
values in (RN∪{0})2, where the first element is odd, the second being even.
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For any (A,B) ∈ E , let A = {ap}p≥0, B = {bp}p≥0 and

(∂B)p = pbp.

Now, the system (17,18) takes the form

Ȧ− ∂B = P3(A,A;B) +RA(A,B), (23)

Ḃ + (1 + µ)A = Q3(B,B;A) + (1 + µ)M3(A,A,A) +RB(A,B, µ),

where P3 and Q3 are bilinear, symmetric with respect to their two first
arguments, and linear with respect to the third, while M3 is trilinear and
symmetric in all its arguments. The remainder terms, RA and RB repre-
sent terms of order at least 4 with respect to (A,B). Below we give explicit
formulas for the cubic terms P3, Q3, M3 (they are different from the ones
obtained in [6] since the variables are different). The identification of se-
quences corresponding to each term in (17,18) is made in Appendix A. We
obtain, for p ≥ 0,

P3(A,A;B)p =
∑

q≥1

pq2apaqbq +
∑

p+q=j+r
r≥q+1

qrjaj(aqbr + arbq)+

−
∑

r=p+q+j

pqraj(aqbr + arbq) +
∑

p+q=j+r

pjraqarbj+

+
∑

p+q=j+r
r≥q+1

jr(r − q)aq(ajbr − arbj).

Thus P3(A,A;B)0 = 0. For p ≥ 1,

Q3(B,B;A)p =
∑

q≥1

pq2aqbpbq +
∑

p+q=j+r
r≥q+1

qrjbj(aqbr + arbq)+

+
∑

p+q=j+r
q≥r+1

jr(r − q)aqbrbj −
∑

p+q=j+r

jqrarbjbq+

−
∑

r=p+q+j

pqrajbqbr,

M3(A,A,A)p =
∑

p+q=j+r

jrajaqar,

holds, and for p = 0,

Q3(B,B;A)0 =
1

2

∑

j,r≥1

jr2aj+rbrbj − jr(r + j)bj(ar+jbr + arbr+j),

M3(A,A,A)0 =
1

2

∑

r,j≥1

jrajarar+j
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holds. We observe that, for p = 0

ȧ0 = 0,

ḃ0 + (1 + µ)a0 = Q3(B,B;A)0 + (1 + µ)M3(A,A,A)0 +RB(A,B, µ)0.

Thismeans that a0 (const) and b0 (odd) can be written as the sums of cubic
terms in the other coordinates (A,B)p, p ≥ 1, plus terms of order 4 in all
the variables. Thanks to this uncoupling, at cubic order we can consider the
components p ≥ 1 of system (23) as functions only of (A,B)j , j ≥ 1. We see
below that the essential part of (23) is indeed the cubic part.

7 Study of the linear operator for µ = 0

We define the linear operator L from E to F by

LX = (Ȧ− ∂B, Ḃ +A),

for any X = (A,B) ∈ E . This linear operator occurs in the principal linear
part of (23). The aim of this section is to study the inverse of this operator.

It is clear that

ker(L) = {X = (A,B) ∈ E ; (A,B)p = 0 if p 6= q2, q ∈ N,

Xq2 = Aq2(cos qt,−q−1 sin qt), q ∈ N, Aq2 ∈ R},

Range(L) = {Z = (F,G) ∈ F ; (F,G)q2 = (fq2 , gq2), f
(q)
q2 +qg

(q)
q2 = 0, q ∈ N},

where f
(q)
q2 is the qth Fourier coefficient of fq2 . Notice that p = 0 does not

give any component in ker(L).

Lemma 7 If Z ∈ Range(L), there exists a unique X ∈ E , such that LX =

Z and Xq2 = (aq2 , bq2) satisfies −qa(q)
q2 + b

(q)
q2 = 0 for all q ∈ N (we say

X ∈ ker(L)⊥). This defines the pseudo-inverse L̃−1 of L on its range. Every
component Xp results from a bounded linear operator acting only on Zp (the
norm of this operator depends on p).

Indeed, let us define a projection P0 of F onto the subspace ”orthogonal”
to Range(L):

(P0Z)p6=q2 = 0, (P0Z)q2 =
lq2(Z)

1 + q2
(sin qt, q cos qt), q ∈ N, (24)

lq2(Z) =
1

π

∫ 2π

0
[fq2(t) sin qt+ qgq2(t) cos qt]dt.
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Then P0Z = 0 if and only if Z ∈ Range(L) and LX = Z where X =
(A,B) ∈ ker(L)⊥ is given for p 6= q2 by

ap(t) =
1

2 sin
√
pπ

∫ 2π

0
[sgn(t− s)fp(s) sin

√
p(π − |t− s|)

+
√
pgp(s) cos

√
p(π − |t− s|)]ds,

bp(t) =
1

2
√
p sin

√
pπ

∫ 2π

0
[sgn(t− s)

√
pgp(s) sin

√
p(π − |t− s|)

− fp(s) cos
√
p(π − |t− s|)]ds,

and, for p = q2, and m 6= q

a
(m)
q2 = −(m2 − q2)−1(mf

(m)
q2 + q2g

(m)
q2 ),

b
(m)
q2 = (m2 − q2)−1(f

(m)
q2 +mg

(m)
q2 ),

while for m = q

b
(q)
q2 =

−1

(1 + q2)
f

(q)
q2 =

q

1 + q2
g
(q)
q2 = qa

(q)
q2 ,

holds. The result of the lemma follows directly from the above expressions.
A difficulty, due to the fact that sin

√
pπ can reach very small values as

p increases, results in a (small) loss of regularity in inverting this linear
operator L.

8 The bifurcation problem

We now show that the elimination of quadratic terms by a suitable choice
of variables in section 4, leads to a bifurcation equation where all critical
modes are uncoupled up to cubic order. This clarifies all possible bifurcating
(formal) solutions of the standing wave problem. A big difference with the
approach in [6] is that here it is not necessary to proceed via the cubic
normal form. Such a normal form is presented in Appendix B, giving the
solution of an interesting algebraic problem, whose result is however not
easily adapted for use here. Another reason for avoiding the cubic normal
form is to make it easier to obtain precise estimates on the loss of regularity
of the right hand side of (23). These estimates are required, for example, if
we want to use the Nash Moser implicit function theorem.

Considering the system (23), we finally obtained a system in the space
F of the form

LX = µJX +N (X(3);µ) +R(X;µ), (25)

where
X = (A,B) ∈ E , JX = (0,−A) ∈ F ,
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N (X(3);µ) = (P3(A,A;B), Q3(B,B;A) + (1 + µ)M3(A,A,A)) ,

and
R(X;µ) = (RA(A,B), RB(A,B, µ)) = O(4).

The idea is to use the Lyapunov-Schmidt method.
Let us decompose X ∈ E as

X = X0 + Y, X0 ∈ Ker(L), Y ∈ Ker(L)⊥.

Then equation (25) becomes

L̃Y = µ(I− P0)J (X0 + Y ) + (I− P0)N ((X0 + Y )(3);µ)+

+ (I− P0)R(X0 + Y ;µ), (26)

µP0J (X0 + Y ) + P0N ((X0 + Y )(3);µ) + P0R(X0 + Y ;µ) = 0. (27)

Since L̃ is invertible, and the right hand side is analytic in its arguments,
one can formally solve equation (26) with respect to Y as ”powers series” of
X0 and µ for X0, µ close to (0, 0) in (kerL)×R. In this way we obtain

Y = Y(X0, µ) = µL̃−1(I− P0)JX0 + L̃−1(I− P0)N (X
(3)
0 ; 0)+

+O(|µ2||X0|+ |µ||X0|3 + |X0|4)

and, after replacing Y by its expression Y(X0, µ) in (27), we have the infinite
dimensional bifurcation equation

µP0JX0 + P0N (X
(3)
0 ; 0) + P0S(X0;µ) = 0, (28)

where
P0S(X0;µ) = O(|µ2||X0|+ |µ||X0|3 + |X0|4).

More precisely, denoting the j2 components of X0 by (X0)j2 = (aj2 , bj2), we
have, for any q ≥ 1

P3(A,A;B)q2 =
∑

j≥1

q2j4aq2aj2bj2 +
∑

q2+m2=j2+r2

r2≥m2+1

m2r2j2aj2(am2br2 + ar2bm2)+

−
∑

r2=q2+m2+j2

q2m2r2aj2(am2br2 + ar2bm2) +
∑

q2+m2=j2+r2

q2j2r2am2ar2bj2+

+
∑

q2+m2=j2+r2

r2≥m2+1

j2r2(r2 −m2)am2(aj2br2 − ar2bj2),
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Q3(B,B;A)q2 =
∑

j≥1

q2j4aj2bq2bj2 +
∑

q2+m2=j2+r2

r2≥m2+1

qrjbj(aqbr + arbq)+

−
∑

q2+m2=j2+r2

j2m2r2ar2bj2bm2 −
∑

r2=q2+m2+j2

q2m2r2aj2bm2br2+

+
∑

q2+m2=j2+r2

m2≥r2+1

j2r2(r2 −m2)am2br2bj2 ,

M3(A,A,A)q2 =
∑

q2+m2=j2+r2

j2r2aj2am2ar2 .

Now, for any q ≥ 1,

(aq2 , bq2) = Aq2(cos qt,−q−1 sin qt), Aq2 ∈ R,

and the computation of P0N (X
(3)
0 ; 0) (in particular, for the expression lq2(N (X

(3)
0 ; 0))

from (24)), introduces integrals of periodic functions typically as ei(±r±j±m±q)t,
hence the following lemma is useful (proof left to the reader).

Lemma 8 All solutions of

q2 +m2 = j2 + r2,

r ± j ±m± q = 0, q,m, j, r ≥ 1,

are given by i) q = r, j = m, or ii) q = j, r = m.
All solutions of

r2 = q2 +m2 + j2,

r ± j ±m± q = 0, q,m, j, r ≥ 1,

are given by i) q +m = j + r, or ii) q + j = r +m, or iii) q + r = j +m.

We use this lemma in the expressions for P3, Q3, M3 and write below

the terms which may produce non zero terms in the iterm lq2(N (X
(3)
0 ; 0)).

We denote these restricted expressions by P ′3, Q
′
3, M

′
3:

P ′3(A,A;B)q2 = 2q6a2
q2bq2 +

∑

j≥q+1

q2j2(q2 + j2)aj2aq2bj2 + q4j2a2
j2bq2+

+
∑

j≤q−1

2q4j2a2
j2bq2 + 3q2j4aj2aq2bj2+

−
∑

(q,j,r,m)∈K

q2m2r2aj2(am2br2 + ar2bm2),
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Q′3(B,B;A)q2 = −
∑

j≥q+1

q2j4aq2b2j2 + j2q2(q2 − j2)aj2bj2bq2+

+
∑

j≤q−1

q2j4aj2bj2bq2 −
∑

(q,j,r,m)∈K

q2m2r2aj2bm2br2 ,

M ′
3(A,A,A)q2 = q4a3

q2 +
∑

j 6=q

2j2q2a2
j2aq2 ,

where (q, j, r,m) ∈ K means r2 = q2 +m2 +j2, and r±j±m±q = 0. Notice
that these expressions are strongly related with the normal form analysis in
Appendix B. Now replacing (aq2 , bq2) by its expression, we can compute

lq2(µJX0) = −µqAq2 ,

and

lq2(N (X
(3)
0 ; 0)) =

1

π

∫ 2π

0

{
P ′3(A,A;B)q2 sin qt +

+q
(
Q′3(B,B;A)q2 +M ′

3(A,A,A)q2

)
cos qt

}
dt.

A lengthy, but elementary computation (see Appendix C) shows that

lq2(N (X
(3)
0 ; 0)) =

q5A3
q2

4
.

The result is that (28) may be written as

−µqAq2 +
q5A3

q2

4
+Rq(X0, µ) = 0, q = 1, 2, .... (29)

with Rq(X0, µ) = O(|µ2||X0|+ |µ||X0|3 + |X0|4).
Remark: we may notice here that if we tried to use the same method

directly on system (10,11), we should have a quadratic N ′ but such that

lq2(N ′[X
(2)
0 ]) = 0. This cancellation is because a non-zero contribution would

come from an exponential of the type ei(±r±j±q)t, with r2 = q2 + j2, and
this always gives a zero average (r, j, q ≥ 1). Hence it would be needed
to compute the term of order ||X0||2 in Y, which has to be inserted into
the cubic order terms of the bifurcation equation.....and then it would be
a terrible mess. So, the suppression of quadratic terms made in section 4,
allows to greatly simplify the computation of the bifurcation equation made
here.

Now we make the following rescaling

µ =
ε2

4
, Aq2 =

εαq

q2
, q = 1, 2, ... (30)
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and we define ξ0 ∈ R
N such that (ξ0)q2 = αq. Equation (29) becomes

αq − α3
q + εSq(ξ0, ε) = 0, q = 1, 2, .... (31)

where Sq(ξ0, ε) has a formal powers series in ε, with smooth coefficients as
functions of ξ0.

Formal solutions of (31) in terms or series in powers of ε, can now be
obtained. We observe, of course that ξ0 = 0 is a solution, which corresponds
to the flat free surface in the original problem. Let I ⊂ N be arbitrary and
consider any ξ0

0 ∈ R
N such that αq = (±1)q for q ∈ I, αq = 0 for q /∈ I.

Notice that we may choose 1 or −1 arbitrarily, when q varies in I, and that
the set I may be infinite, I = N is one of the possibilities. Equation (31)
is satisfied when ε = 0, for ξ0 = ξ00 , and since 0 and ±1 are simple roots of
αq − α3

q = 0, it is clear that one can compute in a standard way the power
series

ξ0 = ξ00 + εξ1
0 + ...εkξk

0 + ...

which is a formal solution of (31). Coming back to (25), we then see that
(A,B) = X0 +O(ε2).

We sum up our result by the following

Theorem 9 The system (23) in the space F admits infinitely many formal
solutions (A,B) ∈ E in series of powers of an amplitude ε, of the form

(A,B) =
∑

n≥1

εn(A,B)(n), where (A,B)(n) ∈ E,

(A,B)
(1)
p6=q2 = 0, (A,B)

(1)
q2 ,q /∈I

= 0,

(A,B)
(1)
q2,q∈I

=

(
(±1)q

q2
cos qt,

−(±1)q

q3
sin qt

)
,

where ε2 = 4µ, and I ⊂ N is chosen arbitrarily.

Remark 1: Here, as in [1], we have no result on the convergence of
these expansions in powers of ε. This is still an open problem, not only for
one dominant mode solution, but for all others found here.

Remark 2: The solution obtained by Amick and Toland (called the
Stokes solution) corresponds to I = {1}, α1 = +1.

Remark 3: We have in principle a choice between the signs ± in front of
any dominant mode. However many of the choices give the same solutions,
after a suitable translation of the time origin.

Remark 4: Coming back to the physical quantities, we observe that the
principal parts (order

√
µ) of the complex potential and of the conformal
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map (ζ = z − Z(z, t)) are now

f(z, t) = −2
√
µ

∑

q∈I

(±1)q

q3
e−iq2z sin qt+O(µ),

Z(z, t) = 2i
√
µ

∑

q∈I

(±1)q

q2
e−iq2z cos qt+O(µ),

which corresponds to the following principal part of the free surface (in the
original coordinates)

h(x, t) = 2
√
µ

∑

q∈I

(±1)q

q2
cos q2x cos qt+O(µ).

We notice that the relative values of the dominant modes are in agreement
with those found by Bryant and Stiassnie in [2] in the cases I = {1, 2} and
I = {1, 2, 3}.

9 Appendix A

Calculation of P3, Q3, M3 in (23):

(
1

2
U ′z[D]

)

p

= i
∑

q≥1

pq2apaqbq,

(
U ′zT D

)
p

= i
∑

p+q=j+r
r≥q+1

qrjaj(aqbr + arbq),

((
T UD

)′
z

)
p

= −i
∑

r=p+q+j

pqraj(aqbr + arbq),

(
U ′zT

(
UG′z

)′
x

)
p

= i
∑

p+q=j+r
r≥q+1

jr(r − q)ajaqbr,

−
(
G′zT

(
UU ′z

)′
x

)
p

= −i
∑

p+q=j+r
r≥q+1

jr(r − q)aqarbj ,

(
T

(
UU ′zG

′
z

)′
x

)
p

= i
∑

p+q=j+r

pjraqarbj ,
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(
1

2
G′z[D]

)

p

=
∑

q≥1

pq2aqbpbq,

(
G′zT D

)
p

=
∑

p+q=j+r
r≥q+1

qrjbj(aqbr + arbq),

−
(
G′zT

(
UG′z

)′
x

)
p

= −
∑

p+q=j+r
r≥q+1

jr(r − q)aqbrbj,

(
T

(
UG′zG

′′
zz

))
p

=
∑

p+q=j+r

jr2aqbrbj, p ≥ 1,

1

2

[
UG′zG

′′
zz

]
=

1

2

∑

j,r≥1

jr2aj+rbrbj,

−
(
T

(
G′zD

))
p

= −
∑

p+q=j+r

jqrbj(aqbr + arbq), p ≥ 1,

−1

2

[
G′zD

]
= −1

2

∑

r,j≥1

jr(r + j)bj(ar+jbr + arbr+j),

(
T

(
UC

)′
x

)
p

= −
∑

r=p+q+j

pqrajbqbr,

(
T

(
UU ′zU

′
z

))
p

= −i
∑

p+q=j+r

jrajaqar, p ≥ 1,

1

2

[
UU ′zU

′
z

]
= − i

2

∑

r,j≥1

jrajarar+j,

are all necessary terms for writing polynomials P3, Q3, M3.

10 Appendix B

The idea in [6] was to remove non resonant cubic terms in system (23), re-
stricted to components p ≥ 1, since the components for p = 0 are uncoupled
up to order 4. We explore the following class of polynomial near-identity
changes of variables

A′ = A+ (1 + µ)−1γ(B,B;A) + β(A,A,A),

B′ = B + α(A,A;B) + (1 + µ)−1∂−1γ(B,B; ∂B),

where α, β, γ are trilinear in their arguments, and we may assume that α
and γ are symmetric with respect to their two first arguments, and β is
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symmetric in all three. After such a transformation, the new cubic terms in
(23) have the same form and

P ′3(A,A;B) = P3(A,A;B) − ∂α(A,A;B) + 3β(A,A, ∂B) − 2γ(A,B;A),

Q′3(B,B;A) = Q3(B,B;A) + 2α(A, ∂B;B) + γ(B,B;A)+

− 2∂−1γ(A,B; ∂B)− ∂−1γ(B,B; ∂A),

M ′
3(A,A,A) = M3(A,A,A) + β(A,A,A) − α(A,A;A),

where we notice that the operator ∂ is invertible since p ≥ 1. The idea now
is to choose suitable α, β, γ to maximise the number of terms in P ′

3, Q
′
3, M

′
3

that cancel, and only ”resonant terms” of P3, Q3, M3 remain in the new
system at cubic order. So, with P ′3, Q

′
3, M

′
3 regarded as arbitrary given

polynomials with the correct symmetry, we try to solve the above system
with respect to α, β, γ and look to the compatibility conditions under which
it can be solved. Let us introduce the coefficients of α β, and γ : for any
A,B,C ∈ R

N

α(A,B;C)p =
∑

i,j,k≥1

α
(p)
ijkaibjck, α

(p)
ijk = α

(p)
jik,

γ(A,B;C)p =
∑

i,j,k≥1

γ
(p)
ijkaibjck, γ

(p)
ijk = γ

(p)
jik,

β(A,B,C)p =
∑

i,j,k≥1

β
(p)
ijkaibjck, β

(p)
ijk = β

(p)
jik = β

(p)
ikj = β

(p)
kji.

We will see that the system decouples into systems of equations for the ijk,
jki, kij components of α, β, γ. In most cases, these systems can be solved
without further consideration. However sometimes, in what we call resonant
cases, the resulting system is not solvable since a certain determinant is zero.
These compatibility conditions provide the ”resonant terms”, as it is usual
in a normal form technique. Then the result of this section is sum up below.

Lemma 10 For p = q2, the resonant coefficients are given
(i) by

i = q2, j = k, or j = q2, i = k or k = q2, i = j,

(ii) and by (with all permutations)

i = K2,

j =
1

4
(Q− q +K)2,

k =
1

4
(Q+ q −K)2,

where K ∈ Z\{0}, Q ∈ N∪ {0} are such that K +Q has the same parity as
q, and such that ijk > 0.
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First step of the proof: The symmetric polynomial β is completely de-
termined by

β(A,A,A) = α(A,A;A) +M ′
3(A,A,A) −M3(A,A,A),

and the unknown cubic polynomials α and γ are now solutions of the system

P ′′3 (A,A;B) = −∂α(A,A;B) + α(A,A; ∂B) + 2α(A, ∂B;A) − 2γ(A,B;A),
(32)

Q′′3(B,B;A) = 2∂α(A, ∂B;B) + ∂γ(B,B;A)− 2γ(A,B; ∂B) − γ(B,B; ∂A),

where

P ′′3 (A,A;B) = P ′3(A,A;B)− P3(A,A;B) − 3(M ′
3 −M3)(A,A, ∂B),

Q′′3(B,B;A) = ∂Q′3(B,B;A)− ∂Q3(B,B;A).

The system (32) is indeed the same as in [6], where there is a mistake in
the computation of the compatibility conditions. So we present below a
(hopefully correct) way to solve it for α and γ.

First observe that (32)1 is solvable with respect to γ. Indeed, it is an
equation of the form

γ(A,B;A) = F (A,A;B)

where F is symmetric with respect to its two first arguments, and we look
for γ symmetric in its two first arguments. The solution of this algebraic
equation is given by

γ(B,B;A) = 2F (A,B;B) − F (B,B;A)

i.e.
γ(B,C;A) = F (A,B;C) + F (A,C;B)− F (B,C;A)

which allows us to express γ in terms of α and of the known polynomials
P ′′3 , Q

′′
3 . The remaining equation for α is complicated, and it is in fact easier

to proceed with components as follows.
Equations (32) lead to (for simplicity we now suppress the superscript

(p))

p(jαjki + iαkij)− iγjki − jγkij + (p− k)γijk = q′′ijk, (33)

−pαijk + k(αijk + αjki + αkij)− (γjki + γkij) = p′′ijk,

where p′′ijk, q
′′
ijk are the known coefficients of (P ′′3 )p and (Q′′3)p, and we check

that p′′ijk = p′′jik, q
′′
ijk = q′′jik. The determinant of this system, with respect

to αijk, αjki, αkij, γijk, γjki, γkij is

∆̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 pj pi p− k −i −j
pj 0 pk −k p− i −j
pi pk 0 −k −i p− j
k − p k k 0 −1 −1
i i− p i −1 0 −1
j j j − p −1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣

.
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We obtain γ in terms of α :

2γijk = (i+ j − k− p)(αijk +αjki +αkij) + 2pαijk + p′′ijk − p′′kij − p′′jki, (34)

and eliminate γ to find that

Q′′′3 (B,B;A) = 3α(A, ∂B;B) − 3α(B, ∂A;B) + α(A,B; ∂B)+

+ ∂α(B,B;A) − ∂α(A,B;B) − α(B,B; ∂A) (35)

where

Q′′′3 (B,B;A) = P ′′3 (A,B;B)− P ′′3 (B,B;A)+

+ ∂−1
[
Q′′3(B,B;A)−Q′′3(A,B;B)

]
.

This leads to

[p− i+ 3(k − j)]αjki + [p− j + 3(k − i)]αkij + 2(k − p)αijk = −2q′′′ijk, (36)

where

2q′′′ijk = p′′kij + p′′jki − 2p′′ijk +
1

p
(2q′′ijk − q′′jki − q′′kij).

We also observe that
q′′′ijk + q′′′jki + q′′′kij = 0

by construction, which means that the system (36) for αijk, αjki, αkij is
not sufficient, because we made 3 linearly dependent combinations of the 6
equations (this was the mistake in [6]). To solve the system with respect
to αijk, αjki, αkij we take two of the equations in (36) and a third obtained
from replacing γ by its expression in terms of α in (34). We then arrive at
a system whose determinant may be written

∆ =

∣∣∣∣∣∣

2(k − p) p− i+ 3(k − j) p− j + 3(k − i)
p− k + 3(i− j) 2(i− p) p− j + 3(i− k)
E + 4p(p− k) E + 2p(p− i+ j − k) E + 2p(p− j + i− k)

∣∣∣∣∣∣

where

E = −3p2 + 2p(i+ j + k) + i2 + j2 + k2 − 2ij − 2ik − 2jk

= 2(i2 + j2 + k2 − p2)− (i+ j + k − p)2.

Let us define

S1 = i+ j + k,

S2 = i2 + j2 + k2,

S3 = i3 + j3 + k3.
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Then we have
E = 2(S2 − p2)− (S1 − p)2.

After some computations we find that

∆ = 3E{4(p − j)(p− k)− (i− j − k + p)2}+
− 24p(p+ k − i− j)[(i − j)2 − (p− k)2],

which appears to be a polynomial in (i, j, k, p) homogeneous of degree 4, and
symmetric in (i, j, k). This becomes

∆ = −3E[E + 8p(S1 + p)] + 16pF, (37)

where
F = 4(S3 − p3)− (S1 − p)3.

We observe that
E = F = 0

for
i = p, and j = k or j = p, and i = k, or k = p, and i = j,

and in these cases the determinant ∆ vanishes (the matrix has rank one).
We need now to study all solutions of ∆ = 0. A first easy result is the
following

Lemma 11 For p = q2, the solutions (i, j, k) of ∆ = 0 are given by

S1 = q2 + 2I,

S2 = q4 + 2I2 + 4qJ,

S3 = q6 + 2I3 + 3J(J + qS1 + q3),

where I and J are integers such that the system

S1 = i+ j + k,

S2 = i2 + j2 + k2,

S3 = i3 + j3 + k3,

defines positive integers i, j, k.

Proof: From ∆ = 0, we deduce that if p = q2, then E = 4qA1, F = 3B1.
Hence we have

2(S2 − p2)− (S1 − p)2 = 4qA1,

4(S3 − p3)− (S1 − p)3 = 3B1,
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which implies the existence of integers I, J and B2 such that A1 = 2J,
B1 = 4B2 and

S1 = q2 + 2I,

S2 = q4 + 2I2 + 4qJ,

S3 = q6 + 2I3 + 3B2,

B2 = J [J + q(S1 + q2)],

which proves the lemma 11.
Proof of lemma 10 concluded: We can then check that if p = q2, and

∆ = 0

ij + jk + ki = I2 + 2q(qI − J),

ijk = (qI − J)2,

hence i, j, k are the 3 roots of the cubic equation

X3 − (q2 + 2I)X2 + [I2 + 2q(qI − J)]X − (qI − J)2 = 0,

which may be written as

X(X − I)2 − [q(X − I) + J)]2 = 0. (38)

(i) If in (38), X = I, then J = 0 and the result (i) of Lemma 10 holds.
(ii) Assume X 6= I. Then there exists K ∈ Z\{0} such that X = K 2,

hence J = (K − q)(K2 − I), and (38) reads

(X −K2)
[
(X − I)2 + (K2 − q2)(X − I) + (K2 − I)(K − q)2

]
= 0.

The two remaining roots need to be integer, hence there is Q ∈ N ∪ {0} such
that

(K + q)2 − 4(K2 − I) = Q2.

In other words

I = K2 +
1

4
[Q2 − (K + q)2],

and the two remaining roots are given by the formulas in lemma 10. This
completes the proof.

Lemma 10 above gives all resonant terms for the components p = q2

of cubic coefficients P3, Q3, M3 which corresponds to the coefficients p
(q2)
ijk ,

q
(q2)
ijk , m

(q2)
ijk we cannot cancel via the previous change of variables. This

corrects the wrong result given in section 3 of [6]. However we don’t use this
normal form here since there are lot of terms not easy to write explicitly.
Moreover, the computation of the bifurcation equation may be done without
worrying about the non resonant terms.
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11 Appendix C

The term q5

4 A
3
q2 comes from

A3
q2

π

∫ 2π

0

(−2q6

q
cos2(qt) sin2(qt) + q5 cos4(qt)

)
dt.

Now, for j ≤ q − 1, we have

0 =

∫ 2π

0

(−2q4j2

q
cos2(jt) sin2(qt) + 2j2q3 cos2(jt) cos2(qt)

)
dt,

and for j ≥ q + 1, we have

0 =

∫ 2π

0

(−q4j2
q

cos2(jt) sin2(qt)− q3j4

j2
sin2(jt) cos2(qt) +

+2j2q3 cos2(jt) cos2(qt)
)
dt.

The only non trivial result comes from the computation of b
(q)
jmr coming from

the terms such that (q, j, r,m) ∈ K in the expression

lq2(N (X
(3)
0 ; 0)) =

q5

4
A3

q2 +
∑

(q,j,r,m)∈K

b
(q)
jmrAj2Am2Ar2 ,

b
(q)
jmr =

q2mr

π

∫ 2π

0
cos jt(−q cos qt sinmt sin rt+

+m sin qt cosmt sin rt+ r sin qt sinmt cos rt)dt.

In fact we can consider the symmetrized version b
(q)
jmr + b

(q)
mjr since the ex-

pression is symmetric in (j,m). Hence we have

b
(q)
jmr + b

(q)
mjr =

q2r

π

∫ 2π

0
{m cos jt(−q cos qt sinmt sin rt+

+m sin qt cosmt sin rt+ r sin qt sinmt cos rt)+

+ j cosmt(−q cos qt sin rt sin jt+

+ r sin qt cos rt sin jt+ j sin qt sin rt cos jt)}dt.
For r2 = q2+m2+j2, we have j+r 6= |m−q|, r+m 6= |j−q|, r+q 6= |m−j|,
m+ j 6= |q − r|, hence

b
(q)
jmr + b

(q)
mjr =

q2r

2π

∫ 2π

0

(
m2 sin(q + j)t sin(r +m)t+

+ j2 sin(q +m)t sin(j + r)t+

+
1

2
{(q + r)(m− j) + j2 −m2} sin(m− j)t sin(q − r)t+

+
1

2
{(r − q)(m+ j)−m2 − j2} sin(m+ j)t sin(r + q)t

)
dt.
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Then, we might have non zero terms if either r+m = q+j, or j+r = q+m,
or r+ q = m+ j. It is then easy to check that in all these cases the integral
vanishes.
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