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Abstract

In this short note we present the original Boussinesq’s contribution to

the nonlinear theory of the two dimensional standing gravity water wave

problem, which he defined as ”le clapotis”.

Dans cette courte note on présente, en la situant dans le contexte

actuel, la contribution originale de Boussinesq sur la théorie non linéaire

du ”clapotis”.

The two-dimensional standing gravity water wave problem has only recently
been solved (see [7], [5], [6]), this is an opportunity for pointing out the sem-
inal contribution of J.Boussinesq to this challenging nonlinear fluid dynamics
problem.

Let consider the classical 2-dimensional water wave problem where H is the
depth at rest of the perfect incompressible fluid layer, the flow is assumed to
be potential, and φ is the velocity potential. The free surface is y = η(x, t),
where y and x are respectively the vertical and horizontal coordinates. Then
the problem is ruled by the nonlinear system

∆φ = 0, x, t ∈ R, − H < y < η(x, t)

∂yφ = 0, x, t ∈ R, y = −H

∂tη + ∂xη∂xφ − ∂yφ = 0, x, t ∈ R, y = η(x, t)

∂tφ +
1

2
(∇φ)2 + gη = 0, x, t ∈ R, y = η(x, t)

where g is the acceleration of gravity, which is the only external force acting on
the system. The condition on y = −H expresses that the velocity is tangent to
the boundary at the bottom, in case of an infinite depth layer one has to replace
the second equation by

∇φ → 0 as y → −∞.
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The third condition is kinematic and results from the definition of the free sur-
face, the fourth condition comes from the Bernoulli first integral of the Euler
equation for perfect fluids in case of a potential flow, and it expresses the conti-
nuity of the pressure in crossing the free surface. Up to differences of notations
(specially about partial derivatives) Boussinesq knew this system, and studied
the linearized problem on it. In fact the linearized system was first derived
satisfactorily by Poisson in 1818, although Laplace in 1776 came very close (see
[4]).

Considering the linearized system near (φ, η) = (0, 0) (flat free surface, fluid
at rest), when we look for non trivial solutions periodic in t and in x, corre-
sponding to standing waves, under the form of

φ(x, y, t) = A(y) sin ωt cos kx (1)

(this also holds for any φ obtained from the above in shifting coordinates x and
t) one obtains the dispersion relation

ω2 = gk tan kH, (2)

with
A(y) = ε cosh k(y + H) for finite depth

or
ω2 = gk,

with
A(y) = εeky for infinite depth.

As was observed in particular by Boussinesq, linear combinations of solutions
(1) shifted in (x, t) may lead to travelling waves with velocity c = ω/k which
may be written as

c2

gH
=

tan kH

kH
.

This equation is beautifully described by de Saint Venant in his paper in Comptes
Rendus, 21 Feb 1870 (quoted by Boussinesq in [3] at p. 526), as

”cette équation exprime que le carré de la vitesse de propagation des ondes
est à celui de la vitesse qu’un corps acquerrait en tombant en chute libre d’une
hauteur égale à la moitié de la profondeur du liquide, comme la tangente hyper-
bolique du rapport de cette profondeur au rayon d’une circonférence égale à la
longueur d’onde est à ce rapport lui-même” (this sentence which was considered
as much clearer than any equation in 1870, is impossible to translate in Queen’s
english).

Denoting by T = 2πm/ω and λ = 2πn/k the time period and the wave
length, we observe that in the infinite depth case, we obtain a solution of the
form (1) for

µ = gT 2/2πλ = m2/n,
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where m and n are integers, i.e. when the dimensionless parameter µ takes any

rational value. This means that in such a case the problem is highly degenerate
because every function of the form

φ(x, y, t) = sin
(2mπt

T

)

cos
(2nπx

λ

)

exp
(2nπy

λ

)

is a solution of the linearized system of period T in t, and λ in x. Thus the
set of ‘eigenvalues’ µ of the linearized problem is Q+, is dense in [0,∞), and
each eigenvalue has an infinite set of linearly independent eigenfunctions. We
refer to this latter property as complete resonance, by analogy with the theory
of nonlinear oscillators. This fact, which leads to serious complications for the
nonlinear study, was overlooked by most authors until Schwartz and Whitney
[9] in 1981.

The dispersion equation (2) was obtained by Boussinesq in two different
ways, the first way being mainly as above in [2], with an interesting construction
of the solution of the Laplace equation in the (x, y) plane. He did not use this

eulerian form of the system for studying the nonlinear terms. Let’s recall that in
1847 Stokes gave a nonlinear theory of travelling waves [11] up to the third order,
while Boussinesq in 1877 was the first to deal with nonlinear standing-waves.
On pages 332-335 and in footnotes (taking 90% of the pages!) in pages 348-
353 of [2] he refers to ‘le clapotis’, meaning standing waves, and his treatment,
which includes the cases of finite and infinite depth, is a nonlinear theory taken
to second order in the amplitude and uses lagrangian coordinates.

Let us write the Euler system, for perfect fluid flows subjected to gravity, in
lagrangian coordinates, where (X, Y ) denotes the position of fluid particles at
time t = 0:

∂ttx∂Xx + (∂tty + g)∂Xy +
1

ρ
∂Xp = 0, X, t ∈ R, − H < Y < 0 (4)

∂ttx∂Y x + (∂tty + g)∂Y y +
1

ρ
∂Y p = 0, X, t ∈ R, − H < Y < 0 (5)

∂Xx∂Y y − ∂Y x∂Xy = 1, X, t ∈ R, − H < Y < 0, (6)

∂ttx∂Xx + (∂tty + g)∂Xy = 0, X, t ∈ R, Y = 0, (7)

∂ty = 0, X, t ∈ R, Y = −H, (8)

where the unknown are functions x(X, Y, t), y(X, Y, t) which are the coordinates
of fluid particules and p(X, Y, t) the pressure, all being in terms of their reference
position (X, Y ) and time t. The two first equations (4, 5) are the usual Euler
equations in Lagrange coordinates, the third equation (6) expresses the volume
conservation (incompressibility), equation (7) expresses the constantness of the
pressure (p = 0) on the free surface (Y = 0), while (8) expresses the fact that
the fluid velocity is tangent to the bottom. Once this system is solved, the shape
of the free surface is deduced under parametric form with

x = x(X, 0, t)

y = y(X, 0, t)

3



where X is the parameter. The rest state here is given by

x(X, Y, t) = X

y(X, Y, t) = Y

p(X, Y, t) = −ρgY,

and introducing the displacement, as Boussinesq did, in setting x = X + u,
y = Y + v, and defining P = p

ρ
+ gY. Let us assume that the solution expands

in power series of an amplitude ε as

u = εu1 + ε2u2 + ..

v = εv1 + ε2v2 + ..

P = εP1 + ε2P2 + ..,

then at order ε we obtain

∂ttu1 + ∂X(P1 + gv1) = 0, X, t ∈ R, − H < Y < 0

∂ttv1 + ∂Y (P1 + gv1) = 0, X, t ∈ R, − H < Y < 0

∂Xu1 + ∂Y v1 = 0, X, t ∈ R, − H < Y < 0

∂ttu1 + g∂Xv1 = 0, X, t ∈ R, Y = 0,

∂tv1 = 0, X, t ∈ R, Y = −H,

and Boussinesq finds easily that (u1, v1) = ∇XΦ1 where Φ1 is a potential, and
he finds periodic solutions (linear standing waves) of the form

Φ1 = A1(Y ) cosωt cos kX

provided that the same dispersion equation (2) as above is satisfied, and

A1(Y ) = coshk(Y + H),

P1(X, Y, t) = −
gk

coshkH
sinh kY sinωt cos kX,

in the finite depth case, and

A1(Y ) = ekY , P1(X, Y, t) = 0,

in the infinite depth case. Now at order ε2 Boussinesq observes that we have
again (u2, v2) = ∇XΦ2 and thanks to

∆Φ1 = 0, ∂ttΦ1 = −ω2Φ1

he obtains

∆Φ2 = (∂XY Φ1)
2 + (∂XXΦ1)

2, X, t ∈ R, − H < Y < 0,

∂tY Φ2 = 0, X, t ∈ R, Y = −H,

∂ttΦ2 + g∂Y Φ2 =
ω2

2
{(∂XΦ1)

2 + (∂Y Φ1)
2} + f(t), X, t ∈ R, Y = 0,
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where f(t) is an arbitrary function of time t. Here he noticed that the disper-
sion equation (2) should not be exactly satisfied, i.e. gk/ω2 differs from the
value given by (2) (which is 1 in the infinite depth case) at order ε2 which was
computed later by Rayleigh in 1915 [8], and which would have given the rela-
tionship between the amplitude ε of the waves and the bifurcation parameter g
(or preferably µ, see below). J.Boussinesq gave the order ε2 for Φ :

Φ2 =
k2

16
(1 + cos 2ωt){cosh 2k(Y + H) − cos 2kX} +

+
k2

32

(

3

sinh2 kH
cos 2ωt −

1

cosh2 kH

)

cos 2kX cosh 2k(Y + H)

in the case of finite depth, and

Φ2 =
k2

8
(1 + cos 2ωt)e2kY

in the case of infinite depth. It should be noticed that the solution given above
at order ε2 has a zero vorticity ω at this order, as can be checked with the
formula:

ω = ∂Xx∂tY x − ∂Y x∂tXx + ∂Xy∂tY y − ∂Y y∂tXy.

The identification at order ε3 is more tricky. Seemingly unaware of this work,
Lord Rayleigh [8] developed much later the third order theory that included
travelling and standing waves on infinite depth as special cases, and much later
Tadjbaksh & Keller [12] used a different expansion to obtain a third-order theory
in the case of finite depth. These theories deal with Eulerian descriptions of the
flow while in 1947 Sekerkh-Zenkovich [10] took the theory to fourth order using
lagrangian coordinates.

Let us consider the order ε3 in lagrangian coordinates, for the infinite depth

case (which gives simpler formulas). Taking into account of

u2 = 0, ∂Xv2 = 0,

we obtain the following system

∂ttu3 + g0∂X(v3 + P3) + g2∂Xv1 + ∂ttv2∂Xv1 = 0, Y < 0

∂ttv3 + g0∂Y (v3 + P3) + g2∂Y v1 + ∂ttv2∂Y v1 + ∂ttv1∂Y v2 = 0, Y < 0

∂Xu3 + ∂Y v3 + ∂Xu1∂Y v2 = 0, Y < 0

P3 = 0, Y = 0,

where

g = g0 + ε2g2 + ...,
g0k

ω2
= 1 (linear critical value).
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We then find

u3 = −
g2k

2

ω2
ekY cosωt sinkX + g0∂Xφ3,

v3 =
g2k

2

ω2
ekY cosωt cos kX +

k5

4
e3kY cos kX(cosωt +

1

3
cos 3ωt) + g0∂Y φ3,

v3 + P3 =
k5

2
e3kY cos kX(cosωt + cos 3ωt) − ∂ttφ3,

∆φ3 = 0, Y < 0.

The boundary condition P3 = 0 on Y = 0 leads to

∂ttφ3|Y =0 + g0∂Y φ3|Y =0 = k5(
1

4
−

g2

ω2k3
) cos kX cosωt +

5k5

12
cos 3ωt cos kX.

For finding φ3 it is then necessary and sufficient that

g2 =
ω2k3

4
,

which, in using the dimensionless parameter gk
ω2 of the problem, is better written

as (here ε has the dimension of the square of a length):

gk

ω2
= 1 +

ε2k4

4
+ ...

hence

u3 = −
k5

4
ekY (cosωt −

5

24
cos 3ωt) sin kX,

v3 =
k5

4
ekY (cosωt −

5

24
cos 3ωt) cos kX +

+
k5

4
e3kY cos kX(cosωt +

1

3
cos 3ωt).

The proof of existence of these standing waves is delicate, due to several
mathematical difficulties, in particular a small divisor problem, and the addi-
tional problem of complete resonance in the infinite depth case. For the finite

depth case this was proved using Lagrange variables in 2001 by Plotnikov and
Toland in [7]. In the infinite depth case, which needs a priori to satisfy infinitely
many compatibility conditions, due to the infinite dimension of the linearized
system, the proof of eligibility of an asymptotic expansion in powers of the
amplitude ε, starting as above, is due to Amick and Toland [1] who answered
positively in 1987 to a conjecture made in 1981 [9]. The proof of existence of
these standing waves was made with a mixed integral formulation in 2005 by
Iooss, Plotnikov and Toland [5] for the simplest monomodal solutions (with only
one term at order ε), and by Iooss and Plotnikov in [6] for multimodal solutions
(for any allowed combinations of the infinite set of possible linear modes, at
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order ε). In fact all these results are valid only for suitable values of the param-
eters, which have asymptotically full measure as one approaches the bifurcation
set.

As noticed by Boussinesq in [2] p 351, another side aspect of the computa-
tions above (in the case of infinite depth), is that it provides an easy approxi-
mation at order ε2 of the trajectories of fluid particules since the components
of the disaplacement are given up to order ε2 by (infinite depth case)

u = −εkekY cosωt sinkX

v = εkekY cosωt cos kX +
ε2k3

2
e2kY cos2 ωt,

and after elimination of ekY cosωt we obtain (X is fixed here)

(

u −
sin 2kX

2k

)2

=
2 sin2 kX

k

(

v +
cos2 kX

2k

)

showing little arcs of parabolas with vertical axis and with concavity upwards,

their shape being independent of the distance to the free surface. This movement
of fluid particules is sufficiently important to justify researches in the twentyfirst
century on the best way to collect and exploit the kinetic energy of standing
waves.

References

[1] C.Amick, J.Toland. The semi-analytic theory of standing waves. Proc. Roy.
soc. Lond. A 411, (1987) 123-138.
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par divers savants à l’Académie des Sciences. Paris 23 (1), (1877) 1-660.
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