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Abstract

Contemporaneous aggregation of individual AR(1) random processes might lead to

different properties of the limit aggregated time series, in particular, long memory

(Granger, 1980). We provide a new characterization of the series of autoregressive

coefficients, which is defined from the Wold representation of the limit of the ag-

gregate stochastic process, in the presence of long-memory features. Especially the

infinite autoregressive stochastic process defined by the almost sure representation

of the aggregate process has a unit root in the presence of the long-memory prop-

erty. Finally we discuss some examples using some well-known probability density

functions of the autoregressive random parameter in the aggregation literature.
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1 Introduction

Aggregation is a critical and widely acknowledged issue in the empirical and theoretical

literature in economics and other fields. Especially, since the contributions of Granger

and Morris (1976) and Granger (1980), it is well-known that the contemporaneous ag-

gregation of individual random AR(1) stochastic processes might lead to long memory

models.1 Notably, Granger (1980) considers the case of a Beta-distribution for the random

autoregressive parameter and thus points out that the long memory property depends

on the behavior of the density of the random autoregressive parameter near unity and

that the common and idiosyncratic components might exhibit a different degree of long

memory. In particular, Zaffaroni (2004) generalizes these results by studying the limit

of the aggregate process with a quite flexible (semi-parametric) assumption regarding

the behavior near unity of the probability density function of the random autoregressive

coefficient and makes clear the asymptotics of both the common and idiosyncratic parts

of the aggregated process. Among others results, Zaffaroni (2004) shows formally that

the more concentrated is the distribution of the random autoregressive coefficient near

the unit, the stronger is the long-memory property of the limit aggregated process.2. Fol-

lowing these contributions, we study the aggregation of heterogenous individual AR(1)

stochastic processes that leads to the long-memory property. In contrast to the litera-

ture, we focus on the infinite autoregressive representation of the limit of the aggregate

process, and especially the sum of the autoregressive coefficients, rather than the usual

infinite moving representation.

Indeed the use of the (equivalent) infinite autoregressive representation of the limit of the

aggregated process might be meaningful in various contexts of the aggregation (panel)

literature. As pointed out by Lewbel (1994), the autoregressive representation is insight-

ful among others when estimating the (macro) aggregate dynamics with unobservable

individual series in the presence of unobserved parameter heterogeneity, when identifying

and estimating certain distributional features of the micro parameters from aggregate re-

1In the sequel, a stochastic process is said to have a long memory property if its autocovariance
function is not summable (Beran, 1994; Beran et al., 2013).

2For a recent survey, see Leipus et al. (2013).
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lations (disaggregation problem), or when deriving the aggregate dynamics with unknown

common error terms.3 Obviously, if the limit of the aggregate process is represented al-

most surely by a short memory process, the infinite autoregressive representation and

especially the determination of its persistence (e.g., through the sum of the autoregres-

sive coefficients) easily obtains using standard results of time series analysis (Brockwell

and Davis, 2002). In contrast, if the limit of the aggregate process is represented almost

surely by a long memory process, the convergence and thus the determination of the

series of autoregressive coefficients is challenging since the series of moving average co-

efficients is no longer absolutely summable. Such a characterization might be necessary

for instance in the case of the estimation of the aggregate dynamics with unobservable

individual series in which finite parameter approximation for the infinite lag distribution

is required—the autoregressive representation of the limit aggregated process displays an

infinite parametrization whereas the econometrician has only finitely many observations

and thus finite-parameter approximations might lead to near observational aggregate

processes with different statistical properties as long as the sum of the autoregressive

coefficients is not correctly identified. In this respect, our paper tackles this issue and

proposes a new characterization of the autoregressive representation of limit long-memory

aggregate processes that results from individual random AR(1) stochastic processes.

Notably aggregation of individual random AR(1) processes is analyzed in this paper under

the assumptions that some common factors exist, the (positive) random autoregressive

coefficient takes values in [0, 1) with probability distribution µ, and all of the noncentral

moments exist. In particular, the series of all of the noncentral moments might be either

absolutely summable or divergent and the limit of the aggregated stochastic process sat-

isfies almost surely both an infinite moving average and autoregressive representations.

Within this framework, we show that the sum of the autoregressive coefficients of the

stochastic process defined from the limit in L2 of the aggregate process, say
∑

k≥1

ak, might

equal one (respectively, less than one) when the limit aggregate process has the long

memory property (respectively, short memory property). Say differently, the divergence

of the series of noncentral moments is fully equivalent to the presence of a unit root in

3See also Pesaran (2003), Pesaran and Chudik (2014), Jondeau and Pelgrin (2014a,b).
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the representation of the stochastic process defined by the limit of the aggregate process.

In so doing, we consider the mapping between the moving average coefficients and the

autoregressive coefficients of the limit aggregate process and make use of complex analysis

when the series of the moving average coefficients is divergent. Complex analysis is called

for at least two arguments. On the one hand, the existence of the limit limr→1− a(r) of the

(ordinary) generating function of the sequence of the autoregressive coefficients does not

insure its equality to
∑

k≥1 ak or even the convergence of this sum. On the other hand, we

cannot apply a standard Hardy-Littlewood Tauberian theorem since, to the best of our

knowledge, there is no general proof of the positiveness of the autoregressive coefficients

for all probability distributions µ defined on [0, 1). Interestingly such a complex analy-

sis might be used to study the behavior on the unit circle of an infinite parameterized

stochastic process, which is defined (almost surely) in L2 but does not belong to L1.

The rest of the paper is organized as follows. In Section 2, we discuss the main assump-

tions regarding the individual random AR(1) stochastic processes and then we derive

the limit aggregate process. In Section 3, we provide the two main results of our paper,

namely the determination of the sum of the autoregressive parameters and the charac-

terization of the stochastic process defined by the limit in L2 of the aggregated process.

In Section 4, we assume that the distribution of the random autoregressive coefficient is

subsequently a Beta distribution (of the first kind), a uniform distribution and a random

polynomial density function. In so doing, we apply the results of Section 3 and generalizes

some results in the literature. Proofs are gathered in the Appendix.

2 Aggregating individual AR(1) processes

In this section, we first discuss the assumptions regarding the individual AR(1) processes.

Then we derive the limit aggregate process.

4



2.1 Individual dynamics

Consider the individual random AR(1) model for i = 1, · · · , N and t ∈ Z:4

xi,t = ϕi xi,t−1 + vi,t, (1)

where ϕi denotes an individual-specific (random) parameter drawn from a fixed random

variable ϕ and vi,t is an error term that can decomposed into a common component, ǫt,

and an idiosyncratic (individual-specific) component, ηi,t:
5

vi,t = ǫt + ηi,t. (2)

The macro variable results from the aggregation of micro-units, with the use of time-

invariant nonrandom weights WN = (w1, · · · , wN)
′, with

N
∑

i=1

wi = 1, so that the aggregate

variable is defined as the weighted average of the micro-units XN,t =
N
∑

i=1

wixi,t. The fol-

lowing assumptions hold:

Assumption 1: ϕ a fixed random variable with probability distribution µ the sup-

port of which is in [0, 1].

Assumption 2: The moments uk = E(ϕk) exist for all integer k ≥ 1.

Assumption 3: ǫt and ηi,t are white noise processes with means of zero and variance of

σ2
ǫ and σ2

η, respectively; ǫt and ηi,t are mutually orthogonal at any lag and lead.

Assumption 4: Realizations of ϕ are independent of those of ǫt.

Assumption 5: As N → ∞, ‖WN‖ = O
(

N−1/2
)

and wi/ ‖WN‖ = O
(

N−1/2
)

for all

i ∈ N.

Before discussing our main assumptions, we introduce some notations. Let Hx de-

note the Hilbert space generated by all of the random variables that compose the panel

4Alternatively one might assume that t ∈ N and consider an asymptotically stationary limit aggregate
process (Gonçalves and Gourieroux, 1994).

5Such dynamics have been used in economics (among others) to represent consumption expenditures
across households (Lewbel, 1994), consumer price inflation across subindices (Altissimo et al., 2009), real
exchange rates across sectors (Imbs et al., 2005), or real marginal cost across industries (Imbs et al.,
2011).
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(xi,t)i=1,··· ,N,t∈Z, Hxi the Hilbert space generated by the stochastic process (xi,t)t∈Z, Hx,t

and Hxi,t the corresponding subspaces of Hx and Hxi up to time t. Assumption 1 outlines

that ϕ is a random variable with distribution on the support [0, 1) such that ϕ ∈
⋂

t

⊕
i
Hxi,t.

6

This assumption is consistent with many parametric specifications of the cross-sectional

distribution of ϕ. We only rule out situations in which some individual processes are not

almost surely (asymptotically) stationary, i.e. P (|ϕ| ≥ 1) > 0 (see further). In particular,

Assumption 1 includes the Beta distribution, B(p, q). In this case, the representation of

the (limit) aggregate process does depend on the mass distribution of the Beta distri-

bution around unity: the smaller is q, the larger is the mass of the distribution around

unity (Zaffaroni, 2004). In contrast, imposing the condition 0 ≤ ϕ ≤ c < 1 for some

constant c will guarantee that there are no individual unit root parameters that would

dominate at the aggregate level (Zaffaroni, 2004) and that the limit aggregate process (as

N → ∞) displays short memory with an exponentially decaying autocorrelation func-

tion. Assumption 2 insures that noncentral moments uk = E(ϕk) of any (nondegenerate)

random variable ϕ, defined on [0, 1), satisfy: 1 > u1 ≥ · · · ≥ uk ≥ 0, ∀k ≥ 1, and uk → 0

as k → ∞.

Assumption 3 defines the statistical properties of the two components of the error term,

the common shock (factor) and the idiosyncratic shock. Several points are worth com-

menting. First, without loss of generality, one might assume that the stochastic process

(vi,t)i=1,··· ,N,t∈Z is weakly linearly exchangeable (Aldous, 1980), i.e. (vi,t)i=1,··· ,N,t∈Z is

a purely non deterministic (regular) covariance stationary process and the covariance

structure is invariant by translation with respect to the time index and invariant by

permutation with respect to the unit index. Second, the stochastic process (ǫt)t∈Z is as-

sumed to be known and given.7 Given that Hx = ⊕
i
Hxi and thus Hx,t = ⊕

i
Hxi,t, one has

ǫt ∈ Hx,t

⋂

(Hx,t−1)⊥. Third, taking that Hxi = Hǫ ⊕Hxi−ǫ, the idiosyncratic stochastic

process is such that ηi,t ∈ Hxi−ǫ,t

⋂

(Hxi−ǫ,t−1)⊥. Fourth, the assumption that the vari-

6Note that the set (−1, 0) has been excluded from the support of ϕ for simplicity’s sake.
7Without altering our main results but at the expense of further assumptions, (i) the common error

term at time t might be multiplied by the realization of a (scaling) random variable κ to introduce some
form of heteroscedasticity, (ii) the stochastic process (ǫt)t∈Z might be assumed to be unknown (using
a two-step procedure), and (iii) multiple independent common error terms might be introduced in the
specification (Zaffaroni, 2004).
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ance of the idiosyncratic shocks is the same across individuals might be too stringent in

practical examples (e.g., in economics or in finance) and can be generalized by assuming

heteroscedastic idiosyncratic error terms. Eq. (2) together with Assumption 3 provide

a parsimonious form of (statistical) cross-sectional dependence, which is common in the

aggregation literature (Forni and Lippi, 2001; Zaffaroni, 2004). Obviously one may in-

troduce dependence on the idiosyncratic part through cross-correlation and/or spatial

correlation (Chudik, Pesaran and Tosetti, 2011; Pesaran and Tosetti, 2009). Such corre-

lation has no effect on our results as long as it is sufficiently weak (e.g., local correlation)

so that the error structure belongs to the class of approximate factor structure models

(Chamberlain and Rothschild, 1983).8. Assumption 4 avoids any correlation between the

error terms and ϕ. Assumption 5 is a granularity condition, which insures that the weights

used to define the aggregate process are not dominated by a few of the cross-sectional

units (Gabaix, 2011; Pesaran and Chudik, 2014).9

2.2 Aggregate Dynamics

The empirical cross-sectional moments of ϕ are ẼN

(

ϕk
)

=
N
∑

i=1

wiϕ
k
i , ∀k ≥ 1. For sake of

simplicity and without loss of generalization with respect to Assumption 4, we assume

that wi = 1/N for all i. Consequently, as N → ∞, ẼN
(

ϕk
) a.s.
→ uk.

Using Eqs. (1)–(2), the exact aggregate dynamics can be written as:10

N
∏

j=1

(1− ϕjL)XN,t =
1

N

N
∑

i=1

∏

j 6=i

(1− ϕjL) vi,t (3)

or equivalently

XN,t =
1

N

N
∑

i=1

(1− ϕiL)
−1 ǫt +

1

N

N
∑

i=1

(1− ϕiL)
−1 ηi,t (4)

8The condition is that the maximum eigenvalue of the covariance matrix of ηt = (η1,t, · · · , ηN,t)
′

remains bounded as the cross-section dimension increases.
9Our results extend to the case of (time-varying) stochastic weights. Such an extension requires at

least that the weights be distributed independently from the stochastic process defining the random
variable.

10Put differently, it is an ARMA(N,N-1) in the absence of common roots in the individual processes
(Granger and Morris, 1976).
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where L is the lag operator (zt−1 = Lzt). Taking Eq. (4), we can characterize the

asymptotic behavior of both the idiosyncratic component and the common component.

This is done in the following proposition. Results are known but are reported here for

sake of completeness.

Proposition 1 Suppose that Assumptions 1–5 hold. Given the disaggregate model de-

fined in Eqs. (1)–(2), the limit in L2 of the aggregated process as N → ∞ satisfies (almost

surely) the two equivalent representations:

Xt =
∞
∑

k=0

uk ǫt−k (MA form), (5)

Xt =
∞
∑

k=1

akXt−k + ǫt (AR form), (6)

where XN,t
L2

→ Xt and ẼN

(

ϕk
) a.s.
→ uk = E

(

ϕk
)

as N → ∞. The sequence {ak, k ≥ 1}

where ak = E [Ak] satisfies the recurrence relation :

A1 = ϕ , Ak+1 = (Ak − ak)ϕ (7)

Proof: Gonçalves and Gouriéroux (1988), Lewbel (1994).

Several points are worth commenting. First, as shown by Robinson (1978), with the

exception of a degenerate distribution for ϕ (e.g., Dirac distribution), the dynamics of

the limit aggregate process is richer than the individual dynamics because of the non-

ergodicity of the individual random AR(1) process. Second, using the infinite moving

average representation and the positiveness of the moments, the (limit) aggregate pro-

cess displays short memory if
∑∞

k=0 uk < +∞ whereas it has a long-memory property

if
∑∞

k=0 uk = +∞. It is worth noting that (i) the (limit) aggregate process is in L2

but not necessarily in L1, and (ii) the sum of the autoregressive coefficients is (abso-

lutely) convergent if the aggregate process has short memory (since the spectral repre-

sentation is unique). Third, the central moments of the cross-sectional distribution of

ϕ can be easily obtained from the infinite autoregressive representation of the aggregate

process. This is useful when considering the standard disaggregation problem in statis-
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tics. For instance, the first four cross-sectional moments are E [ϕ] = a1, V [ϕ] = a2,

S [ϕ] = (a3 − a1a2) / (a2)
3/2, and K [ϕ] = (a4 − 2a1a3 + a21a2 + a22) / (a2)

2. Fourth, Equa-

tion (6) shows that aggregation leads to an infinite autoregressive model for Xt (see

Robinson, 1978, Lewbel, 1994). Notably, using Eq. (7), the autoregressive parameters ak

are nonlinear transformations of the noncentral moments of ϕ and satisfy the following

non-homogenous difference equations (for k ≥ 2):

ak+1 ≡ E [Ak+1] = uk+1 −

k
∑

r=1

aruk−r+1

a1 = E [ϕ] .

Fifth, the persistence of the stochastic process defined by the limit of the aggregated

process can be defined as the sum of the autoregressive coefficients, which is denoted

a(1) =
∑∞

k=1 ak. More specifically, if the limit of the aggregate process belongs to L1 and

thus (Xt)t∈Z is a short-memory stochastic process, then it is straightforward to show that

a(1) =

(

E

[

1

1− ϕ

])−1

E

[

ϕ

1− ϕ

]

.

or equivalently

(1− a(1))−1 = E

[

1

1− ϕ

]

.

In particular, the limit of the aggregate stochastic process has short memory if and only

if E
[

1
1−ϕ

]

< ∞ (Robinson, 1978; Gonçalves and Gourieroux, 1994). In the spirit of

Zaffaroni (2004), a sufficient condition on the probability density function h of ϕ for

the short memory property is that there exists α ∈ (0, 1) and a constant C such that

lim
x→1−

h(x)
(1−x)1−α = C. Sixth, we can define the generating function of the ak terms as follows.

Taking the recurrence relation, one can write formally

∑

k≥1

Akz
k =

zϕ

1− zϕ

(

1−
∑

k≥1

akz
k

)

9



and thus
∑

k≥1

akz
k =

∑

k≥1

ukz
k −

∑

k≥1

akz
k
∑

k≥1

ukz
k.

Let m denote

m(z) =
∑

k≥1

ukz
k,

we obtain the formal generating function of the ak terms

a(z) ≡
∑

k≥1

akz
k =

m(z)

1 +m(z)
, (8)

and thus the mapping between the generating function of the infinite autoregressive lag

polynomial and the one of the infinite moving average representation. As explained in

Section 3, Eq. (8) is fundamental since our proof is intimately related to the function
m

1 +m
.

3 Aggregate long-memory process and the sum of

the autoregressive parameters

In this section, we show that the sum of the autoregressive coefficients equals one in the

presence of a (limit) aggregate process in L2 but not in L1. In so doing, we emphasize that

complex analysis is required to obtain the convergence of the series
∑

k≥1 ak. Then we

provide a characterization of the (limit) aggregate long-memory process in the presence

of individual random AR(1) processes.

3.1 The function m

Before showing the convergence of the series of autoregressive parameters, we need an

intermediate result regarding them function, and especially to make clear the relationship

between the sum of the moving average coefficients
∑

k≥1 uk and m(r) when r → 1−.

Proposition 2 clarifies this link and turns to be extremely useful when characterizing

10



the infinite sum of the autoregressive coefficients of a (limit) aggregate long-memory

process.11

Proposition 2
∞
∑

k=1

uk = +∞ if and only if lim r→1− m(r) = +∞

Proof : See Appendix A.

3.2 The series a(z) =
m(z)

1 +m(z)
and the convergence of

∑

k≥1 ak

One key issue to study the convergence of the autoregressive coefficients is that the ex-

istence of the limit, limr→1− a(r), does not insure its equality to
∑

k≥1 ak or even the

convergence of this sum.12 Supplementary Tauberian conditions are needed for this kind

of results (Hardy, 1949; Titchmarsh, 1939; Korevaar, 2004). In particular, the conver-

gence of this series has to be studied by making use of complex analysis, especially in the

case of a (limit) aggregate long-memory process.

All of the proofs related to Theorem 1 are gathered in Appendix B. To summarize,

the proof of the convergence of the autoregressive coefficients proceeds as follows. We

first define m as an analytic function of the complex variable z within the open disc

around 0 of radius one, D(0, 1), and rewrite m(z) as an integral on [0, 1) with parameter

z ∈ D(0, 1). This allows showing that it can be continuously extended to D(0, 1)\{1}

(see Lemma 1 in Appendix B). Then a second lemma (see Lemma 2 in Appendix B)

proves that the function a(z) = m(z)
1+m(z)

is well defined in the disc D(0, 1) (i.e., the de-

nominator does not vanish) and then it can be extended to the whole closed disc D(0, 1).

For this purpose, two cases must be studied, according to the nature of the series
∑

uk:

if
∑

uk < ∞ the function m is continuous in the closed disc, so is a ; and if
∑

uk = ∞

then |m(z)| → ∞ when z → 1 in D(0, 1), therefore a(z) → 1 when z → 1 in D(0, 1).

Finally, a third lemma shows that the analytic function a is univalent and provides the

11Note obviously that
∞
∑

k=0

uk = +∞ if lim r→1− m(r) = +∞.

12For instance, consider the power series defined for |r| < 1, h(r) =
∞
∑

k=0

(−1)krk. Then h(r) = 1

1+r
and

lim
r→1−

h(r) = 1

2
. However

∞
∑

0

(−1)k is not convergent.
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use of a Tauberian condition (see Lemma 3 in Appendix B). This then allows to prove

the convergence of the series
∑

an (Theorem 1).

Theorem 1 Let {ak, k ≥ 1} denote the sequence defined in Proposition 1. The series
∞
∑

k=1

ak is convergent and

+∞
∑

k=1

ak = lim
r→1−

m(r)

1 +m(r)

Proof : See Appendix B.

Taking Proposition 2 and Theorem 1, it is then straightforward to determine the sum of

the autoregressive coefficients.

Proposition 3 Let {ak, k ≥ 1} denote the sequence defined in Proposition 1. The sum

of the autoregressive coefficients,
∞
∑

k=1

ak, equals one if and only if limr→1− m(r) = +∞ or

equivalently if and only if
∞
∑

k=1

uk = +∞.

Three points are worth commenting. First, if the limit aggregate process is a second-

order stationary process (Proposition 1) and the series of its moving average coefficients

is absolutely summable, then the sum of the autoregressive coefficients is less than one.

Notably, this result obtains with classical time series results whereas there is a need of

complex analysis when the series of the moving average coefficients is not absolutely

summable and one studies what happens at the pole z = 1. A second and related point is

that the behavior of the series of the autoregressive coefficients depends on whether the

limit second-order stationary aggregate process belongs to L1 or not. Consequently, as

explained below, this provides a new characterization of a (limit) aggregate long-memory

process as a result of the aggregation of random AR(1) processes. Third, as stated in

Corollary 1, the function Φ(z) = 1− a(z) admits only one zero on D(0, 1).

Corollary 1 Let Φ(z) = 1 − a(z). Then z = 1 is a zero of the function Φ, which is

defined on D(0, 1), if and only if
∞
∑

k=1

uk = +∞.
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Proof : This is a straightforward implication of Theorem 1.

Corollary 1 establishes that the representation of the stochastic process defined by the

limit of the aggregate process (XN,t)t∈Z admits a unit root whereas the aggregate pro-

cess is weakly stationary. There is a one-to-one relationship between the long memory

property and the presence of a unit root of the infinite autoregressive limit aggregate

process.

3.3 Time series implications

Taking Theorem 1 and Proposition 3, we are now in a position to provide a new charac-

terization of a (limit) aggregate long-memory process that results from the aggregation

of individual random AR(1) processes.

Theorem 2 Suppose that Assumptions 1 and 2 hold true. Let (Xt, t ∈ Z) denote a

long-memory process with the following Wold decomposition

Xt =

∞
∑

k=0

uk ǫt−k

where the uk terms are nonnegative and
∞
∑

k=0

uk = ∞. Then the aj terms of the equivalent

infinite autoregressive representation,

Xt =

∞
∑

k=1

akXt−k + ǫt,

which are defined from ak+1 = uk+1 −
∑k

r=1 aruk−r+1 and a1 = u1, satisfy
∑∞

k=1 ak = 1.

Several points are worth discussing. First, the (limit) aggregate long-memory process

does not belong to the class of ARFIMA or self-similar stochastic processes.13 In partic-

ular, it is not possible to express the moving average coefficients of a fractional ARIMA

process (by binomial expansion) such that they match the moving average weights of the

13A continuous-time stochastic process (Yt) is said to be self-similar with self-similarity paramter H , if
for any sequence of time points t1,· · · ,tk and any positive constant a, c−H(Yat1 , · · · , Yatk) has the same
distribution as (Yt1 , · · · , Ytk).
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long-memory process defined in Theorem 2. In the same respect, matching the aggregate

moving average coefficients of the (limit) aggregate process requires non-constant values

of the self-similarity parameter H (Beran, 1994; Beran et al., 2013). Second, the fact

that the sum of the autoregressive coefficients of the (limit) aggregate process is equal

to one is also consistent with the standard definition of long-memory processes (Beran,

1994; Beran et al., 2013), i.e. there exists a real number α ∈ (0, 1) and a constant cρ

such that lim
k→∞

ρ(k)
cρkα

= 1 where ρ(k) = γX(h)/γX(0) (with γX(h) = E
[

ϕh/(1− ϕ2)
]

) is the

autocorrelation of order k of the (limit) aggregate stochastic process (Xt).

Third, as pointed out by Beran (1994), observing long-range dependence in an aggre-

gate time series (e.g., at the macro-level) does not necessarily mean that this is due

to the genuine occurrence of long memory in the individual series (micro-level). This

might be induced artificially by aggregation. Say differently, identifying the source of

long memory would require to look carefully at the behavior of the possibly unobservable

individual series. Fourth, Theorem 2 has some implications, which are beyond the scope

of this paper, regarding some aggregation problems often encountered in the theoretical

and empirical aggregation research (Pesaran and Chudik, 2014), namely the derivation

of the macro dynamics from heterogenous individual dynamics and the identification and

estimation of certain distributional features of the micro parameters from aggregate rela-

tions (disaggregation problem).14 For instance, in the case of the disaggregation problem

when individual series are not available, since the autoregressive specification in Proposi-

tion 1 displays an infinite parametrization and the econometrician has only finitely many

observations, one might proceed with a finite-parameter approximation for the infinite

lag distribution (Sims, 1971, 1972; Faust and Lepper, 1997; Pötscher, 2002) and might

account possibly for the constraint a(1) = 1. Notably, finite-parameter approximations

might lead to near observational aggregate processes with different statistical properties

and thus to the incorrect identification of distributional features of the micro parame-

ters.15 Other applications might concern, among others, the estimation of the aggregate

14See Lewbel (1994), and Jondeau and Pelgrin ( 2014b).
15The convergence of the estimates of the approximation is not sufficient to guarantee the conver-

gence of some functions of those parameters—pointwise convergence does not imply (locally) uniform
convergence.
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dynamics in the presence of unobserved heterogeneity when individual series are not

available, the derivation of the macrodynamics in heterogeneous agents models, or the

reconciliation of micro (panel) evidence and macro facts (e.g., the purchasing power par-

ity, the nominal price rigidity).

Finally it is worth noting that Theorem 2 applies in a broader context than the ag-

gregation of random AR(1) stochastic processes. Indeed, any stochastic process defined

(almost surely) in L2 that admits a Wold decomposition with decreasing and nonnega-

tive moment moving average coefficients and does not belong to L1 displays a unit root.

This comes from the formal identity between the generating functions of (ak) and (uk),
∑

k≥1 akz
k =

∑

k≥1 ukz
k −

∑

k≥1 akz
k
∑

k≥1 ukz
k.

4 Examples

In this section, we review three examples, namely the Beta B(p, q) distribution (of the

first kind), the uniform distribution with p = q = 1, and the random polynomial density.

Beta distribution Following Morris and Granger (1976), Granger (1980) and Gonçalves

and Gouriéroux (1994), we assume that ϕ is Beta-distributed.16

B(p, q; x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−11[0,1)(x), p > 0, q > 0.

In this respect, to the best of our knowledge, Proposition 4 provides a new characterization

of the series of autoregressive coefficients (i.e., the persistence of the (limit) aggregate

process (Xt)).

Proposition 4 Suppose that ϕ is Beta-distributed (of the first kind). Given the disag-

gregate model defined in Eqs. (1)–(2), the series of the autoregressive coefficients of the

limit aggregate process defined in Proposition 1 is given by:

- If q > 1, then
∞
∑

k=1

ak =
p

p+q−1
;

16Note that Gonçalves and Gouriéroux (1994) study extensively the aggregation of individual AR(1)
processes in which ϕ is Beta-distributed (after an homothety) and provide a discussion regarding aggre-
gate long-memory processes. However they do not consider the sum of the autoregressive coefficients.
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- If q ≤ 1, then
∞
∑

k=1

ak = 1.

Proposition 4 can be shown as follows. Taking the integral form of m(r) we have

1 +m(r) =
Γ(p+ q)

Γ(p)Γ(q)

∫ 1

0

xp−1(1− x)q−1

1− rx
dx,

and thus (by the monotone convergence theorem)

lim
r→1−

(1 +m(r)) =
Γ(p+ q)

Γ(p)Γ(q)

∫ 1

0

xp−1(1− x)q−2dx.

Consequently, this is a convergent integral if and only if q > 1. In this case,

lim
r→1−

(1 +m(r)) =
Γ(p+ q)

Γ(p)Γ(q)

Γ(p)Γ(q − 1)

Γ(p + q − 1)
= 1 +

p

q − 1

and
+∞
∑

k=1

ak = lim
r→1−

m(r)

1 +m(r)
=

p

p+ q − 1
.

On the other hand, it follows that lim r→1−(1 +m(r)) = +∞ if and only if q ≤ 1, and
∑+∞

k=1 ak = 1 (Theorem 1).

Uniform distribution We now assume that p = q = 1 such that the random variable

ϕ is uniformly distributed over the interval [0, 1) and non central moments are given by

uk =
1

k+1
.

Proposition 5 Suppose that ϕ is uniformly distributed over the interval [0; 1). Given

the disaggregate model defined in Eqs. (1)–(2), the autoregressive coefficients of the limit

aggregate process defined in Proposition 1 are given by:

ak =
|Ik|

k!

where Ik =
∫ 1

0
x(x−1) · · · (x−k+1)dx has the same sign as (−1)k−1 for k ≥ 1. Moreover,

∑∞
k=1 ak = 1.

Proposition 5 can be shown by using either Theorem 1 or a new lemma provided in Ap-

pendix C. Notably, the coefficients of the series a(z) = m(z)/(1+m(z)) can be computed

16



as follows. First, the generating moment series is

1 +m(z) =
∑

k≥0

ukz
k =

∑

k≥0

zk

k + 1
= −

log(1− z)

z

where |z| < 1 so that

a(z) =
m(z)

1 +m(z)
= 1 +

z

log(1− z)
.

Second the expression of z
log(1−z)

is derived by a power series development of the function

a. Indeed, using the notation ψ(z) = log(1− z), one has

∫ 1

0

exψ(z)dx =
eψ(z) − 1

ψ(z)
= −

z

log(1− z)

where the power series development of exψ(z) = (1− z)x is defined to be:

(1− z)x =
∑

n≥0

(

x

n

)

(−1)nzn = 1 +
∑

n≥1

(−1)n

n!
znx(x− 1) · · · (x− n+ 1).

Since this series converges absolutely for |z| < 1 and uniformly for x in [0, 1], one obtains

∫ 1

0

exψ(z)dx =

∫ 1

0

(1− z)xdx = 1 +
∑

n≥1

(−1)n

n!
znIn

where In =
∫ 1

0
x(x− 1) · · · (x− n + 1)dx for n ≥ 1. Finally,

∫ 1

0

exψ(z)dx = −
z

log(1− z)
= 1−

∑

k≥1

1

k!
zk|Ik|

and thus

a(z) =
∑

k≥1

|Ik|

k!
zk.

Several points are worth commenting. On the one hand, the non-negativeness of the

autoregressive coefficients for the uniform distribution allows for the use of a standard

Hardy-Littlewood Tauberian result and thus might not require Theorem 1. However

the non-negativeness of the autoregressive coefficients is not proved for all probability

distributions µ with support [0, 1). On the other hand, using Theorem 1, since the
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moving average coefficients of the (limit) aggregate process constitute a harmonic series,

the corresponding series diverges and thus the sum of the autoregressive coefficients (of the

limit aggregate process) equals one. Finally, Proposition 5 extends the result of Linden

(1999) in which the behavior of the aggregate process is studied with the autocorrelation

function.

Random polynomial density We consider as a last example the case of the poly-

nomial aggregated AR(1) model. More specifically, we suppose that ϕ has a continuous

distribution over [0, 1] that can be represented by a polynomial of degree d ≥ 1 :

f(ϕ) =
d
∑

s=0

csϕ
s1[0,1](ϕ)

where
∑d

s=0
cs
s+1

= 1 (the density has to be integrated to one) and f is non-negative in

[0, 1]. One key feature of the polynomial density function relative to the Beta distribution

is that it can be multi-modal (for polynomial density of third order or above). Similarly

to the Beta distribution, two cases are considered in Proposition 6: the sum of the

autoregressive coefficients does depend on whether f(1) = 0 or f(1) > 0 with f(1) =

c0 + c1 + · · ·+ cd is the value of the density at x = 1.

Proposition 6 Suppose that ϕ has a polynomial density function of order d. Given the

disaggregate model defined in Eqs. (1)–(2), the series of the autoregressive coefficients of

the limit aggregate process defined in Proposition 1 is given by:

- If f(1) = 0, then

a(1) =

∞
∑

k=1

ak = 1−
1

d−1
∑

n=0

n
∑

k=0

cn−k

n+1

;

- If f(1) > 0, then
∞
∑

k=1

ak = 1.
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Indeed, starting from the polynomial density function of order d, the non-central moments

uk = E
[

ϕk
]

, k ≥ 0, are given by:

E
[

ϕk
]

=
d
∑

s=0

cs
s+ k + 1

,

and thus the generating moment series,

1 +m(z) =
∑

k≥0

ukz
k =

∞
∑

k=0

(

d
∑

s=0

cs
s+ k + 1

)

zk,

is convergent at least for |z| < 1. Therefore, one needs to study the convergence of the

series

1 +m(1) =
∞
∑

k=0

d
∑

s=0

cs
s+ k + 1

= lim
K→∞

K
∑

k=0

d
∑

s=0

cs
s+ k + 1

The terms of the double sum S(K) =
∑K

k=0

∑d
s=0

cs
s+k+1

form an array with K + 1 rows

and d+1 columns. Without loss of generality, we can suppose K > d. Let n = s+ k, we

have n− d ≤ k ≤ n. Taking diagonal sums along the lines s+ k = 0, 1, . . . , d+K of the

array, one can write S(K) = S1(K) + S2(K) + S3(K) with

S1(K) =

d
∑

n=0

n
∑

k=0

cn−k
n + 1

= c0 +
c0 + c1

2
+ · · ·+

c0 + c1 + · · ·+ cd
d+ 1

S2(K) =
K
∑

n=d+1

n
∑

k=n−d

cn−k
n + 1

=
K
∑

n=d+1

1

n + 1

n
∑

k=n−d

cn−k = f(1)
K
∑

n=d+1

1

n + 1

and

S3(K) =

d+K
∑

n=K+1

n
∑

k=n−d

cn−k
n + 1

=

d+K
∑

n=K+1

1

n + 1

n
∑

k=n−d

cn−k

=
c1 + c2 + · · ·+ cd

K + 2
+
c2 + · · ·+ cd

K + 3
+ · · ·+

cd
K +D + 1

.

The first sum, S1(K), is finite and independent of K. The second sum, S2(K), is clearly

convergent as K → ∞ if and only if f(1) = 0. Finally, the third sum, S3(K), is finite

and its limit is zero when K approaches infinity. In this respect, the generating moment
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series 1+m(1) converges if and only if f(1) = 0. In this case its limit is S1 = S1(K) with

S1(K) = c0 +
c0 + c1

2
+ · · ·+

c0 + c1 + · · ·+ cd
d+ 1

In contrast, when f(1) > 0 the series
∑

k≥0 uk diverges and thus the sum of the au-

toregressive coefficients equals one. Consequently, the (limit) aggregate process displays

long-range dependance.

In this respect, Proposition 6 provides formally the sufficient condition discussed by

Chong (2006), i.e. f(1) > 0 is sufficient to establish the long memory properties of the

(limit) aggregate process. Moreover, if we assume that the polynomial density function

is of order zero and c0 = 1, we end up with the uniform distribution (with f(1) > 0)

and thus Proposition 5. On the other hand, if we assume that the polynomial density

function is of the form ax(1−x) for a 6= 0 and x ∈ [0, 1), then f(1) = 0 and the long-run

persistence is given by a(1). In contrast, if the probability density function has a support

on [0; 1], the aggregation process leads to a generalized integrated process (Lin, 1991;

Granger and Ding, 1996). As a final remark, it is worth emphasizing that any distribu-

tion such that the generating function of the sequence of the moments is not convergent

leads to a long-memory process characterized by Theorem 2.

5 Conclusion

In this paper, we study the aggregation of individual random AR(1) processes under

the assumptions that some common factors exist, the (positive) random autoregressive

coefficient takes values in [0, 1) with probability distribution µ, and all of the noncen-

tral moments exist. Notably we show by making use of complex analysis that sum of

the autoregressive coefficients equals one in the presence of limit aggregate long mem-

ory processes: the divergence of the series of noncentral moments is fully equivalent to

the presence of a unit root in the autoregressive representation of the stochastic process

defined by the limit of the aggregate process. We then illustrate our results using some

prominent examples of distribution for the aggregation of random autoregressive AR(1)
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processes. This provides some new insights that might deserve some empirical applica-

tions and some theoretical developments, as for instance the disaggregation problem.
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Appendix: Proofs

Appendix A

Proof of Proposition 2: Taking that the sequence of the moments

uk = E(ϕk) =

∫

[0,1)

xkdµ(x)

is positive and decreasing, one has limk→+∞ uk = 0 (by monotone convergence applied

to the sequence (xk)k≥1 and thus the radius of convergence of the series
∑

k≥1 ukz
k is at

least 1.

Let (rn) an increasing sequence in [0, 1) such that limn→+∞ rn = 1. For x ∈ [0, 1) the

functions fn(x) =
rnx

1− rnx
are positive therefore by Fatou’s Lemma we get

lim inf
n
m(rn) = lim inf

n

∫

[0,1)

fndµ(x) ≥

∫

[0,1)

lim inf
n
fndµ(x) =

∫

[0,1)

x

1− x
dµ(x) =

+∞
∑

k=0

uk

Thus if
∑

uk is divergent then m(r) → +∞ when r → 1−. Moreover by the Abel

Theorem (Titchmarsh, 1939, pp.9-10) if
∑

uk is convergent then limr→1− m(r) is finite

and limr→1− m(r) =
∑

uk. The equivalence then follows.

Appendix B

In Appendix B, we provide the proof of Theorem 1. In so doing, we proceed with three

lemmas. Notably we first define m as an analytic function of the complex variable z in

the disc D(0, 1) and rewrite m(z) as an integral on [0, 1) with parameter z ∈ D(0, 1)

(Lemma 1). We then show that it can be continuously extended to D(0, 1)\{1}. Then

Lemma 2 proves that the function a(z) = m(z)
1+m(z)

is well defined in the disc D(0, 1) (i.e.,

the denominator does not vanish) so that it can be extended to the whole closed disc

D(0, 1). In this respect, two cases must be studied, according to the nature of the series
∑

uk: if
∑

uk < ∞ the function m is continuous in the closed disc, so is a ; and if
∑

uk = ∞ then |m(z)| → ∞ when z → 1 in D(0, 1), therefore a(z) → 1 when z → 1 in
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D(0, 1). Finally, Lemma 3 proves that the analytic function a is shown to be univalent

and provides the use of a Tauberian condition. Then Theorem 1 is proven.

Let m the function defined in the open disc D(0, 1) = {z ∈ C with |z| < 1} by

m(z) =
+∞
∑

n=1

unz
n

This function is analytic. Moreover, by a classical theorem, on the boundary C(0, 1) =

{z ∈ C with |z| = 1} the series
∑

n≥1 une
int is convergent for all t ∈]0, 2π[ and by Abel’s

theorem :

m(eit) =

+∞
∑

n=1

une
int = lim

r→1−

+∞
∑

n=1

unr
neint

Thus the function m is defined in D(0, 1)\{1} = {z ∈ C with |z| ≤ 1, z 6= 1}. By

positivity we have

+∞
∑

n=1

E(ϕn)rn = E(
+∞
∑

n=1

ϕnrn)

for all 0 ≤ r < 1. Thus for r ∈ [0, 1) we get

m(r) =

+∞
∑

n=1

unr
n = E(

ϕr

1− ϕr
) =

∫

[0,1)

rx

1− rx
dµ(x)

Lemma 1 For z ∈ D(0, 1)\{1}

m(z) =

∫

[0,1)

zx

1− zx
dµ(x)

Proof: First we prove that the function z 7→
∫

[0,1)
zx

1−zx
dµ(x) is analytic in the open disc

D(0, 1), continuous in D(0, 1)\{1} and thus is defined.

Let K denote a compact set in D(0, 1)\{1}. This compact is included in D(0, 1)\D(1, ε)
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with ε > 0 so if z ∈ K we get zx ∈ D(0, 1)\D(1, ε) for all x ∈ [0, 1), and thus

|1− zx| ≥ ε.

Therefore for all z ∈ K and x ∈]0, 1[

∣

∣

∣

∣

zx

1− zx

∣

∣

∣

∣

≤
1

ε
x.

This proves the continuity of the function z 7→
∫

[0,1)
zx

1−zx
dµ(x) over K. Moreover, by

analyticity of z 7→ zx
1−zx

for all x ∈ [0, 1) and the previous boundness condition, the

function z 7→
∫

[0,1)
zx

1−zx
dµ(x) is analytic in D(0, 1).

Finally we note that this function coincides with m(r), r ∈ [0, 1[, thus by analytic con-

tinuation, we obtain

m(z) =

∫

[0,1)

zx

1− zx
dµ(x)

for all z ∈ D(0, 1), and for z = eit with t 6= 0

m(eit) = lim
r→1−

+∞
∑

n=1

unr
neint = lim

r→1−

∫

[0,1)

reitx

1− reitx
dµ(x) =

∫

[0,1)

eitx

1− eitx
dµ(x)

�

Extension by continuity of the function m
1+m

Lemma 2 The function m
1+m

can be extended to a continuous function over D(0, 1).

Proof: The function 1 +m doesn’t vanish in D(0, 1) because

1 +m(z) =

∫

[0,1)

1

1− zx
dµ(x)

and if z = a+ ib with a2 + b2 ≤ 1 then ax < 1 for all x ∈ [0, 1) so

Re(1 +m(z)) =

∫

[0,1)

1− ax

(1− ax)2 + b2x2
dµ(x) > 0

The function m
1+m

is therefore defined and continuous in D(0, 1)\{1} and analytic in

D(0, 1).
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In order to study the continuity at the point z = 1, we need to consider two cases :

1. If
∑

uk is convergent then the series
∑

ukz
k is normally convergent in D(0, 1) and

the function m is continuous in D(0, 1) and consequently so is m
1+m

.

2. If
∑

uk is divergent it is sufficient to prove that |m(z)| → +∞ when z → 1. Indeed

m(z)

1 +m(z)
=

1

1 + 1
m(z)

→ 1

and we extend m
1+m

by 1 at the point z = 1.

We now show that |m(z)| → +∞ when z → 1. In so doing, consider a sequence of points

zk = ak + ibk with ak → 1, bk → 0 and a2k + b2k ≤ 1. Then

Re(m(zk)) = −1 +

∫

[0,1)

1− akx

(1− akx)2 + b2kx
2
dµ(x).

As akx ≤ 1 for all integer k and all x ∈ [0, 1) the functions

fk : x 7→
1− akx

(1− akx)2 + b2kx
2

are positive in [0, 1). Using Fatou’s Lemma, we get

lim inf
k

∫

[0,1)

fkdµ(x) ≥

∫

[0,1)

lim inf
k
fkdµ(x)

where

lim inf
k
fk(x) = lim fk(x) =

1

1− x
.

It is therefore sufficient to remark that if
∑

uk is divergent then

∫

[0,1)

1

1− x
dµ(x) ≥

∫

[0,1)

x

1− x
dµ(x) =

+∞
∑

n=0

un = +∞.

So for all sequence (zk) converging to 1 in the disc, we have Re(m(zk)) → +∞ and thus

|m(zk)| → +∞. �

Convergence of an analytic function D(0, 1), which is continuous on D(0, 1)
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Lemma 3 provides the use of a Tauberian condition, which turns to be crucial for

the proof of Theorem 1.

Lemma 3 Let f(z) =
∑

k≥1 bkz
k an analytic function on D(0, 1), continuous on D(0, 1).

If f is injective on D(0, 1) then the series
∑

k≥1 bk is convergent.

Proof: We proceed in two steps. First, we prove that

1

n

n
∑

k=1

k |bk| → 0.

On the one hand, the function f is analytic on D(0, 1) thus the image U = f(D(0, 1)) is

open in C and U is included in the compact set f(D(0, 1)) since f is continuous onD(0, 1).

On the other hand, the function f being injective on D(0, 1) we have f ′(z) 6= 0 for

all z ∈ D(0, 1) thus f is a C1 diffeomorphism between D(0, 1) and U . By the change of

variables formula we get

λ(U) =

∫

D(0,1)

|f ′(x+ iy)|
2
dxdy

and with the use of polar coordinates we get the finite Lebesgue measure of U as the sum

of the series

λ(U) = π

+∞
∑

n=1

n|bn|
2

The convergence of this last series now implies that 1
n

∑n
k=1 k |bk| → 0.

Finally, to verify this assertion let N ≥ 1 and for n > N write

1

n

n
∑

k=1

k |bk| =
1

n

N
∑

k=1

k |bk|+
1

n

n
∑

k=N+1

k |bk| .
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Then by Cauchy-Schwarz inequality we have

1

n

n
∑

k=1

k |bk| ≤
1

n

N
∑

k=1

k |bk|+
1

n
(

n
∑

k=N+1

k)1/2(

n
∑

k=N+1

k |bk|
2)1/2

≤
1

n

N
∑

k=1

k |bk|+
1

n
(

n
∑

k=N+1

k |bk|
2)1/2

and thus

lim sup
n→+∞

1

n

n
∑

k=1

k |bk| ≤
1

n
(

n
∑

k=N+1

k |bk|
2)1/2.

Since 1
n
(
∑n

k=N+1 k |bk|
2)1/2 → 0 it follows that 1

n

∑n
k=1 k |bk| → 0.

Taking this intermediate result, we are now in a position to prove Lemma 3. Indeed

let tn = 1
n

∑n
k=1 kbk (with t0 = 0). We have bn = (tn − tn−1) +

1
n
tn−1. The series

∑

n≥1(tn − tn−1) is convergent because

N
∑

n=1

(tn − tn−1) = tN → 0,

and thus the series
∑

n≥1(tn − tn−1) is Abel summable. Since the series
∑

n≥1 bn is also

Abel summable by continuity of f , we get the Abel-summability of the series
∑

n≥1
1
n
tn−1.

Finally, since

n
( 1

n
tn−1

)

= tn−1 → 0,

it follows from the classical Tauber’s theorem that the series
∑

n≥1
1
n
tn−1 (and thus

∑

n≥1 bn) is convergent. �

Proof of Theorem 1

Using Lemma 2, the function f = a = m
1+m

is defined and continuous on D(0, 1) and

analytic in D(0, 1). It follows from Lemma 3 that it remains to prove that f is injective

in D(0, 1). Taking
m(z1)

1 +m(z1)
=

m(z2)

1 +m(z2)
⇔ m(z1) = m(z2),
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it is sufficient to prove the injectivity of the functionm onD(0, 1). Moreover it is sufficient

to prove this injectivity on D(0, r) for all 0 ≤ r < 1 : if m is not injective on D(0, 1) then

there exists z1 6= z2 such that m(z1) = m(z2) ; so m is not injective on D(0, r) where

r > max(|z1| , |z2|).

For all 0 ≤ r < 1 the function m is analytic on D(0, r) and continuous on D(0, r). Using

Darboux’s theorem (Burckel, 1979, p. 310), we could then establish the injectivity of m

on D(0, r) by showing that m is injective on the circle of radius r with center 0. Indeed,

let

ϕ(t) = Re(m(reit)) =

∫

[0,1)

rx cos(t)− r2x2

1− 2rx cos(t) + r2x2
dµ(x).

We have

ϕ′(t) = sin t

∫

[0,1)

−rx(1 − r2x2)

(1− 2xr cos t+ r2x2)2
dµ(x).

We see that the function ϕ is decreasing on ]0, π[ et increasing on ]π, 2π[. It is symmetric

across π : we have ϕ(t) = ϕ(2π− t). Therefore the only points t1 6= t2 with ϕ(t1) = ϕ(t2)

are the pairs (t, 2π − t) with t ∈ [0, π[. Moreover we have

Im(m(reit)) =

∫

[0,1)

xr sin(t)

1− 2xr cos(t) + r2x2
dµ(x)

hence

Im(m(reit)) = −Im(m(rei(2π−t)))

Since we have

sin(t)

∫

[0,1)

xr

1− 2xr cos(t) + r2x2
dµ(x) > 0

for t ∈ [0, π), we can’t have

Im(m(reit)) = Im(m(rei(2π−t)))

Therefore t 7→ m(reit) is injective. By the Abel Theorem the sum of the series
∑

an is

equal to the limit limr→1 a(r) where r ∈ [0, 1) �
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