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Notation

* For x = a + ib where a and b are real we use the notation
a = Re(z) and b = I'm(x)

* The derivative of a function f is denoted by f’ or df.
* The difference operator is defined by A(f) = f(z+ 1) — f(x).
*For k € Nand j =0,...,k we use the binomial coefficient

k!

Oj =
BNk — )

* The harmonic numbers are HSY =1 + QL + ni
* The Bernoulli polynomials By(z) are defined by

Z Bn(x) tn _ t@rt

n! et —1
n>0
and the Bernoulli numbers B,, = B, (0)

‘We have BO = 1, Bl = 71/2, Bgn+1 =0ifn Z 1.
* We define the Bernoulli numbers of second kind £,, by

Bn Bn
10g1+t Zitn_ Z H A

* The Euler polynomials E,,(x) are defined by

n! i T er+1

E.(z) , 2e**
> (z)

and we set E, = E,(0).
* For x € C we use the notation f1 u)du for the integral

T 1
/ f(u)du = / fA4+t(x—1))(x—1)dt
1 0

that is the integral on the segment relying 1 to z.
* Log is the logarithm function defined on C\] — oo, 0] by

1
Log(x)z/ Edu
1

that is for x € C\] — 00, 0] by

Log(z) = Log(|z|) +1i0 if z = |z|e?, 0 €] — 7, 7|
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* The Stieltjes constants vy are defined by

. — Log"(j)  Log"*'(n)
v = lim (Z R —

n—-+oo 2
Jj=1

The Euler constant « is g .

n—1
* The Catalan constant is G = Y, %
* The digamma function is

* We define O the space of functions g analytic in a half plane
{z € C|Re(z) > a} with some a < 1
and of exponential type < a: there exists 4 < « such that
lg(z)| < Ce?l®l for Re(x) > a
* We say that f is of moderate growth if f is analytic in a half plane
{z € C|Re(z) > a} with some a < 1

and of exponential type < € for all € > 0.
* For f € O the function Ry is the unique solution in O™ of

2
R¢(x) — Ry(z + 1) = f(x) with /1 Ry(z)dz =0

* For f € O™ the function ¢y is the unique function in O™ such that
wf(n) = f(1) + ... + f(n) for every integer n > 1

* For f € O™ the Ramanujan summation of Zn21 f(n) is defined by

R

> f(n)=Ry(1)

n>1

—+oo

If the series is convergent then )"~

(n) denotes its usual sum.



Introduction: the
summation of series

The strange sums

+oo
> n=0+14+2+3+4+5+6+T+8+9+..
n>0
and
+oo
dDond=0+17 42243 +4° 455467+ 70
n>0
appear in Physics about the study of the Casimir effect which is the existence
of an attractive force between two parallel conducting plates in the vacuum.
These series are examples of divergent series in contrast to convergent
series, the notion of convergence for a series was introduced by Cauchy in his
”Cours d’Analyse” in order to avoid frequent mistakes in working with series.
Given a series of complex numbers - ay, Cauchy considers the sequence
of the partial sums

So = 0

S1 = Qo

So = ag+a

Spn, = a9+ ..+ap—-1

and says that the series > ., an is convergent if and only if the sequence
(sn) has a finite limit when n goes to infinity. In this case the sum of the
series is defined by

—+oo

E a, = lim s,
n—-+o0o

n=0

The classical Riemann series )", -, ni is convergent for every complex
number s such that Re(s) > 1 and defines the Riemann zeta function defined
for Re(s) > 1 by ¢ 5+ S22 1

n=1 ns"
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Non convergent series are divergent series. For Re(s) < 1 the Riemann
series is a divergent series and does not give a finite value for the sums that
appear in the Casimir effect. A possible strategy to assign a finite value to
these sums is to perform an analytic continuation of the zeta function, this
has been done by Riemann (cf. Edwards) who found an integral formula for
¢(s) which is valid not only for Re(s) > 1 but also for s € C\{1}. By this
method we can assign to the series > o, n* with k& > —1 the value ((—k),
we get for example B

1
ot = LH1+1414+141+ .= ((0) = —
n>1

L 1
d ot = L4243 4+44546+ ..~ ((-1) = -5
n>1
don? = 142243744245 4 . ((-2)=0
n>1

1
dond = 1+ 438443 +5 4 ((-3) = o0
n>1

For k = —1 we have the "harmonic series”
§:1—1+1+1+1+1+1+1+1+1+
no 2 3 4 5 6 7 8 9 7

n>1

which is easily proved to be a divergent series since the partial sums s,, verify

1 1 °1 31 m
sn:1—|—7+...—|—72/7daj—|—/ fdm—&—...—k/ —dx = Log(n+ 1)
2 n 1 T 5 T " x
But the strategy of analytic continuation of the zeta function does not work
in this case since ¢ has a pole at s = 1 that is lims_; {(s) = co.
Divergent series appear elsewhere in Analysis and are difficult to handle,
for example by using the preceding values of ) n* it seems that

11
oy = 1234445464+ (11T
= 243+4+5+6+7+...
= (14+2+3+4+54+6+7+..)—1
1
= ———1
12

This absurdity shows that with divergent series we cannot use the classical
rules of calculation, and for a given class of series we need to define precisely
some method of summation and its rules of calculation.

Before and after Cauchy, some methods of summation of series have been
introduced by several mathematicians such as Cesaro, Euler, Abel, Borel and



vii

others. These methods of summation assign to a series of complex numbers
> >0 @n & number obtained by taking the limit of some means of the partial
sums s,. For example the Cesaro summation assigns to a series ZZ>0 an the
number

¢ S$1+...+s
E Gy, = limnHJroc# (when this limit is finite)
n
n>0

For the Abel summation we take

A +o0
Z ap = lim (1 —1¢) Z Sp+1t™  (when this limit is finite)
n>0 =l n=0

where the series ) - sn4+1t" is supposed to be convergent for every ¢ € [0, 1.
Note that this expression can be simplified since

+oo +oo +oo
(1—1) Z Spa1t™ =81 + Z(Sn_l,_l — sp)t" = Z ant"
n=0 n=1 n=0

and we have

A 400
> an = lim > ant™ (when this limit is finite)
n>0 n=0
this gives for example
A +o0 1 1
— n— 1 — N — 1 _— -
Z( 1) tliqlf Z( 1)t tlalr{lf 1+t 2
n>0 n=0

The classical methods of summation use these types of means of partial
sum and can be briefly presented in the following form.

Let T be a topological space of parameters and [ some ”limit point” of
the compactification of T' (if T' = N then | = 400, if T' = [0, 1] then [ = 1).
Let (pn(t))nen be a family of complex sequences indexed by ¢ € T such that
for all t € T the series ), -, pn(t) is convergent, then we set

7 +
S g = iy Tacaa (050

+
n>0 t=l Zn:a pn(t)

when this limit is finite and in this case we say that the series ) ., a, is
T-summable.

A theorem of Toeplitz (cf. Hardy) gives necessary and sufficient conditions
on the family (p,,(¢))nen to insure that in case of convergence this summation
coincides with the usual Cauchy summation.
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These summation methods verify the linearity conditions

T T T
San+ba) = an+ Y by
n>0 n>0 n>0
T T
Z Ca, =C Z a, for every constant C' € C
n>0 n>0

and the usual translation property

T T
§ an:a0+§ Ap+1

n>0 n>0

This last property which seems natural is in fact very restrictive. For example
the series ), ;1 can’t be 7-summable since the translation property gives
an absurd relation

T T
di=1+>"1
n>0 n>0

Thus if we need a method of summation such that the sums ZZ>0 n* are

well defined for any integer k then we must abandon the translation property
requirement and find a way to define summation procedures other than the
way of the ”limit of means of partial sums”.

This can be done by using a sort of generating function for the terms of the
series. It is based on the following algebraic framework (cf. Candelpergher).
Let E be a C-vector space (in general a space of functions) equiped with a
linear operator D and a linear map vy : F — C. Given a sequence of complex
numbers (a,)n>0 we call an element f € E a generator of this sequence if

an = vo(D"f)
We can write formally
d_an = w(D"f)=w()  D"f)=w((I - D)"'f)
n>0 n>0 n>0
thus if R verifies the equation
(I-D)R=f (1)

then we get
Z an = vo(R)
n>0

Of course, such an algebraic definition of summation needs some hypothe-
ses, especially to assure uniqueness of the solution of equation (1), this is
presented in Chapter 5.
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It is easy to see that the Cauchy summation is a special case of this
algebraic formalism: we take E as the vector space of convergent complex
sequences u = (up)n>0 and

D (un) = (unt1)
vo : (un) P ug
In this case the generator of a sequence of complex numbers (a,)n>0 is pre-

cisely this sequence f = (a,,)n>0 since (D" f)g = agtn. If we set R = (ry,)n>0
equation (1) becomes the difference equation

Tn —Tn+1 = an

The solution of this equation is defined up to an arbitrary constant, thus to
get a unique solution we need to impose a condition on (r,),>0. Since

rg —Tn =00 + ... + Qp_1
we see that if we add the condition

li =0
7L—1>I-&r-loo 'n
then we have a unique solution R of (1) and we get the usual convergence of
the series Y, <, a, with

+oo
vo(R) =ro= lim (ap+ ...+ an_1)= Z an,
n=0

With this algebraic setting we have presented (cf. Candelpergher) the
summation method employed by Ramanujan in Chapter VI of his second
Notebook. This is done in a way similar to the Cauchy summation but
replacing the space of sequences by a certain space F of analytic functions
and

Df(z) = f(z+1)
v(f) = f(1)

For the Ramanujan summation the terms of the series are indexed with n > 1
as Ramanujan does and since vo(D" f) = f(n) we define this summation for
the series of type > -, f(n) where f € E.

In this case equation (1) is simply the difference equation

R(z) = R(z +1) = f(x) (2)

If we can select a solution Ry of this equation then we define the Ramanujan

summation by
R

Y f(n)=R(1) 3)

n>1
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Existence and uniqueness of a solution of (2) can be proved by use of a general
Laplace transform (cf. Candelpergher, Coppo, Delabaere).

Now in Chapter 1 we give a more simple presentation that avoids the
Laplace transform and we give more explicit formulas. We start, as Ra-
manujan in his second Notebook, with the summation formula of Euler and
MacLaurin

W) +..+f(n)=Cp+ /;L f@)dz + f(n)+ ) %8’“‘%@)

E>1

This formula can be viewed as an asymptotic expansion, when x goes to
infinity, of the function that Ramanujan writes

ppix— f(1)+ ...+ f(x)

which is an hypothetical interpolation function of the partial sums of the se-
ries ), f(n), given with the condition ¢£(0) = 0. This expansion contains
a constant Cy that Ramanujan calls ”the constant of the series” and treats
like a sort of sum for the series.

Since p¢(z + 1) —@f(x) = f(x + 1), we see that if we set

Ry(z) = Cy + f(x) — pf(2)

then the function Ry is a solution of equation (2) and

R
> f(n)=Rs(1)=0Cy

n>1

We use the term Ramanujan constant for Ry(1) since the expression ”Ra-
manujan sum” is widely used for another notion in Number Theory.

We give a precise definition of Ry in Chapter 1 by the use of an integral
formula which is related to the Abel-Plana summation formula.

For a function f sufficiently decreasing, the Euler-MacLaurin summation
formula gives

Cyp= lim (f(1)+..+ f(n)— /1n f(x)dx) (4)

n——+o00

thus if we are in a case of convergence of the series and integral then we have

R +oo 400
St =S fn) - / f(2)da (5)
n=1 1

n>1

There is also the apparition of an integral when we compare the sums
EnR>1 f(n) and EnR>1 f(n+1), since by (4) we have, in contrast to the usual
translation property, the unusual shift property

R R 2
S 1) =3 fn) - f(1) + / f(@)da (6)

n>1 n>1
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When we apply this property to the function R, and use equation (2) we get

/1 Ry(z)dx =0 (7)

This gives a way to define a general Ramanujan summation, independently of
the Euler-MacLaurin formula, by equations (2) and (3) with Ry of exponen-
tial growth < 7 and verifying the integral condition (7) in order to determine
a unique solution Rjy.

The shift property (6) remains valid in this general setting and is very
useful, for example the ”Casimir series” Y . (n — 1)* (with k a positive
integer) are Ramanujan summables and we have

= k & k ? k G k 1
T;n :nzzjl(nfl) +/1(x71) dx:;(n—l) er (8)

We see that the series 14 2F +3% +4% + . and 0+1+2F+3* +4F + ... don’t
have the same sum! This is a consequence of the fact that the Ramanujan
summation of »_, -, f(n) is intimately related to the function f (in the first

case we have f(z) = 2¥ and in the second f(z) = (z — 1)¥).

In chapter 2 we study elementary properties of the Ramanujan summation
in comparison to the classical properties of the usual Cauchy summation. We
prove a surprising relation between the sums

Zcpf and Z/ flx

n>1 n>1

We also give, in the special case of an entire function f of exponential type
< 7, a simple formula for the Ramanujan summation of a series ) -, f(n)
in terms of a convergent series involving the Bernoulli numbers B

Bk 1
/ f xi*f Zak k++1)

n>1

In Chapter 3 we give important theorems that concern properties of sums
Z§>1 f(z,n) where z is a parameter, with respect to derivation, integration
or summation of f in z.

The simplest introduction of an external parameter in a series >, -, f(n)

—nz

is to consider the series > -, f(n)e™™*. We prove that if f is a function of

moderate growth then we have

R
Z f(n)= hm Z f(n)e™™*

n>1 nZl
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But if z > 0 then the series }, -, f(n)e™"* is convergent and by (5) we have

R 400
> fln) = . Z fem = [ pwe ) (9)
n>1 1

which seems to be a standard method of regularization used in Physics.

A very important property of the Ramanujan summation is that the an-
alyticity of the terms of a series implies the analyticity of the sum. A simple
example is given by the zeta series ) -, n% This series is convergent only
for Re(s) > 1 but the Ramanujan summation of this series is defined for all
z € C and by (5) we have for Re(z) > 1

SLoGL Ly !
n® n® z—1 z—1
n>1 n>1

By this property of analyticity this formula remains valid for all z # 1 and
we see that the Ramanujan summation of the zeta series cancels the pole of
the zeta function at z = 1. More precisely at z = 1 we have by (4)

R
1 1
— = i == =
Z ~ = lim (1+..+ . Log(n)) =~ (Euler constant)
n>1
We also note that for the ”Casimir series” > o, (n — 1)¥ (with k a positive
integer) we have by (8) N

R
;n—l ;n —m = ((—k) (10)

In the second section of Chapter 3 we study the possibility to integrate the
sum 2521 f(z,n) with respect to z. For example we have for 0 < Re(s) < 1

R R
oo s—1 e T 1
w Z + = Z + du = 1 Z 1-s
n u n u SIS n-—
0 n>1 n>1

which gives simply the functional equation for the ¢ function. Finally we give
a sort of Fubini theorem for double sums

R R
> 2 fmn)
m>1n>1
We apply this result to the Eisenstein function Gy (cf. Busam and Freitag)

“+o0o —+00 1

Ga(z)= ) ( ;OO m)
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Since we don’t have absolute summability we cannot interchange the sums,
but thanks to the Ramanujan summation we can prove simply that this
function (G5 satisfies the non trivial relation

1

Gg(—;) = 22Ga(2) — 2iTz

In Chapter 4 we give some relations of the Ramanujan summation to other
summation formulas. First we recall the classical result (cf. Hardy) on the
Borel summability of the asymptotic series >, %8’“*1 f(n) that appears
in the Euler-MacLaurin formula and we give the formula linking ZnR>1 f(n)
with the Borel-sum of the series ), %8’“‘{}"(1).

In the second section of this chapter we use the Newton interpolation
series (cf. Norlund) to give a transformation formula involving a convergent
series

R +oo 6
PNIOEDS ﬁwﬁ(l)
n>1 k=0 :

where the (; are the Bernoulli numbers of the second kind and A is the
usual difference operator. This formula is related to the classical Laplace
summation formula (cf. Boole).

In the third section we see that we can define the Euler summation of
alternate series by using the Euler-Boole summation formula that is an ana-
logue of the Euler-Maclaurin formula. We see that this summation is given
by

+
8

; (—1)*
DD ) =) S (ARH()

n>1

b
Il
o

and we prove that this sum is related to the sums Zle f(2n — 1) and
>ons1 f(2n) by

R R & 1 2
> fen=1)= 3 fen) = S0 fm) = 5 [ s

This can also be generalized to series of type Y. o, w" ! f(n) where w is a
root of unity.

The unusual shift property (6) shows that the Ramanujan summation
does not verify the translation property which is required (with linearity)
for a summation method by Hardy in his very fine book ”Divergent series”.
But we have seen that abandon of the translation property is necessary if we
want to sum series like > -, P(n) where P is a polynomial. Thus in Chapter
5 we give a general algebraic theory of summation of series that unifies the
classical summation methods and the Ramanujan summation. In this general
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framework the usual translation property appears as a special case of a more
general shift property.

In appendix we give the classical Euler-MacLaurin and Euler-Boole for-
mulas and a proof of Carlson’s theorem.

Obviously we can not claim that our version of the Ramanujan summation
is exactly the summation procedure that Ramanujan had in mind, so we give
an exact copy of the Chapter VI of the second Notebook in which Ramanujan
introduces the ”constant of a series”.
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Chapter 1

Ramanujan summation

In the first two sections of this chapter we recall the Euler-MacLaurin formula
and use it to define what Ramanujan, in Chapter VI of his second Notebook,
calls the ”constant” of a series. But, as Hardy has observed, Ramanujan
leaves some ambiguity in the definition of this ”constant”. Thus in the third
section we interpret this constant as the value of a precise solution of a
difference equation. Then we can give in section 1.4 a rigorous definition
of the Ramanujan summation and its relation to the usual summation for
convergent series.

1.1 The Euler-MacLaurin summation formula

Let’s consider a function f € C'*°(]0,4o0[). For every positive integer n we

can write
n

> (k= (k= 1)) f(k)

> f(k)
k=1

k=1
= nf(n)— Y k(f(k+1) - f(k))
k=1
n—1 .41
= s -3 / (@] ' (w)da

where [z] is the integral part of z. Let {x} =  — [z], then
S 10 =nfn) = [ ar@de+ [ {a)f @)
k=1 1 1

and integration by parts gives

V) = U+ [ f@de+ [ e} (@)de
> / /

1
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In order to generalize this formula we define the function

@) = (o}~ 5

which is a 1-periodic function with fol by (z)dx = 0. We have
n n n 1 n
St =1+ [ s@da+ [ @) [ @
- 1 1 1

k=1

thus we get the Fuler-MacLaurin formula to order 1:

S s = [ s@de+ ¢+ )+ [T @@ 0

k=1

n

To make another integration by parts in the last integral we introduce
the function

ea(x) = /0 " b ()t

which is a 1-periodic with ca(n) = 0 for every positive integer n and

.132

co(x) = —

VIR

then by integration by parts

/ b)) = / " er(@) @)

Thus we get
n n 1 n .
> 5= [ a3+ 10 - [ eae)s

We now replace the function ¢y by

bz(l‘) o Bg
y — el

with the choice of By in order that

1
/ b2(®) 4 —
O 2

which gives By = 1/6 and @ = % -2+ Lifzel01]

Then we get the Fuler-MacLaurin formula to order 2:

S g0 = [ @ g+ 22— ) [T @
k=1 1

1
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If we continue these integrations by parts we get a general Fuler-MacLaurin
formula to order m:

f)+...+ f(n /f der W+ f()

+(—1)m+1 /1" Lﬂ(f) O™ f (w)da
)

m
where by, () is the 1-periodic function by, (x) = By, (x—[z]), with the Bernoulli

polynomials By (x) defined by

n>0

and the Bernoulli numbers B,, = B, (0) (we verify that Bog11 = 0 for k > 1).
For a simple proof of this general formula see Appendix.

1.2 Ramanujan’s constant of a series

Let f be a C* function defined for real > 0. In the beginning of Chapter
VT of his Notebook 2, Ramanujan introduces the hypothetical sum

fQ)+f2)+ fB)+ f(4) + oo + fz) = (),
which is intended to be the solution of
p(x) —p(z —1) = f(z) with ¢(0)=0

Let’s take the numbers B, defined when r = 2,4, 6, ... by (second notebook
chapter V, entry 9)

x _ —7—|—Z ng 2k

then Ramanujan writes the Euler-McLaurin series

= O+ [ J@pot 3 f@+ T @)= T @ T (@)

and he says about the constant C' : the algebraic constant of a series is the
constant obtained by completing the remaining part in the above theorem. We
can substitute this constant which is like the centre of gravity of a body instead
of its divergent infinite series.

o @
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In Ramanujan’s notation the numbers Bs, are related with the usual

Bernoulli numbers by
B2n = (71)117132"

Thus we can write the above Euler-McLaurin series in the form

o) = O+ [ flohta + 3100+ 3 G010

The main difficulty with this formula is that this last series is not always
convergent. Therefore we replace this series by a finite sum and give a precise
meaning to the integral. We are thus led to write the Euler-MacLaurin
summation formula in the form

F)+ .+ f(n) = cm(f)+/1nf(x) % Z Do TRAEL)

k=1
+o0 bom

where

fm
cnin =133

k=1

+oo
an 1f (1) + /1 E’;;nltlr(f))' 62m+1f(x)dx

in this formula we assume that the function f is an infinitely differentiable
function and that the integral

+oo
/ bom+1 (x)82m+1f(3:)dz
1

is convergent for all m > M > 0. Then by integration by parts we verify
that the constant Cp,(f) does not depend on m if m > M thus we set

Cm(f) =C(f)

‘We use the notation

=> f(n)

n>1

and call it the Ramanujan’s constant of the series.

Example
If f is a constant function then df = 0 thus Zn>1 f(n) = Q Thus

R
-
n>1

If f(z) = z then 92 f = 0 thus 252171:%—%:

Sl
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The case of convergence
Assume that the integral fl (2)0f(x)dx is convergent, then the Euler-
MacLaurin formula to order 1 is sunply

s+t s =+ [ @ I - [T @@

with

)

+oo
ctn=2 4 [ @@

Since f:oo b1 (z) f'(x)dz — 0 when n — 400 we get the following expression
of the Ramanujan constant as the limit

R n)
S fm)= Tim (£(1) 4+ fln /f EUy )

n——+o00
n>1

If in addition we assume that lim,_, ;. f(n) = 0 then we have

R n—1 k41
> s =l (F)+ et J0 =)= 3 | faa

thus we get an expression of the Ramanujan constant as a sum of a convergent

series . .
S fm) = 3 (7l — [ s (1.3)

n>1 n=1
This proves the property that if the series > -, f(n) and the integral

+oo

. f(z)dx are convergent then we have the relation

> fn Z f(n / h f(x)dx (1.4)

n>1 n>1

Examples
1) If f(x) = -& with Re(z) > 1 then by (1.4)

= 1

* 1
Z Z /;zdf: |

n>1 n>1

thus for Re(z) > 1 we have the relation with the classical Riemann zeta
function

> =) (1.5
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2) If f(x) = % then by (1.2)

R n n
1 1 1 1
Soo = tim (33— Logln) —5-) = lim (Y2 — Log(n))
n>1 k=1 k=1
thus
1
E — = v where v is the Euler constant (1.6)
n

n>1

3) If f(x) = Log(z) then by (1.2)

R n
Z Log(n) = lim (Z Log(k) — (nLog(n) —n+1+ %Log(n))
k=1

n—-+oo
n>1

Using the Stirling formula we have

lim Z Log(k) — (nLog(n) — n + %Log(n)) = Log(V/27)
k=1

n—-—+00

this gives
R
> Log(n) = Log(v27) — 1 (1.7)
n>1

4) If f(x) = zLog(z) then we have 0f (z) = Log(z) + 1 and 82 f(z) = 1.
Thus by the preceding Euler-MacLaurin formula with m = 1 we have

R n
. " nLog(n) Log(n)+1
Z nLog(n) = nEIEOO (Z kLog(k:)—/1 xLog(x)dx— 5 D )
n>1 k=1
this gives
R n ) )
. n n 1 n 1
> nLog(n) = lim (Y kLog(k) = Log(n) (- + 5 + 75+ ) = 5
n>1 k=1
thus
R 1
Z nLog(n) = Log(A) — 3 (1.8)

n>1

where A is the Glaisher-Kinkelin constant (cf. Srivastava and Choi p.39).
This constant is related to the zeta function by the following relation that
we prove later on

R ) 1
S nLog(n) = ~¢'(~1) - §

n>1



1.2. RAMANUJAN’S CONSTANT OF A SERIES 7

Remark
Note that with the Euler-MacLaurin formula we have for all a > 0:

f)+. 4 f(n) =

S Py - 10— ST B 0 () 4 [T 0 f (o)

n n m — +00 bam, T m
+ [0 Fa)de + LG+ S Ba okl f(n) — [0 bl g2mL £ () da

This is a summation formula where the constant C(f) = ZnR>1 f(n) is re-

placed by
/ f(z)dz + Z f(n

n>1

It seems that Ramanujan leaves the possibility that the choice of a de-
pends on the series considered.

In the special case where the series > f(n) and the integral f;roo f(x)dx
are convergent then if we take a = +00 we get

+o0 R
Culh) = [ f@)dz+ Y 1)
1 n>1

and with the relation (1.4) we get

+o0
n=> fm

This explains an assertion of Ramanujan in Notebook 2 Chapter 6 p.62:
PIfFf (1) + f (2) + ... + f (z) be a convergent series then its constant is
the sum of the series.”

But if for example f(x) = x, then it is not possible to take a = +oo since
Coo(f) is not defined but if we take for example a = 0 then

Co(f):—/ xdm—an-——

n>1

To get simple properties of the Ramanujan summation we fix the param-
eter a in the integral, and we make the choice a = 1 in order to have
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Conclusion
With the use of Euler-Maclaurin formula we have the definition of the
constant of a series by

Zf = lim (f()+..+f(n /f +—+Z BQ’“a?’“ Lf(n)]

n>1
(1.9)
this needs convergence of the integral

/+OO bom1 (2)0*™ ! f(z)da
1

This last hypothesis is not always satisfied, for example if we look at a
series like ) -, e". Thus we need to avoid the systematic use of Euler-
MecLaurin formula and define in a more algebraic way the Ramanujan sum-
mation.

1.3 A difference equation

1.3.1 The functions ¢y and Ry
In his Notebook Ramanujan uses the function ¢ formally defined by

ple) = f(1) + .. + f(z)

It seems he has in mind a sort of unique interpolation function ¢ of the
partial sums f(1)+ f(2) +... + f(n) of the series ), -, f(n) associated to f.
This interpolation function must verify B

pr(@) —pp(x—1) = f(z) (1.10)

and Ramanujan sets the additional condition ¢(0) = 0. With this condition
the relation (1.10) gives for every n integer > 1

pr(n) = f()+f(2)+...+ f(n)

Note that if the series > -, f(n) is convergent we have

Jim pp(n) =3 f(n)

Now in general the Euler-Mclaurin summation formula gives an expansion
of the function ¢; which we can write

¢r(n) =C(f)+ f(n) — Rs(n)
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where the function Ry is defined by

Rf(n) _ f(n) _Em: BQk.BQk—lf(n)_’_/ (l;Qm:i(l)) 82m+1f dt / f

(1.11)

b2k T bama1 (2) o
0% 1f(1)+/1 (2m+1)!82 L f(w)da

We observe that C'(f) = Rs(1). Thus we get

R

Y f(n)=Ry(1) (1.12)

n>1

1.3.2 The fundamental theorem

To avoid the systematic use of the Euler-MacLaurin summation formula we
now find another way to define the function R;. The difference equation

pr(n+1) —¢pf(n) = f(n+1)

and the relation ¢¢(n) = C(f) + f(n) — Rf(n) gives for Ry the difference
equation

Rf(n) — Rf(n + 1) = f(n)

By (1.12) it seems natural to define the Ramanujan summation of the

series Zn21 f(n) by

where the function R satisfies the difference equation

R(z) — R(z+1) = f(z)

Clearly this equation is not sufficient to determine the function R, so we
need additional conditions on R. Let us try to find these conditions.

First we see, by the definition (1.11) of Ry, that if f and its derivatives
are sufficiently decreasing at 400 then we have

n—-+4oo

+oo
lim Ry(n) = —/1 f(z)dz
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But we can’t impose this sort of condition on the function R because it
involves the integral f;roo f(z)dx which, in the general case, is divergent.
Thus we now translate it into another form.

Suppose we have a smooth function R solution of the difference equation

R(z) — R(zx+1) = f(z) for allz >0

Now if we integrate the two sides of this equation between k£ and k + 1 for
all integer k£ > 1, and formally take the infinite sum over k, we obtain

Tr——+00

/1+OO f(z)dx = /12 R(x)dx — lim R(zx)

We see that for the function R we have the equivalence
+00 2
lim R(z)= —/ f(z)dz if and only if / R(x)dz =0
T—+00 1 1

Thus we can try to define the function R; by the difference equation
Ry(z) — Ry(z + 1) = f(x) with the condition

/12 Ry(x)dr =0

Unfortunately this does not define a unique function Ry because we can
add to Ry any combination of periodic functions x — e?'™k® To avoid this
problem we add the hypothesis that Ry is analytic in the half plane {z €
C|Re(x) > 0} and of exponential type < 2

Definition 1
A function g analytic for Re(z) > a is of exponential type < a (v > 0) if
there exists 0 < a such that

lg(x)| < CePll for Re(z) > a
We define O the space of functions g analytic in a half plane
{z € C|Re(z) > a} with some a < 1

and of exponential type < « in this half plane.
We say that f is of moderate growth if f is analytic in this half plane and
of exponential type < ¢ for all € > 0.

With this definition we have the following lemma :

Lemma 1 (uniqueness lemma)
Let R € O™, be a solution of

R(z) — R(z+1) =0 with /2 R(z)dx =0

then R = 0.
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Proof
By the condition R(z) — R(z 4+ 1) = 0, we see that R can be extended to
an entire function. And we can write

R(:E) _ R0(62i7rm)
where Ry is the analytic function in C\{0} given by
1
= R(—1L
Ro(2) = R(5—Log()
(where Log is defined by Log(re®) = In(r) + i6 with 0 < 6 < 27).
The Laurent expansion of Ry gives
R(JE) _ Z Cn€2i7rnw
nez

the coefficients ¢,, are

1 2m . . 1 27 ¢ 1 '
Cnp, RO (,,,ezt)e_lntdt = / R(i + — ln(,r))e—zntdt
0 0 T

2mrm 2mrm

where r > 0.
The condition that R is of exponential type < 27 gives

1 .
len| < —Ced M ity & <1,
rm 21

If we take r — 0 we get ¢, = 0 for n < 0 and if we take r — +o0o0 then we
get ¢, = 0 for n > 0. Finally the condition ff R(z)dx = 0 then gives ¢ = 0.
O

Theorem 1 If f € O% with o < 27 there exists a unique function Ry € O
such that Ry(x) — Ry(z + 1) = f(z) with ff Ry(xz)dx = 0. This function is

r T T fle+it) — f(z—i
R,c(gc):—/1 f(t)dt+f(2)+z'/0 fa+it) = Sl t)dt (1.13)

627rt -1

Proof

a) Uniqueness is given by the preceding lemma.

b) The function Ry defined by (1.13) is clearly in O®.

c) Let us prove that Ry(z) — Ry(x + 1) = f(z). By analyticity it is
sufficient to prove this for real x.

Consider the integral

/ f(z)%Z cot(m(z — x))dz

with ~ the path
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M\
M

X+1

By the residue theorem we have
1
[ 165 cottn(z — )iz = f(a)
y 24

To evaluate the different contributions of the integral we use the formulas:

1 1 1
ZCOt(TF(Z — ZL')) = —5 — m when Im(z) >0
and
L cot(m(z — 7)) = = + hen Tm(z) < 0
— — = -+ ———>—— when .
% cot(m(z x B e?wr(z—w) 1 e mlz

Let us examine the different contributions of the integral:
* the semicircular path at x and x + 1 gives when € — 0

1 1
@)~ 5@+ )
* the horizontal lines give

x+1 x+1
—(—%)/m f(t+iy)dt—|—%/z F(t — iyt

and two additional terms which vanish when y — 400 (by the hypothesis
that f of exponential type < 27).
* the vertical lines give

Y flx+it) Y flx+1+4dt)— fz+1—1it)
eQTrt 62711’ 1

dt

an

;/Ey f(x+it)idt—;/Eyf(x—it)idt—;/Ey f(x+1+it)idt+% /Ey fz+1—it)idt
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If we add this term with the contributions of the horizontal lines we obtain
the sum of the integrals of f on the paths

iy
A L
LE]
—LE 4 X | X+1
-y + ——

By the Cauchy theorem this sum is

5/ f(t+is)dt+§/ Ft—ie)dt

which gives the contribution [ vty f(t)dt when € — 0.

Finally when ¢ — 0 and y — 400 we get

f@) = i@ - i@+

400 A _
+i/0 f(:c—|—26152)7rt _fgz it) i@t
[T e+ 14it) — f(z+ 1 —it)
72/0 e2mt _ 1
r+1
+/ F(t)dt

This is f(z) = Ry(x) — R¢(z + 1) with Ry given by (1.3).

) It remains to prove that fl Ry(xz)dz = 0. By Fubini’s theorem

+OO +o0 .
x+it) — f(z — flx+it) ( —it)
[ / O Sty [ [ iy,

We have for 1 <z < 2

/1(f(x+it)—f(x—it))dx — F@+tit)- F2—it)
—(F(4it) — F(1—it)
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where F(x fl t)dt. Thus
+oo ~ +00 , .
/ / flz+it) — f(z Zt)dt dr - / F(2+it)— F(2 Zt)dt
627rt 1 0 627Tt 1
T P(1 it —i
B / (1+ 12) : F(1—it) i@t
0 esm — 1

By the preceding result (applied with F' in place of f) we have

1 1
F(x) = §F(:c)—fF(x—|—l)
o0 Px +it) — F(x —it)
dt
+ZA e2nt _ 1
T P(r+1+it) — F(z+1—it)
0 e2nt _ 1

:v+1
+/
With x = 1 we get

//*foﬂt f(z it)dtdm_F(l);rF(Z)Jr/le(t)dt

627Tt 1

This gives

/1Rf(x)dx:—/1 F(x)dac—i—%/l f(x)dx—(F(l)_gF(z))—&—/l Ft)dt = 0

1.4 The summation

1.4.1 Definition and examples

Consider f € O?™, then by Theorem 1 we can define the Ramanujan sum-
mation of the series ) -, f(n) by

R

> f(n) = Ry(1)

n>1

where Ry is the unique solution in 0% of

2
Rf(x)—Rf(x+1):0with/ Ry (x)da = 0.
1
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We immediately note that for some f € (27 this definition can give
surprising results. Let us consider for example the function f : z +— sin(7x),

since sin(rz)  sin(r(z + 1))

5 5 = sin(7x)
we get
sin(mx) % sin(7x) sin(rz) 1
Ri@) = —5 _/1 y =Tyt
thus

& 1
Z sin(mn) = p

n>1

But sin(mn) = g(n) with the function g = 0, and we have trivially R; = 0
which gives

This example shows that for f € 0% the sum an f(n) depends not
only on the values f(n) for integers n > 1 but also on the interpolation
function f we have chosen.

To avoid this phenomenon we restrict the Ramanujan summation to func-
tions f in O7, since with this condition we can apply Carlson’s theorem (see
Appendix) which says that such a function is uniquely determined by its val-
ues f(n) for all integers n > 1. Note that in this case the function Ry given
by theorem 1 is also in OT.

Definition 2
If f € OT, then there exist’s a unique solution Ry € O™ of

2
Rf(x) — R¢(x+1) = f(z) with /1 Ry(x)dz =0

We call this function Ry the fractional remainder of f and we set

R

S F(n) = Ry(1)

n>1

By (1.13) we have by the integral formula

Zf(n)zf(1)+i/+mf(1+it)_f(l_it)dt (1.14)
0

6271'15 -1




16 CHAPTER 1. RAMANUJAN SUMMATION

We call this procedure the Ramanujan summation of the series ) -, f(n)

and Z§>1 f(n) the Ramanugjan constant of the series.
Some properties are immediate consequences of this definition:

Linearity
If @ and b are complex numbers and f and g are in O™, then we verify
immediately that

Rafivg = aRy + bR,

thus the Ramanujan summation has the property of linearity

R R R
Y af(n)+bgn)=a)_ f(n)+by_ g(n)

Reality

Consider g € OT such that g(z) € Rif x € R.

Then for all ¢ > 0 we have by the reflection principle g(1 —it) = g(1 + it)
thus i(g(1 +4t) — g(1 —it)) € R and by the integral formula (1.14) we have

R

> gn) eR

n>1

Real and imaginary parts

Take f € OT defined in the half plane {x € C|Re(x) > a} with a < 1. We
define for x €|a, +oo[ the functions f, : z — Re(f(z)) and f; : x — Im(f(x))
and assume that the functions f. and f; have analytic continuations on the
half plane {x € C|Re(z) > a} that are in OT.

Then we can define the sums 2521 Re(f(n)) and 2521 Im(f(n)) by

> Re(f(n) =) fr(n)
n>1 n>1
R R
> Im(f(n) = filn)
n>1 n>1
By linearity we have
R R R R
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Since f,(x) and f;(x) are real for € R then by the reality property we
get

R R
Re()_ f(n)) =) Re(f(n))
n>1 n>1
R
Im(y_ f(n) =Y Im(f(n))
n>1 n>1
For example if f(z) = z%_l then f, : 2 — 7 and fi : 2 — Z;—il are
analytic functions in O™. Thus
LIS | s n
Re(z ) = Z 2
= n-+1 = n®+1
L1 S
I = —
mQ D T L

Remark B
Note that generally we can’t write fo f(n) = me f(n) since the

function f is not analytic (if f is non constant).

Examples
1) Take f(z) = e ** with z € C then for Re(x) > 0 we have

F(@)] = =ReCea) = ~ReC il
Thus if we set % = e then f € OT for z € U, where

||

Ur={2€C| sup Re(—ze")<n}

oc[=7%.3]

m

.
N
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Then if z € U;\{0} we can write

e~ 3T efz(a:jtl)

1—e* 1—e*

—zx 2 e 2%

dx, thus we have

this gives Ry(z) = 1

—e—2 J1 1—e—=

Ry(z) = -

and we get for z € U, \{0}

—Zz

R e e
A = — 1.15
Ze 1—e* z ( )

n>1

R R . —- —:
For z =0 we have ) " e *" =3>"" 1= % = lunzeo(li? -5 )-

If z =it with ¢ €] — w, 7[\{0}, taking real and imaginary part of (1.15)
we get

R Sin

Zcos(nt) =0 t(t) - % (1.16)
R
3 sin(nt) = %cot(%) - %@) (1.17)

n>1

2) Let k be a positive integer. By the definition of the Bernoulli polyno-
mials we verify that

Beyi(z+1)  Bpga(z) 4

k+1 kE+1

and since fol By.y1(x)dz = 0 we have

2 1 1 1
/ Bk+1({£) do — / Bk+1(.’£ + 1)dl‘ _ / Bk(.’[) da +/ :ckda: _ 1

Thus if f(z) = ¥ where k is an integer > 0 then

- 1-— Bk+1(.’L')

, S A 1.1
Ror(@) = — 4 (118)
thus we get
R R
1-B 1
Z kE _ k+1 . Z _

n>1 n>1
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3) Take f(z) = = with Re(x) > 0.
a) For Re(z) > 1 and Re(z) > 0 the series >
and defines the Hurwitz zeta function:

1 f
n>0 (nia)® 1s convergent

X1
((z,2) = ngo m
Since 1
Clz,z) = C(z,2+ 1) = o (1.20)
we have

2 oo
Ry(x) = ((z,2) / Z e

is uniformly convergent for = € [1,2] we have

Since the series 7 (n+z)z

/Hf : f( 1 =1 =
(L‘: — =
(n+x)* z=14(n+ 1)1 (n42)>t z—1

Thus for Re(z) > 1 we have

b) For every z # 1 the integral formula (1.13) for the function Ry gives

i 1 1 oo (22 4+ +2)~*/2 sin(z arctan(t/x))
- - St 40 dt
e B I L A e2rt |

since this last integral defines an entire function of z We see that the Hurwitz
zeta function, previously defined by the sum +°° 0 nra)® +m)z , can be continued
analytically for all z # 1 by

=2 N lx_z N 2/+°° (z? + t2)_z/2251n(z arctan(t/x))dt
z—1 0 e?rt —1

C(Z,.%‘) =

And by analytic continuation the equation (1.20) remains valid, thus for all
z # 1 we have

1
Ry () = ((en) — — (1.21)
If we define for z # 1 the Riemann zeta function by
((2) =<C(21)
then we have
LS| 1
i _ 1.22
=) - (1.22)
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We use the notation

P =Y = (1.23)

4) If f(z) = L then the series 3, s
of the difference equation R(z) — R(z + 1) = 1 we replace it by the series

is dlvergent and to get a solution

oo (ﬁ - n—ﬂ) Thus we have
1 2 +°° 1
R — dz
s(@) = Z(n—i—x n—l—l n—l—x n—l—l)
This last integral is
2 +oo 1 +00 1
J s e = X hos(n )~ Logla) — 1) = =
where v is the Euler constant. Thus
—+oo
1 1
R: = -
;(x) nz:;)(nJr:v n+1)+7
and we get
R
> ~ =y (1.24)
n>1

5) Another way to get (1.24) is to use the the digamma function ¢ =T"/T
that verifies

W@ +1) — la) = é with /1 W(@)da =

Thus we have

Ry = —(x) (1.25)
Note that we have
T LI (1.26)
v . _n:0n+l n+zx '

and ¥(1) = —v. By derivation we have for any integer k > 0

Oz +1) — 0"(x) = (—l)kmfil

with
[ 0 utands = 9"t u(2) - 04 1u(1) = ()4 - 1
1
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Thus we get
(=D 1
Note that for any integer k > 0 we have Ele i = ((k+1) — ¢, thus we
have
k(1

6) Take f(z) = Log(x), where Log is the principal determination of the
logarithm. Then the relation I'(xz + 1) = 2T'(z) gives

Log T'(x + 1) — Log T'(x) = Log(x)
thus )
Riog=—Log T +/ Log T'(t)dt
1

since it is known that ff Log T(t)dt = —1 + Log(v/2m) cf. Srivastava and
Choi) we get

Rpog(z) = —Log(T(x)) + Log(v2r) — 1 (1.28)

and for z = 1 we have

R
Z Log(n) = Log(v/2m) — 1

n>1

1.4.2 The fractional sum

We will now explain how the Ramanujan summation is related to the function
that Ramanujan writes

ple) = f(1) + ..+ f(z)

Consider f € O™ and suppose we have a function ¢ analytic for Re(z) > a
with —1 < a < 0 and of exponential type < 7 which satisfies

p(x) =z —1) = f(x) with ¢(0) =0

This gives p(n) = f(1)+...+ f(n) for every positive integer n, thus the func-
tion ¢ is an interpolation function of the partial sums of the series Y f(n).
If we set

R(z) = —p(zx —1) +/0 p(z)dzx

then R is an analytic function for Re(z) > a + 1 of exponential type < ,
which satisfies R(z) — R(x + 1) = f(x) with ff R(z)dz = 0, thus R = Ry
and we get

o(z) = / p(@)de — Ry(z+1)
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Since ¢(0) = 0 we have

R

/O p@)de = By (1) = Y f(n)

n>1
and the function ¢ is simply related to the function Ry by
p(x) = Ry(1) — Rp(x + 1)

Inversely this last equation defines a function ¢ analytic for Re(z) > a with
—1 < a < 0 and of exponential type < m which satifies

p(r) —p(r —1) = f(z) with (0) = 0

We are thus led to the following definition:

Definition 3
Let f € OT, there is a unique function ¢ analytic for Re(x) > a with
—1 < a < 0 and of exponential type < m which satisfies

er(x) —pp(z—1) = f(z) with (0) = 0

We call this function the fractional sum of f, it is related to Ry by

R
¢r(x)=Rs(1) = Re(x+1) = f(n) — Ry(z) + f(2) (1.29)
n>1
and we have
R 1
S )= [ esa)do (130
n>1 0
Example
If k is an integer > 1 then
oo (2) = 1= Bipr 1= Bra(@) | _ Bera(®@) = Ben | 4

kE+1 k+1 B k+1
If k = 0 we have ¢y (z) = Bi(2) + 5 = z.
If k£ is an integer > 1 then

_(=DR
e OVt

+((k+1)

For kK = 0 we have )
pa(2) =V(2)+ —+7
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More generally for z # 1 we have

Integral expression of ¢y
The relation (1.29) between ¢ and Ry gives by (1.13)

R ) )
_ f(z) * [T flr+it) — f(x—it)
<pf(x)72f(n)+72 Jr/1 f(t)dtfz/o T dt

n>1

If we replace x by a positive integer n we get the classic Abel-Plana formula

+oo it) — i
F) 4ot f(n) = f<1>+/ fa+it) - f0-it)

627rt -1
f(n) /” ,/+°° f(n+it) — f(n—it)
+ 5 T ' ft)dt —1i ; T dt
Note that the condition
+o0 AN s
S A (UE2 0 R (U P
n—-+oo /g es™ — 1
is sufficient to obtain
R n
. n
> = i [F0) 4+ o) = L5~ [ g
n>1 ) 1
Examples

1) Take the function f = z 5 +11q where p and ¢ are strictly positive
integers. We have

R

1 1 1
= lim (— + ..+ — —Log(nq)) + —Log(p + q)
;Wrnq nﬂ+oo(p+q p+ng g ) q

Thus the generalized Euler constant (cf. Lehmer) defined by

1 1 1
(p,q) = lim (= +——+.. — —Log(ng)
) n~+<><>(p p+a p+ng q )
is related to the Ramanujan summation by
R
1 1 1
v(p,q) = +—=——Log(p+q)
#.9) Z p+ng p ¢q (

n>1
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2) Take f(z) = Log(x) then
QOLog(x) = Log(T'(z + 1))
and by the integral expression of ¢r,, we have

arctan(%) i

627\'t —1

1 +o00o
Log(T(z +1)) = Log(V2m)+ §Log(m) +zLog(z) —x + 2/0

Remark
In his Notebook Ramanujan uses for the function ¢y the expression

+oo

pr(z) =Y (f(n) = f(n+)) (1.31)

n=1

when this series is convergent.
Note that if the series > -, (f(n) — f(n +x)) is convergent and if

i f(2) =0
then the relation
N N
S (fn) = fn+x) = > (f(n) = f(n+x—1)) = f(x) — fz+ N)
n=1 n=1

gives when N — +oo

er(@) —pp(r—1) = f(z)

Thus if we assume that the function defined by (1.31) is analytic for Re(z) > a
with —1 < a < 0 and of exponential type < 7 then it verifies the requirements
of definition 3.

1.4.3 Relation to usual summation.
Consider a function f € O™, such that

lim f(n)=0

n—-+oo
By the definition of R; we have

n—1

Ry(1) = Ry(n) = Y f(k).

k=1

Thus the series ), -, f(n) is convergent if and only if R¢(n) has a finite limit
when n — +o0o and in this case

R oo
S fn) =3 )+l Ry(n)

n>1 n>1



1.4. THE SUMMATION 25

Now let us see how this last limit is simply related to the integral of the
function f. Recall the integral formula

n " O f(n+it) — f(n—i
Rf(n):f;)—/1 f(t)dt+i/0 flntit) =~ fn =) 4

eQTrt _ 1

and assume that

lim oo f(n4it) — f(n —it)

n—+oo Jq 627"75 —1 dt =0

Then the convergence of the integral f;roo f(t)dt is equivalent to the fact that
R;(n) has a finite limit when n — 400 and in this case

“+oo
lim Ry(n) = —/1 F(t)dt

n—-+o0o

Thus we have proved the following result :

Theorem 2 Consider f € O™ such that

Jim f(n) =
e ¥ flnit) — f(n — it)
. fn+it) — f(n—it
Jim Sy dt =0 (1.32)
0

Then the series Y, -, f(n) is convergent if and only if the integral f1+°° ft)de
is convergent and we have

R oo
> fn Z f(n / f()dz (1.33)

n>1 n>1

From now on, we will say in this case that "we are in a case of convergence”.

Example
For z € C\{1,2,3, ...} we have

R

1 — 1 e 1
> (- =Y (- / (= - )da
n+z et n n+z 1 r T+=z

n>1

and by (1.26) we get

oo q 1

EZ*—EZn+Z—v+ww+-> | G-

n>1
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Thus for z € C\{1,2,3,...} we have

R

1
n%:l - —tp(z + 1) + Log(z + 1) (1.34)

If p and ¢ are strictly positive integers this gives

R

1 1 1
meq:—&w( )=+ Log( +1)
>1

By Gauss formula for ¢ (c.f. Srivastava and Choi) we get for 0 < p < ¢

R

1 1 1 1 T
Z = —v——+-Loglp+q)+ —cot(wg)
=1 Ptng ¢ r q 2q q
1 k
- = Zcos 2wk= )Log(2 sin(7—))
k=1 q
Remark

Take a function f € O™ such that the function
+oo
giam S fo+n
n=0

is well defined for Re(z) > 0 and assume that g € O™. Then we have
g9(x) —glz+1) = f(z)

Thus we deduce that

If in addition we have

2 +oo
/ fo+ndx—2/ flz+n)d
then it follows that
+oo +o0
= Z flx+n)— / f(z)dx. (1.35)
n=0 1

Thus we see that in this case the function Ry is simply related to the usual
remainder of the convergent series > -, f(n).



Chapter 2

Properties of the
Ramanujan summation

In this chapter we give some properties of the Ramanujan summation in
comparison to the usual properties of the summation of convergent series.

In the first section we begin with the shift property which replaces the
usual translation property of convergent series. This has important conse-
quences in the use of the Ramanujan summation, especially for the classical
formula of summation by parts and of summation of a product. General
functional relations for the fractional sum ¢y are also deduced.

In the second section we examine the relation between the Ramanujan
summation and derivation, we see that the fractional sums ¢; and @a¢ are
simply related. We deduce some simple formulas for the evaluation of the
Ramanujan summation of some series, which constitutes the content of the-
orems 5 and 6.

In the third section we show that in the case of the Ramanujan summation
of an entire function the sum EnR>1 f(n) can be expanded in a convergent
series involving the Bernoulli numbers. This very easily gives some formulas
involving classical constant or trigonometric series.

2.1 Some elementary properties

2.1.1 The unusual property of the shift.

Let f € O™ and consider the function g defined by g(u) = f(u+ 1), we have
by definition of Ry

Ri(u+1)— Ry(u+2)= f(u+1) =g(u)

27
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we deduce that the fractional remainder function R, is given by
2
Ry(u) = Ry(u+1) —/ Ry(u+1)du
1

2
= Rj(u)— f(u) 7/1 (Ry(u) — f(u))du

Thus we have )

Ry(u) = Ry(u) — f(u) + ! f(u)du

And for u = 1 this gives the shift property

S 1) =Y ) - F(1) + / f(z)da (2.1)

n>1 n>1

Therefore we see that the Ramanujan summation does not satisfy the usual
translation property of convergent series.

More generally let f € O™ and for Re(z) > 0 let g(u) = f(u + ). Then
we have
Ri(u+z)—Rf(u+z+1)= fut+z) =g(u)

we deduce that
r+2

Ry(w) = Ryt ) - | | B

thus taking v = 1 in this equation we get

R x+2
Zf(n+x):Rf(x+1)—/ Ry (v)dv
x+1

n>1

This last integral can be evaluated by using

/19C+1 Ry(v)dv — /1$+1 Ry(v+1)dv = /1“—1 f(v)dv

x+2 x+1
—/ Rf(v)dv:/ fv)dv
x+1 1

which gives

Therefore we have

R z+1 z+1
- ko) = Rylat )+ [ S0 = Ry =@+ [ foae 22)

n>1

Since Ry(z + 1) = Ry(1) — ¢s(x) we get the general shift property

R R r+1
S fnta) =3 fn) - or(a) + / f(v)dv (2.3)
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If m is a positive integer then the shift property is simply

R R m m—+1
S fmem) =3 fn) -3 fn) + / f(x)dz

n>1 n>1 n=1

Remark
Let us consider a function f such that x — f(z —1) is in O™, we define

Zfzo f(n) by

R R
dofm) =Y fln—1)
n>0 n>1

By the shift property applied to x — f(xz — 1) we have

S F) = £0)+ Y fn) + / f(x)dz

n>0 n>p

Examples
1) Let f(z) =1 and H,, = Y_}", +, we have

R m—+1

1 1 1
Z = Z**HHL‘F/ 7dx:'nym+Log(m+1)
n 1 X

n-+m
n>1 + n>1

(which is a special case of (1.34) since H,, = ¥(m + 1) + 7).
As an application, consider a rational function

M
c
g(x) = Z . —:Lm such that Z ¢m =10
m=0 m=0

then we are in a case of convergence for the series ) ., g(n) and we have

“+00 400 M
Sam=y > e [Ty e,
n=1 n>1m=0 n+m m= 0
Note that
M R
S S et Y cutintn 1)
n>1m=0 +m m=0n>1 n+m
+o0 M A M M
de = 1i =— mLog(1
/ a:—i—mx A~1>I}Floo 1 Zx—i—m ZC og(1+m)

m=1
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Thus we get
“+o0 M
Yogn) ==Y culn
n=1 m=1

By summation by parts we obtain the classical result

—+o0

co+c¢ co+ ... +Cm—
S ) meo+ DT 4O T Ot
= 2 m

2) For f(z) = Log(x) we get by (2.2)

R
Z Log(n + z) = —Log(T'(z + 1)) + Log(v/27) — 1 + (z + 1) Log(z + 1) — =

n>1

Let’s have t > 0, since

t 1
arctan(—) = —(Log(n + it) — Log(n — it))
n 24
then we get
R ¢ 1 R R
Z arctan(ﬁ) = %(Z Log(n +it) — Z Log(n — it))
n>1 n>1 n>1
1 I'(1+4t
= _QiLOg(I‘Eli—Zt;) +tLog(\/t2 4+ 1) 4 arctan(t) — ¢

With t =1 we get

R

AR s 1
arctan(n) = E 575 arctan(ﬁ)
n>1 n>1 n>1
1 I'(1414) 7r
= ——L L 2+ —--1
ulodra=y)t og(V2) + 5

Note also that we have arctan(L) — £ = O(-%), thus we are in a case of

convergence and by (1.33) we deduce that

+o00 + + R ¢ +oo t t
(arctan(—) — —) = arctan(—) — ~t +/ (arctan(—) — —)dz
n;l n n 7; n 1 X xX
thus we get

+o0 ]
Z(arctan(%) — %) = ;LOQ(H) ot

n=1
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3) Let t €] — m, +7[ and consider the series

n—1)t nt
n>11+6( ) l1+e

The partial sum of order N of this series is equal to % —
convergence of the series and we have

ﬁ, this gives the

too 1 1 —Lfort <0
Z(l + eln=1)t - 1 +6nt) = 01 fort=0
=t +§ fort >0

Thus, although the terms of the series are continuous at ¢ = 0, the usual
sum has a discontinuity for ¢t = 0. This is not the case for the Ramanujan
summation, as we can verify with this example:

By the shift property applied to the function

1
f(l‘) = 1+ ela—1)t
we have immediately
i 1 L 1 /1 Ly
_ - - _ R
el 1 ent 2 Jy 1+evt

This is a continuous function of ¢ which is given by

i( 1 1 )= —2 + 1(Log(1 + €') — Log(2)) for t #0
1 telnm 1 ent 0 for t =0
12
0
-1/2

We examine in Chapter 3 how the Ramanujan summation of a series
Y ons1 f(n,z) with f(x,z) depending analytically on an external complex
parameter z conserves the property of analyticity.
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Application
Ramanujan gives an explicit evaluation (cf. Ramanujan (13. Sommation
of a certain series)) of sums like

+o0 3 3
S WA -V = ()
n=0

Let us see how we can obtain this result by a simple application of the shift

property.
First we write

+oo
S (VAT vy :7“2 (T - Vi)
n=0

and since we are in a case of convergence

+00 R “+o0
SWAFT-vi) = S VATT-vit+ [ (eI Vil
R
= Y (Vn+1-vn)? —*(12\/5—18)

Next we use the binomial expansion of (v/n + 1 — /n)? and we get

R R
Z(W—f Z ((n+1)%2 =n®2) =33 (n'? + (n+1)'/?)

n>1

By the shift property (2.1) we have

R 2
> ((n+1)%2—n??) = —1+/ x3/2dx:—1+%(8f—2)
1

n>1
R R 2
S+ aat) = 2> w1 [ el
n>1 n>1 1
1 2
= 2((—y)+3) -1+ 5(VE-2)
After some simplifications we get

+0o 1

Y (VaFT—n)’ = —6¢(~3)

n=0

which, by the functional equation of the zeta function, is Ramanujan’s result.
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Note that the series ) -, (v/n + 1—4/n) is divergent but we can evaluate

the sum of the "regularized series” > o, (vVn+1—/n— ) by the same
technique :

+oo0 1 R R R

ST Vi g = ST S S g

n=1 2\/5 n>1 n>1 n>1 2\/7;

+/ r4+1-Vr -
. (v f)
1.1
- 1)

2.1.2 Summation by parts
Let f € O™ and g € O™ be two functions such that fg € O™, we have

f@)g(x) = flz+1)gle+1) = (f(2) - flz+1))g(z) + f(z+1)(g(x) —g(x+1))

Thus by definition of the Ramanujan summation we have

R

S (F(n)— F(n+1))g(n)+ F(n+1)(g(n)—g(n+1)) = / £(0)

n>1

Using the property of linearity we get the formula of summation by parts

R R
S (fn+1) = f(n)gn) == f(n+1)(gn+1) — g(n))
n>1 n>1 (24)
+ [ rwgta
Examples

1) With f(xz) = Log(z) and g(z) = x we have

1
Z n Log(1 + Z Log(n / t Log(t + 1)dt

n>1 n>1 0

and we get
S 1. 5
Zn Log(1 + ﬁ) =1" Log(v/2r)
n>1

The regularized series Y, ~;(n Log(1+ +) — 1 + 5-) is convergent and by
linearity and application of (1.33) we deduce that

—+oo

Z(n Log(1 + %) -1+ i) = lw — Log(V2r) +1

2n 2
n>1
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2.1.3 Sums of products

If we replace g by ¢, in the formula (2.4) of summation by parts we get

R R
Y (fn+1) = fn)pg(n) = =D fln+1)(pg(n+1) = py(n))

2
+ / F(H)py ()t

since pg(n + 1) — pq4(n) = g(n + 1) we get, by the shift property, a formula
for the summation of a product:

/ gyt 1) dt*Z(f(nH)*f(n))sog(n) (2.5)

n>1

Example
If f(x) =2 and g(z) = Log(x) we get by (2.5)

R 2 R
Z nLog(n) = / tQrog(t — 1)dt — Z PLog(n)
n>1 1 n>1
Since ¢rog(x) = Log(I'(z + 1)) we have
R 2 R
Z nLog(n) = / tLog(T'(t))dt — Z Log(n!)
n>1 1 n>1

Note that we can evaluate more directly the sum Z§>1 nLog(n) by using the
relation (cf. Srivastava and Choi) B

x+1 T
/1 Log(T'(t))dt — /1 Log(T'(t))dt = xLog(x) — x + Log(v/2)

B + L //Log ))dt dx

By integration by parts we deduce that

2
ZnLog 7/ tLog(T'(t))dt — 9 + 3L09(\/7)

12
n>1

which gives

Z nLog(n

n>1

Thus we get the relation

G 19 3
Z Log(n!) = —2 Z nLog(n) — — + ~ Log(V/2r)

n>1 n>1
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Theorem 3 Let f and g be two functions of moderate growth then we have

R R R R R
Y fmgn) = D ern)gn) + Y ee(n)fn) =Y f(n) Y g(n)

- /12 R¢(z)Ry(x)dx

Proof
Since Ry(x) = Z§>1 f(n) —@¢(z) + f(x) we see that it is equivalent to
prove that -

R R R R R
D Rp)g(n)+ Y Re(n)f(n) = Y fln)g(n)+ > f(n) Y gn)
- Ry(z)Ry(z)dz

We have immediately

Ry(x)Ry(x) = Ry(z + 1) Ry(z + 1) = Ry (2)g(x) + f(x)Ry(2) — f(2)g(2)
thus if h(x) = Ry(z)g(x) + f(z)Rg(x) — f(x)g(x) then we have

2
Ru(x) = Ry(x)Ry(x) - / Ry()R, ()it

taking the value for z = 1 we obtain the result.
O

Example
With f(z) = g(z) = % the preceding theorem gives

s 2
> % = %(4(2) —1+9%)+ %/1 (¥ (t))*dt (2.6)

n>1

Remark

Since Ry = E§>1 f(n) — @5 + f we can express the result of Theorem 3
only in terms of the fractional sums :

R R
Yo fmgn) = D (f(n)eg(n) +¢s(n)g(n))

+ / (F(@)0y(@) + 05 (2)g(2))de

2
- / (F(@)9(@) + o7 (@)py (@) de
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2.2 Summation and derivation

Let us first remark that if g € O% then we have dg € O%. This is a conse-
quence of Cauchy integral formula, since if ¢ is analytic for Re(z) > a (a < 1)
then for 0 < r < 1 — a we have for Re(x) >a+r

1 27 . . 1 27 .
096 = 5= [ o+ ree o < o [ lgta e iap

Let f € O™ then 9f € O™ and we have
ORy(x) — OR; (¢ + 1) = Of(x)
since Ry € O™ then OR; € O™ and we deduce that

2
Roy = ORy —/ ORy(x)dx
1

This last integral is simply Rf(2) — Rs(1) = —f(1) thus we get a relation
between Ry and Ry that is

Roy(z) = ORs(x) + f(1) (2.7)
which we can translate into the fractional sums
R
por(x) = dps(z) — f(1)+ > 9f(n) (2.8)
n>1

Theorem 4 Let f € OT then for every integer m > 1 we have

R m 1
S0 = =D 2 W+ (0 [ R P2 (29)

n>1 k=1 0

Proof
We have Bi(t) =t — 3 thus

0:/0 Rf(t+1)dt:/o Ry(t+ 1)OBy (t)dt

Using the relation (2.7) and integrating by parts we obtain

1
Ry(1) = %f(1)+/0 Rog(t+1)By(t)dt

If we proceed by repeated integration by parts we find

R m 1
> fm)=— %8’“*1]“(1) + (1)’"“/0 Ramf(tJrl)B;(!t)dt

n>1 k=1
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Corollary
Let f € O™ and for k > 1 let

Fk(m) = /195 Fk_l(t)dt with F() = f

then by the preceding theorem we have immediately

ZF )m“/lRf(t—l-l)Bm('t)dt
0 m!

n>1

For m =1 we get

Example
Let f(z) = 1. We have Fy(z) = Log(x), and

k=1 Py(x)
Fy(z) = mLog(m) T
where the Py are the polynomials defined by P, = 0 and
Pl(z) = kPy_1(x)—ka"2ifk>2
P.(1) = 0

By the preceding corollary we get

R
anLog(n) )= 1/ Pt + 1 ( )dt - Lﬁ_l(n)

n>1 n>1 k+1

In this relation the last sum can be evaluated in terms of Bernoulli numbers

since
R

Zn —ﬂlfk>1and Zl—%

n>1 n>1

we get for example

ZnLog / thrlBQ()dt B,

2
n>1

o~ 2 (1) 1
> n’Log(n w —3di+ By —

n>1
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Theorem 5 Let f € OT then

R 3 R R R -
> orn) = 5 > fn) =Y nf(n) = > F(n) with F(z) = /1 F(t)dt
n>1 n>1 n>1 n>1

Proof
Since we have

zRf(x) — (e +1)Rs(x+ 1) =af(z) — Rp(x +1)

we deduce that

R

S (nf(n) — Ry(n+1)) = Ry(1) - / ERy (1)t

n>1

By the preceding corollary we have ff tRy(t)dt = 2521 F(n), thus we obtain

R R R R
donfn) =Y Rin+1)=) f(n)=) F(n)
n>1 n>1 n>1 n>1

which is the result since Ry(n+1) = Rs(1) — ¢f(n).
]

Example
For all s € C we define the harmonic numbers HT(LS) by

R 3 R 1 R 1 R n

(s) _ 2 - _ —s
OLIEED D DT DY WA
n>1 n>1 n>1 n>1

Let us write explicitly some different cases:
a) For s # 1,2 we have

R
3 3 1 1 1
(s) — 2 _2 _ _ - _
DHP =)~ Gy D)t g (0
n>1 n>1

then
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b) For s = 1 we have
R 3 Ry R R
DU SR ST ST
n>1 n>1 n>1 n>1

thus

ZH 7+*—Log(\/ )
n>1
This gives the sum of the regularized series

= 1. 1 1
> (H, — Log(n) — 7—2*) §V—LOQ(V27T)+§
n=1 n

c¢) For s = 2 we have

R 3& 1 &K1 &K
2)
DHIT =Y =Y D (1)
n>1 n>1 n>1 n>1
thus

s 3

STHE = ¢(@) -2

n>1

This gives the sum of the regularized series

+oo

Remark

Let f be a function of moderate growth, then by Theorem 3 we have
R R R R R
Do Fmafn) = Y erm)df(n)+ Y was(n)f(n) =D f(n) Y df(n)
n>1 n>1 n>1 n>1 n>1

— ‘/1 Rf(.%‘)Raf(l‘)dl’

Using (2.7) this last integral term can be easily evaluated :

[ Ry@)Ros()da = [ Ri(@)oRs(@)de = 517 = F()Rs (1)

thus we find the relation

R R R R R
S Fmafn) = > @rm)df(n)+ Y por(n)f(n) = > f(n)> df(n)
n> 7;_ - n> n> n>

- SFP )Y f(n)

n>1
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For example if f(x) = mip with p # 0,1 the preceding relation gives

R (p) R (p+1)
D T = (4 1) ()~ ST D~ 5 (210

-1
n>1 n>1 p

and for f(x) = T we obtain

R H, R H7(12)
DoY) =)+ -1 (2.11)
n>1 n>1

2.3 The case of an entire function

2.3.1 The sum of an entire function

In the first entry of Chapter XV of the second notebook Ramanujan writes:
+o0o
hip(h) + hep(2h) + hp(3h) + ... / o(z)dz + F(h)
0
where F'(h) can be found by expanding the left and writing the constant

instead of a series and F(0) = 0.
Cor. If ho(h) = ah? +bh? + ch” + dh® + ... then

oo B B
ho(h)+hp(2h)+... = / o(z)dz+a—LhPcos(mp/2)+b—Lhcos(mq/2)+
0 p q

We try to give a precise meaning to Ramanujan’s assertion with the fol-
lowing theorem.

Theorem 6 Let f be an entire function of exponential type < m, then we

have
! b Bk+1
/ f(a)de — (0 Za e

Thus in a case of convergence we have

> = [ s Lo Za’“ T

n>1

n>1

Proof

Let us write f(z) = Zzof) ¢ zk with ¢, = 9% f(0). By the Cauchy integral
formulas we have for § < 7 a constant C' > 0 such that for every integer k > 0
and every 7 > 0

27
lek| = k'r_k—| f(re ) _iktdt\ < Cr=Fkelr
0



2.3. THE CASE OF AN ENTIRE FUNCTION 41

Since f < m we get

|ex| < ing Cr=kefr < O7F where 7 < 7
r>

Let us now prove that Ry = ZZ:S B Ryr. We have

1 — Biy1(x) ze®? B, (z)
Rouw) = —— 20y where Sy = 3 =

thus we consider the function
+oo +oo
Ck Bit1(z)
xHZkv Z(kJrl) kzock(k+1)!
By the Cauchy integral formula we have for 0 < r < 27

27 zrett
Bra(z) _ — € iktgy
(k+1)! 2 Jo eret —1

thus for Re(z) > 0 we get

By () 1 /2” 1 , B
< B rlz| — Mr k r|z|
‘ (k + 1)' | (27_[_ |€’r‘e“ — 1‘ ) r (& T (&

Since |c,| < C7F where 7 < 7, if we take 7 < r < 27, this inequality shows

that the series Z;:é ck%w is uniformly convergent on every compact

of the = plane and defines an entire function of exponential type < 27. By
2 +oo
Bk+1 1— Bk-l—l
d =0
[ L= Y [ e

we can conclude that

1—Bk+1(x)
Ry(x) = - ket
5@ kzzoc’“ (k+1)!
Thus
Yl oS s am) - Y g
- k+1)! = k+D i C e+ 1)!
this gives

B
Zf dz—fco—Zc kj—+11

n>1
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Remark
Since Bagy1 = 0 for k > 1 we have

R 1 1 +o0 . Boy,
> s = [ s =510 -3 om0 g8

thus if f is even then

R 1 1
> 1= [ s 510

Example

With p an integer > 0 and 0 < t < 7/p, let f(z) = % for x # 0 and
f(0) = tP. This function is entire and even, thus by the preceding theorem
we get

i sin”(nt) /1 sin? (xt) dr — lt”
B 2
0

np xP
n>1

Since we are in a case of convergence then

Ji:.o sin® (nt) _ ER: sin? (nt) n /+°° sin® (xt) d — /+°° sin® (xt) dr ltp
n=1 P n>1 g 1 0 )

n n xP xP
this gives
+oo . p +00 P
sin® (nt sin?(x 1
S et [ e
ot n 0 xr
Remarks

1) The preceding theorem is simply the relation

+00 a
z— f(r+1) zza lj;(l)xk
k=0
we get
R +00 A R
Zf(n—l—l): 0 IJ;(Uan
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and by the shift property we obtain

R +oo Bk
Z fn)=- Zﬁk*lf(l)ﬁ
n>1 k=1 ’

2) The preceding theorem is not valid if f is not an entire function. For
example take f(z) = ler%t?’ then if we apply the preceding result we find

+oo

1 tooo 1 1 7 1
Sirer=/ Trestacas
= 1+ n2¢? o 142t 2 2t 2

in contrast with the classical formula (cf. Berndt Ramanujan’s Notebooks
I1, ch.15, p.303)

N S
14+n2t2 2t 2 te2n/t—1
n>1

This is a particular case of a remark that Ramanujan writes after the first
entry of chapter XV:

1l the expansion of @(h) be an infinite series then that of F(h) also will be
an infinite series; but if most of the numbers p,q,r,s,t,...be odd integers F(h)
appears to terminate. In this case the hidden part of F(h) can’t be expanded
in ascending powers of h and is very rapidly diminishing when h is slowly

diminishing and consequently can be neglected for practical purposes when h
is small.

Corollary Let f be an entire function of exponential type < w. Then

R 1 +o0 X

Kk
n>1 k=2

Thus in a case of convergence we have

+00 1 +o00
fn) f(x) — £(0) f() 1.,
= 9°£(0) By
3 ko
k=2
Proof

Let the function g be defined by

_ M if z # 0 and ¢(0) = f'(0)
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If we apply the preceding theorem to this function we get

R R 1 +o00
fn) &R0 i@ -f0), 1, Bss
§n‘zn—/o T Wl 0= 0y,

Since §%g(0) = % we obtain the formula.
O

Examples
1) For z € Uy (cf 1.15) take the entire function « — e~**. We have by
the preceding corollary

R —zn 1 —zx too k
e e " —1 1 (—=1)* ;. By
= 7d — — Ve
Z n /0 - THY+ 52 Z HC
n>1 k=2

k
The sum ZZ:’Q (_kl!) zk% is easily obtained by integration of the relation

which gives

+oo gk
E ( 1|) zk% = Log(1l — e *) — Log(z) + 1z
= Kk k 2

Finally we get for z € U,

R e—n 1 e~ _ 1

Z =~4 / ————dx — Log(1 — e~ %) + Log(z) (2.12)
n 0 X

n>1

For Re(z) > 0 or z = i with o €] — 7, w[\{0} we are in a case of convergence
then

+oo  _n 1 —zx +oo —zx
-1
Ze = / eidx—i—/ ¢ dx +v + Log(z)
n>1 n 0 X 1 xr
— Log(l—e™?)
Since Z:; e;:n = —Log(1 — e~ #), this gives the relation
+oo _—zx 1 —zx
-1
/ € _dw+ / £ T ir= —v — Log(z) (2.13)
1 r 0 x

Taking the real part of this relation for z = ia we obtain

+00 1 -
/ cos(az) \ / o) Ly — 3~ Logllal)  (2.14)
1 z 0 t
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2) Let’s take Re(z) > 0, if we apply the formula (2.4) of summation by
parts to the functions f(x) = Log(z) and g(z) = e™**, we get

R R 1

—nz 1 z —nz —=zt
Z e " Log(l+ —) = (e*—1) Z e "*Log(n) +/ Log(t+ 1)e™*"dt
n 0

n>1 n>1

2.3.2 An expression of Catalan’s constant

Let f be an entire function of exponential type < w. By the same method of
the preceding corollary we have

R 1
fn)  _ f(x) = f(0) = f(0)
Z n2 - /0 72

n>1

R

Ldz + 5 %)f(()) +7 f'(0) - i £(0)

n>1

X OFLF(0) By

_ LT
2+ 1)1k
With f(z) =sin(az), 0 < a < 7, we get

—+o0
a2k‘+1 B2k

R . 1 .
sin(an) sin(ax) — ax
D :/0 — =Y (D g

n>1 k=1

Since we are in a case of convergence we obtain

“+oo . 1 . B +oo _:
Z sm(gm) _ / sm(oz:z:)2 ar +/ Sln((;:l?)dx + o
son 0 x 1 x
_ f(—l)kﬂ@
(2k +1)! 2k

k=1

By integration of (2.14) we get

1 . . +oo 3
/ sinfox) oz, / ) PR alLog(a) —ay  (2.15)
0 1

x? 2
Thus
400 . 400 2k41
sin(an) E QO By,
> g = o alogla) =) (-1) 2k + 1)l 2k
n>1 k=1
The Catalan’s constant G is defined by
oo i (-t _ f sin(Zn)
— (2n —1)2 — n?2

thus we get the expression of the Catalan’s constant:

“+oo
T T (™Y Nk T2k Dok
G=35-3lu3) 1;1( VG Sk
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2.3.3 Some trigonometric series

Let f be an entire function of exponential type < 7 and the partial sum of
its Taylor expansion

apilf(o) mpfl
(p—1)!

By the same method of the preceding corollary we have for any integer
p=>1

R n ! x) =T, T
Sl [ e,
R

T,(f)(x) = f(0)+ f(0)z + ... +

xP
n>1

P0) 1 8Pf(0)

E D O+ (X ) (0) + 4
n>1 n>1

-1 2 p

X ok+P=1£(0) By

_ 1)
= (k+p—-1! k
thus in term of zeta values we obtain

Z fn Y f(x) = Tp(f) (=
S I [T,

n>1

1 a*£(0)
+ ];)(c(pfk)fp_k_l) k!

or~1f(0) 1 07£(0)
(p—1)! 2 pl
N~ PLA(0) By
= (k+p-1D! k&

Example
With f(x) = sin(az), 0 < a < 7, and p = 4, we are in a case of conver-
gence, thus we get

f sin(an) _ /1 sin(az) — ax + a3%fdx N /+°° sin(or) I
n4 0 x4 1 x4
n>1
1 a3 = Oé2k+3 ng
3) =) S (D2
+oalbB) =3 =75 kz::l( N CTE T

By repeated integration of (2.15) we have

Usin(az) — az + o o 0 sin(ax) 1 11, 1
6 _1.3
/0 o dx+/1 o dx = 5 (Log(a)+7—€)+§a
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Thus
too oo 2k+3
sinfan) 1 4 11 o1 O By,
S = ~a®(Log(a) — — 3) = > (-t o
2 @ (Log(a) 6)+ozC( ) k:1( ) 2k +3)! 2k

Since for o« = g we have

(1)t XRsin(Zn)

PN D Dl

n=1 n=1
we get
I B . 11« X (B3 By
S 7 (I Log(=) — = Z — -1 )
2o (20— 1) 5(2) (Loa(5) =)+ 5¢0) ;( U TR T
By derivation with respect to a we get
+oo —+o00 2k4-2
cos(an) 1 4 3 5 o1 @ By,
=—a’L - = 3) — -1 —_
D 5@ Log(@) = 7o% +¢(3) = > _(-1) (2k + 2)! 2k
n>1 k=1
and taking o = 5 we have
+oo T +oo n
Y Y
n3 (2n)3 32
n>1 n>1
thus we get
+oo ™\ 2k+2
6 4 T 32 1 (3) Bax,
3) = — 2 2L o et -1 k—=1\2/ 2k
(B =55m — 57 Lov(5) + 55 ;;1( S k2 2k

(if we write Bagy in terms of ((2k) this is a special case of an identity given
by Srivastava and Choi p.409 (22)).

Remark: Summation over Z.

Since Fourier series are often given by summations over Z it is natural
to ask for the possibility of a Ramanujan summation over Z for an entire
function f € O™ such that the function z — f(—x + 1) is also in O7.

Then we can try to define Zfez f(n) by breaking the sum in two parts

R

R
S fm)+ > f(-n+1)

n>1 n>1
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Now by the shift property we find easily that

m—+1

R R
Zf(n+m)+§:f(—n+1+m)—/ flz)dz

n>1 n>1 m

is independent of m, thus we can define ZnReZ f(n) by

R R R 1
S fm) = > fm)+ > f-n+1) —/0 f(z)dx
nez n>1 n>1
R R 1
= Zf(”)+f(0)+Zf(—n)—/_1f(x)dm

For example, let’s take a € C and |a| < 7 and a # 0, then the ”divergent
calculation” of Euler

Zeanzzean+eazefan: 1iaea+1_1e_a —0

nex n>1 n>1

is justified if we apply our preceding definition to the function f : x +— e%**
since

R R R 1
Z e — Z ed™ | o0 Z e—an _ / e dx
nez n>1 n>1 0
e e 1 1 e’ —1
N (1—6“ ;)+(1—e—’175)7 a
= 0

Note also that for any integer k > 0 we have

1

R R R
an = an—&—Z(—l)knk—/ zhdr =0

nez n>1 n>1 -1

1

Note that if we apply our preceding definition to the function z —

—T
(which is not entire) we find that for z € C\nZ we have o
R R R 1
1 1 1 1 1
D DE= =D D e B
z—nm z—nm z4nr 2z )y z—umw
neL n>1 n>1
R
2z 1 1 z—m
= 4+ -+ -L
Z 22 —n?m? + z + i Og(z+7r)
n>1
+oo 400
2z 2z 1 1 z—T
- . R P
;,22—712772 /1 22 — 2272 x+z+77 Og(z+7r)

= cot(z)
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2.4 Functional relations for fractional sums

Let’s take f € O™ and an integer N > 1, we note f(z/N) the function

xT

fo(ﬁ)

Theorem 7 Let’s take f € O™ and an integer N > 1, then

N-1 1
x+k
Ry(a/ny(x Z Ry( -N flz)dz (2.16)
= 1/N
And we get
R n N-1 R I N-1 /N 1
S H) = S [ f- =3 [ f@de-N [ fa)de a7
n>1 N k=0 n>1 N k=171 1/N
Proof

The function

— x+k x z+1 z+N-—-1
R(x) = kZ:O Rp(—7) = By() + By(—5) + oo+ B ()
satisfies . .
R(z) = Rz +1) = Ry(7) = Rf( +1) = f(5)
therefore by definition of the fractional remainder we have
N-1 2 N—1
x —|— k: x —|— k
Ryg)(@) = ) Ry / Z By
k=0
Since
9 N—1 141 1
/ ZRf(x+k)dx:N/ Ri(x)dz =N [ f(z)dz
1 =) N * 1/N
we get
N-1 1
x + k
Ry/ny(x Z Ry ( ) - N f(z)dz

—0 1/N
and for z = 1 we deduce that
1

R N-1
S )= Y R N [ fwyda

n>1 k=0 1/N
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We have by (2.2)

R

k+1 k+1 (k+1)/N
L g 142y
e SRR SE ML
thus we get
R N-1 R N=1 .k/N 1
n kE+1
S G = > fn-1+ 5 = 3 [ e =N [ S
n>1 k=0 n>1 k=1
which is
R . NAR o N=L kN 1
S A = ==X [ s@ie =N [ fa)s
n>1 k=0 n>1 k=1 /
O
Remark
If g € O™/N | then with f : z — g(Nz) we have
R N-1 R N-1, N N
Soam =3 [ on-b]+ 3+ [ g@is- [ ga)ds
n>1 k=0 n>1 k=1 k 1
Thus if N = 2, we get for f € O™/?
R R R 1 2
S i) => s+ > fen-1 -3 [ e (218)
n>1 n>1 n>1 1
Example

For f(z) = 1 we get by (2.18)

1 1&1 1 1
=z — ZLog(2
Zn 22n+22n [~ glos?)
n>1 n>1 n>
thus
=T 4 ZLog(2
Z?n—l g +3Llos(?)
n>1

and by the shift property

R

1 v 1 1
=142 4 ZLog(2) + =Log(3
;2n+1 + 5+ 5Log(2) 4 5 Log(3)




2.4. FUNCTIONAL RELATIONS FOR FRACTIONAL SUMS ol

This leads to an easy solution to a question submitted by Ramanujan in the
Journal of Indian Mathematical Society, that is how to prove that

+o0 1 3
1+2 ———— = —Log(2
+ nz::l (4n)3 —4n 2 29(2)

This relation is a simple consequence of the fact that

s 1 1& 1 1A 1 LS|
;(4n)3—4n:_Z;E+§(;4n—1+;4n+1)
With f(z) = ﬁ, formula (2.18) gives
R R R
1 1 1 1
= ~(Log(5) — Log(3
2 it 2 gy T g(Los(s) — Log(3))
n>1 n>1 n>1
= 1 2 g2 + L rog(3) + 2 Log(5)
- g T HOIE T oINS T g

thus

S 1 11 1 ]
A3 A o -L 2 —L ZL
;(471)3—471 5+ 7109(2) + g Log(3) + S Log(5)

Since we are in a case of convergence then

| 2 1 o 1 3
= . dex=—>+"Log(2
; (4n)3 — 4n nz::l (4n)3 — 4n +/1 (42)3 — 4xdx 2 + 4 29(2)

Theorem 8 Let’s take f € O™ and an integer N > 1, then

N-1 . R R 1
eram(@) = 2 o (S + Y F) = NI fm)+N [ fla)da
§=0 n>1 n>1 1/N

which is the entry 7 Ch VI of Ramanujan’s Notebook (corrected with the
addition of an integral term).

Proof
We can write (2.5) in the form

1
~ )—N 1/Nf(x)da:

Rya/m(@+1) = Ry(—=) + Bp(=5) + o+ Ry (
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with Ry(/n (@ +1) = 305 f(3) = @) (x) we get

R R
S H) —erem@ = N fn)
n>1 n>1
1—-N N-—-N
- [Sﬂf(HT)"'m‘HDf(HT)]
1
- N f(x)dx
1/N
O
Corollary

Since ¢z ny(0) = 0 and p;(0) = 0 then we get

N—-1 _k R R n 1
doer(G) =N ) =D f(5) =N [ fla)de
k=1

n>1 n>1 /N
a formula that Ramanujan gives without the correcting integral term.

Examples

1) If f(z) = 1, we have f(z/N) = N f(x) and since ¢y (z) = v+ p(z+1),
the preceding theorem gives

z+1 z+ N
Ny +(x+1)) = Ny+ N(( ~ )+ + I )) + N Log(N)
and we get the well known formula
N-1
1 x+k
U(zr) = — Log(N
(€)= 7 X W) + Lo

2) If f(x) = Log(z), then ¢y(z) = Log(I'(x + 1)) and
P1@/N)(T) = PLog() = PLog(v) (x) = Log(T'(z 4 1)) — xLog(N)

With the preceding theorem we get

Log(T( +1))—§:L (F(%k))ﬂ +1)L (N) + Log(v2n)
og(l(x —k:1 og m T 5 og og ™

Taking the exponential we get the Gauss formula for the Gamma function.

N , k
> NVe T Dz + )
k=0

I'(Nz) = (27)
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3) If f(z) = L%(m), then f(z/N) = NL%(Q”) — NLog(N)2, thus

©fa/N) () = Npg(z) — NLog(N)(y + ¢ (z + 1))

and we get
N—-1 1
Ney(x) — NLog(N f(x)dx
Jj=0 /N
this gives entry 17 of chapter 8 in Ramanujan’s Notebook:
1 j 1
P Log(x) o () = N Z:O Laq(:r) ) + Log(N)y(z +1) — §L092(N)

4) If f(x) = Log*(z), then f(z/N) = Log?*(x) — 2Log(x)Log(N) +
Log?(N), thus

@(a/n) (@) = @f(x) — 2Log(N)Log(T(x + 1)) + xLog”(N)

and by the preceding theorem

Pra/n(T) = er(
j=0

N
X 1
+ (1-N) Z Log?(n) — 2Log(N)(Log(v2m) — 1) + §L092(N)

this gives

I'(z+1)

1 2
o)~ (5 + ) Log(N)

Z st )+ 2Log(N)Log(

this is 18(ii) of Ch.8 in Ramanujan’s Notebook (with C' = ZnRZl Log?(n)—2).
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Chapter 3

Dependence on a
parameter

In this chapter we give three fundamental results on the Ramanujan summa-
tion of series depending on a parameter.

In the first section we prove that the Ramanujan summation conserves the
property of analyticity with respect to an external parameter z. We deduce
the result that an expansion of f(x,z) in terms of a power series in z gives
the corresponding expansion of the sum fo f(n,z). Some consequences
of this result are examined. B

In the second section we study the interchange of the Ramanujan summa-
tion and integration with respect to a parameter u € I where I C R is a given
interval. This gives a simple integral formula for the Ramanujan summation
of a Laplace transform.

In the third section we prove that with a very simple hypothesis we can
interchange the two Ramanujan summations in fo ZZ>1 f(m,n). As a
consequence we easily prove a functional relation for Eisenstein function Gs.

3.1 Analyticity with respect to a parameter

3.1.1 The theorem of analyticity

It is well known that the simple convergence of a series ) -, f(n, z) of ana-

lytic functions for z in a domain U does not imply that the sum Z:g f(n,2)
is analytic in U. a

A wvery important property of the Ramanujan summation is that analytic-
ity of the terms implies analyticity of the sum.

%)
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We have an illustration of this fact with
R

1 1
Z;:C(z)iz—l

n>1

where we see that the pole of ( is removed.

Definition 5

Let (x,2) — f(x,z) be a function defined for Re(x) > 0 and z € U C C
such that z — f(x, 2) is analytic for z € U. We say that f is locally uniformly
in OT if

a) for all z € U the function z — f(z, z) is analytic for Re(z) > 0

b) for any K compact of U there exist @« < 7 and C' > 0 such that for
Re(z) >0and z € K

|f (@, 2)| < Cel*!

By the Cauchy formula there is the same type of inequality for the deriva-
tives ¥ f(x, ) thus for any integer k > 1 the function (z,2) — 9% f(z, 2) is
also locally uniformly in O™. Thus we note that for any integer & > 1 the
sum Z§>1 0% f(n, z) is well defined.

Theorem 9 Analyticity of z — an f(n,2)

Let (z,2) — f(x,2) be a function defined for Re(x) >0 and z € U C C
such that z — f(x,z) is analytic for z € U and f is locally uniformly in OT.
Then the function

is analytic in U and

Thus if zo € U and
+oo
f(n,2z) = Zak(n)(z —20)F for |z — 2| < p andn > 1
k=0

then
R 400 R

S fne2) =3 [ a)](z - z0)*

n>1 k=0 n>1
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Proof
Let z be in a compact K C U, then by definition we have

R
> fnz) = @ +iJs(2)

n>1

with

J5(2) = /0+°° [A+itz) = f(=it,2)

e2‘11't -1

For every t €]0, 400 the function

fA+it, z) — f(1—it, 2)
= o2t _ |

is analytic in U and, if z € K, we have by hypothesis a constant C' such that

F(l+it,z) — f(1 —it, 2) . e
| e2nt _ 1 | = 2Ce e2nt _ 1

then by the analyticity theorem of an integral depending on a parameter, we
get the analyticity of J in U and for £ > 1 we have

e27rt -1

+o0 ; _ _
0J5(2) = / a.f(1+it,2)—0,f(1 zt,z)dt o,
0

Thus the function z — Z§>1 f(n, 2) is analytic in U and

9.3 fn,z) = azf<12’z) i 9Jp(2) = azf(;’z) +idy, f(2)
n>1
that is » »
0.y f(n,2) = 0.f(n,z)
n>1 n>1

Repeated application of this procedure gives for any integer k > 1

R R
EN " fln,z)=> 05f(n,2)

n>1 n>1

For any zg € U we have the power series expansion
+oo
fln,z) = Zak(n)(z — 20)* for |z — z| < pand n > 1
k=0

where ag(n) = H0% f(n, 20).
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Since the function g : z — EnR>1 f(n, z) is analytic in U we also have

+oo
Z kla’“ g(20)(z — 20)*
k=0

and by the preceding result

Thus we have

R +o0o R

Zf(n,z) = sz' ¥ f(n, 20)(z — 20)*

n>1 k=0n>1

]

Corollary 10 Consider a function f analytic for Re(xz) > 0 and of moderate
growth, then for z > 0 we have

+oo

Proof
By the preceding theorem if (z,z) — g(z,z) is a function uniformly in
O™ for z in a neighborhood U, of zg € C, then

R R
zli»nzlo Z g(n,z) = Z ZILIerU g(n, z)
n>1 n>1

As a special case we consider g(z,z) = f(z)e”®* where f is of moderate
growth, then with zg = 0 we get

R R
lim 3 f(n)e " = 3 f(n)

n>1 n>1

For z > 0 we are in a case of convergence, thus we get

+oo 400 R
di (s = [ ) =3 100
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Examples
1) Take f(z,2) =

z+z and U = {]z] < 1}, we have for z € U and n > 1

1
f(’I’L,Z) 1+2_7+an+1z

thus by the preceding theorem with zy = 0 we have

R

Zz+n—’y Z (Ck+1) - li)k

n>1

v (1.34) we get for |z| < 1

“+o0
1
z+ 1)+ Log(z+ 1) + k—|—1z — —1)F 2k
Y+ 1) + Loglz +1) = 5 Z >V
thus we have the classical result
(= + =—7+Z DMk + 1)
Note that by integrating this relation we get
k

+oo
Log(T(z+1)) = —yz + Z(—
k=

and since the series k22(_1)k$ is convergent then, by the classical Abel
theorem on power series applied with z — 1, we get

,YZ k1C

2) Take f : (z,s) — ==, the function s — f(z,s) is analytic for s € C
and f 1s 1ocally uniformly in O™. By the preceding theorem the function
S — Zn>1 — is an entire function.

We have seen in chapter 1 that Zﬁzl L = ((s)— - for Re(s) > 1, thus
by analytic continuation we have

Z%:Q(s)fsilfors;él

n>1

If s = —k with k integer > 1 we get

C(—k) Z ’f 73’““ if k> 1

n>1
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thus B
k+1 .
—k) = — fk>1
() =~ ik >
and for k=0
s 1
=1+ 1=—2

n>1
By derivation with respect to the parameter s we get

R

D LT P S N W)

= ns (s — 1)k+1

In the case kK = 1, s = 0, this gives

R
¢'(0) == Log(n) — 1 = —Log(v/27)
n>1
For s = 1 we have the sums Z§>1 LOQTIC(”) which are related to the Stieltjes
constants vy, defined by the Laurent expansion of ¢ at 1

1\k
C(s+1):§+z( 1!) i s*

k
k>0

The expansion

Ly G o)

S

pres i D P
k>0
gives by the preceding theorem
R R
S =y Gy b
nstl k! n
n>1 k>0 n>1

thus the Stieltjes constants are given by
R

Log*(n)
Tk = Z

n
n>1

Note that
R
> Log*(n) = ¢"(0) +2
n>1

since ¢”(0) can be simply obtained by derivation of the functional equation
of ¢ (cf. Berndt I, p.204) we see that the Stieltjes constant 7 is related to
this sum by

2

R
1 1 T
Log*(n) = ZA% — ZLog?(21) — — + 2 3.1
; 0g°(n) =y + 57 — 5Log*(2m) — o7 + (3.1)
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3) In the first page of chapter XV of his second Notebook Ramanujan
writes (with a little change of notation):

v+ Log(z)

1
+e *Log(1) + e **Log(2) + ... = iLog(Qﬁ) when z vanishes.
z

The function
+oo
Z Z e *"Log(n)
n=1

is well defined when Re(z) > 0 and Berndt (cf. Berndt I) gives an asymptotic
expansion of this function when z — 04 by use of the Mellin inversion.
Now we can give an exact formula for this sum by use of the Ramanujan
summation.

Let f(x,z) = e **Log(x), for z € Uy (cf. example 1 of 1.4.1). the
function z +— f(z, 2) is locally uniformly in O™ and

+oo i
f(n,z) = (=1 z'n? Log(n)

4!

By the preceding example we have

R .
> Log(n) = =C'(=j) -

; 2
= (J+1)

Thus by the theorem of analyticity we get for z € Uy

& —znr _ = (71)1671 k( k 1
7;6 og(n) = ];)TZ (¢'(= )er)
+00 _ +oo _
=Y E oy )
= ;;) G (_kH; Mk
T aNk—1 16—Z$_
- Y i en |
k=0 ’

For Re(z) > 0 and —m < Im(z) < m, we are in a case of convergence thus
we have

R “+o00 400
Z e *"Log(n) = Z e *"Log(n) — / e **Log(z)dx
n>1 n=1 1

and using integration by parts

+00 1 +oo e~
Z e *"Log(n) = Z e *"Log(n) + 7/ dx
n=1 1

xT
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Thus by formula (2.13) we get for Re(z) > 0 and —7 < Im(z) < 7

Ze anog f k ! _k)_”Y‘i’LOg(Z)

z
k=0

Since ¢’(0) = —Log(v/27) we get the precise form of Ramanujan’s formula

+oo _1\k—
Y+ ~ogiz) Log + Z e *"Log(n) = Log(v/2m) + Z %zk((—k)

4) Take the series >, o, e *"" with 0 < a < 1 and 2 € C with Re(z) > 0
and —7 < Im(z2) <@

Using the power series expansion e *"" = Iif) (71]3;6& n®* the preceding
theorem gives
R +oo k Kk
an® (=1)%z 1
zZn
= —— ({(—ak
2 e = i (el + )

n>1 k=0

Since we are in a case of convergence, we deduce that

too too ko k +oo k. k +o00

—zn® (_1) z <_1) z 1 —zx®
e D RS D vy Bl S
n=1 k=0 k=0

Now we observe that

400 k _k +o0 +o0

-1 1 o o 1. .1

V= + e " dx = e " dx = —F(—)z‘é
k! k+1

k=0 oAk 1 0

thus we get for 0 < a <1

+oo +o00 k_k

o —1)*z 1 1 _ 1
E e = U= k)' ((—ak)+ —af(fa)z o
n=1 k=0 :

Note that this formula is not valid for o > 1 since for a = 2 it gives the

formula
= 2 1.1
Y e = ((0) + 5T(5)2
—~ 2 2

which is wrong since it is well known that the true formula involves exponen-
tially small terms when z — 0 (cf. Bellman):

[N

+oo

1
> = () + 5T (5)eE + v 226*“2"2”
n=1
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Remark
With the same hypothesis as in the preceding theorem we have

R x+1
Rpoy(x) =Y f(n+m,2) + f(x,2) —/1 F(t, 2)dt

n>1
R R r+1
Prenla) =Y Jn,2) =Y St + [ fu )
n>1 n>1 1

By the preceding theorem we get the analyticity of these functions of z and
by derivation with respect to z we get

82Rf(:v,z)(x) = Razf(w,z)(l')
8z90f(a:,z)<x) = (pazf(fhz)(x)

For example let f(z,z) = & with 2z # 1 then

xTZ

Log(z)

./I:Z

@Légz(m) = 762903%2 = *C/(Z) + (9ZC(Z,$) +
For z = 0 then

QDLog(:C) = 741(0) + 8ZC(va) + LOg(I)

but we know that ¢r4(x) = Log(I'(z + 1)) thus we get the Lerch formula
(c.f Berndt)
Log(T'(z)) = —¢'(0) + 0:¢(0, )

3.1.2 Analytic continuation of Dirichlet series
Let a function z — c¢(x), be analytic for Re(z) > 0, with an asymptotic
expansion at infinity
1
() =D _on g

k>0

where Re(jo) < Re(j1) < Re(j2) < ... < Re(ji) <...
The Dirichlet series

+oo
o =3
n=1

defines for Re(s) > 1 — Re(jo) an analytic function h and since we are in a
case of convergence we have
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c(n) .

By the theorem of analyticity the function s — ZZ§>1 5~ is an entire func-

tion, thus the singularities of the function h are given by the integral term.
Let us write formally

“+o0 “+o0 )
/ c(x)x™%dx = / Z apr” TR dr
1 1

k>0
+o0
= Z/ apx " Iy
k>071
Y
=  Ere—
>0 s+ g — 1

In some cases this can give a simple proof that the function h has simple
poles at the points s = 1 — j; with residues ay.

Examples

1) Take h(s) = 3> m for Re(s) > 0, solution of

h(s) + h(s—1) =((s)

We have for Re(s) > 0

R 1 +o0o 1
M) =2 e [ e

From the analyticity theorem we deduce that the function s — E§>1 W

is an entire function, thus the singularities of the (analytic continuation of
the) function h are the singularities of the function

+oo 1
k:s— / ——dx
1 (x+ 1)z

The analytic continuation of the function & is obtained simply by observing
that for z > 1 we have

Sy
(x +1)z* = xstk+l

and the dominated convergence theorem gives

e S N A A S G
k(s) = —dr = -1 x5 dr =
0= [ R I / 2
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Thus the function A has simple poles at s = —k, kK = 0,1, 2, ..., with residues
(—=1)* and
R “+o00 :
: (-1)*F n* (=1)
1 h(s) — =
s:HPk( () s+l<:) Zn—f—lJij—k

n>1 j#k

2) Take c(x) = ¢ (xz + 1) + v then ¢(n) = H,, and for Re(s) > 1

+oo
)= 3 o
n=1

We have for Re(s) > 1

R +o00
b = [ e+ 1) 4 )

ns
n>1

The singularities of the integral term are easily obtained by the asymptotic
expansion

_ 1 By 1
¢(:v+1)+’y—Log(x)+’y+% I;%ﬁ

This gives for h a pole of order 2 for s = 1 with residue ~, a simple pole for

s = 0 with residue 1/2 and simple poles for s = 1 — 2k with residues 72—’;’6’“.

3.1.3 The zeta function of the Laplacian on S?

Let A be the Laplacian on the sphere S?, the eigenvalues of A are the numbers
n(n+ 1) for n =0,1,2, ..., each eigenvalue having multiplicity (2n + 1). Let
¢4 be the associated zeta function defined for Re(s) > 1 by

+oo
2n+1
= 2y
n=1
Analytic continuation of the zeta function of the Laplacian.
The analytic continuation of this function (cf. Birmingham and Sen) can
be obtained by the use of an asymptotic expansion when ¢t — 0+ of the

function
—+oo

Og:t— Z(Zn + 1)en(ntDt

n=1

since 6,4 is related to (4 by the Mellin transformation

/;OO t5710(t)dt = Ca(s)T(s)
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But a more simple method is to use the Ramanujan summation. Since for
Re(s) > 1 we are in a case of convergence, we have

R
on+1 T 241
=y - e N |
GO =2 ey +/1 P

In this expression the sum is an entire function by the theorem of analyticity,
and the integral is

+oo 21’+1 +oo 21—8
7(1 = 2 ]_ 2 _Sd =
/1 xs(x 4 1)° v /1 22+ 1)@ +2)7de s—1

Thus the analytic continuation of {4 on C\{1} is simply given by

R

2n+1 21—5
=y (32)

= s(n+1)% s—l

and the evaluation of (4(—p) for p = 0,—1,—2,..., is easily done by the
Ramanujan summation:

R

op+1
Ca(-p) = n; (@n+ DnP(n+ 1) =

We find for example

1

a0)= 2, Cal-1) = o

Note that by the use of binomial expansion we obtain

i (R (—p—k — 1) + F(—p— k) — 2
o p+1
and since (®(—q) = ¢(—q) + q+1 for ¢ # —1, it follows that f
P
Cal=p) = D _CH(2(~=p—k—1)+{(—p—Fk))
o 1 1 2pt1
+§O§ (2p—|-k+2 +p+k—|—1)_p+1

=

0

and by a combinatorial identity we have finally

=> Ch(2(~—p—k—1)+{(-p—k))
k=0
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The determinant of the Laplacian on S2.
The product

det(A) = H n(n+1)

n>1

is clearly divergent and it is classically defined by a well-known procedure
to define infinite divergent products. The zeta-regularization (cf. Quine,
Heydari, Song) of a divergent product ], a(n) is defined by

reg

H a(n) = e %a(®

where Z, is defined near 0 by the analytic continuation of the function

+oo 1
25 2 Tty

which is assumed to be defined and analytic for Re(s) > a for some a € R.
In our case we have a(n) = n(n + 1), thus Z, = (4 is given by (3.2) and
we have

) oo+l 21-5Log(2)  2'=*
—Cy(s) = n%:l mLog(n(n—l— D)+—— "+ e (3.3)
Thus
R
-4 (0) = Z(Qn + 1)Log(n(n+ 1)) — 2Log(2) + 2
n>1

r R
= 2 Z nLog(n) + 2 Z(n +1)Log(n+1)

n>1 n>1

R
+ Z(Log(n) — Log(n + 1)) — 2Log(2) + 2

n>1

and by the shift property, we get

& 3
—C%(0) =4 Z nLog(n) + 3

n>1

since EnRZl nLog(n) = —('(—1) — 1 we get for the determinant of the Lapla-

cian on S? the value

e Ca(0) — ,—4¢ (=1)+5
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3.1.4 More zeta series
The preceding technique can be applied to zeta series of type
—+o0
P'(n)
Z(s) = —
2 Py

where P is a polynomial such that P(z) # 0 for Re(x) > 1.
We have for Re(s) > 1

& Pl(n) = Pl(n) [T P'(n)
2 Py~ 2 Py |

Again the sum is an entire function by the theorem of analyticity, and the
integral is

Py T Ts—1
Thus the analytic continuation of Z is given by

& Pw) POy
Z(S>_Z(P(n))s+ s—1

/+oo Pl(n) J P(l)lfs
1

Examples
1) The simplest example is given by P(x) = x + a with Re(a) > 0. We
have for Re(s) > 1

X & (a+1)1—°
Z(S)*;m*;<n+a)s+ p—

Since Z is related to the Hurwitz zeta function by ((s,a) = a=% + Z(s), we
obtain the analytic continuation of the Hurwitz zeta function

R
C(a+1)ts 1
C(s,0) = ——F—+a +7§ ntar
which easily gives for s = —k =0, —1, -2, ..., the values
((—k,a) :ak—k%—kzm—ka)k
n>1

this last sum is given by (1.18) and (2.2) in terms of Bernoulli polynomials

R 1
1-B at
Z(n—i—a)k:%f(a)—ak—k/ a*dx
n>1 + 1
thus we obtain
C(—k,a) = _Bii1(a)

E+1
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We have also

R 1-s
=B s L

The value Z’(0) is easily evaluated since by (2.2) we have

R
Z Log(n +a) = —Log(T'(a + 1)) + Log(vV27) — 1 4 (a + 1)Log(a +1) — a

n>1
thus

Z'(0) = Log(I'(a + 1)) — Log (v 2)
This gives the regularized product

reg /271'
nl;[l(n +a)=e Tatl)

2) Take for Re(s) > 1 the function

—+o0
2n+1
Z(S):; (n2+n_]_)s

Then the analytic continuation of Z is given by
R

= n?+n+1)%  s-—1

Note that for the function defined for Re(s) > 1/2 by
+o0

1
200) =2 Gr a1y

the analytic continuation is not so simple. We have for Re(s) = o > 1/2

R

1 oo 1
20-3 mrer ), wrer®

n>1

Here again the sum is an entire function by the theorem of analyticity, and
now the integral is

too z—1__, X (=Dks(s+k—1) [t® (z—1)*
/1 sl —5)dr = ];0 i /1 —zerar 0T

the interchange of ;20 and f1+°° is justified by

+oo +o0 k +o0

\s\...(|s|+k—1)/ (z—1) / 1 z—1 _

—_— ——dr = —(1— ) Islde < +o00
kzzo k! 1 r20+2k 1 720 2

T
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We verify that the integral is a function s — Y'(s) with the expansion

1 1 1
Yi(s) = —s(— —
(5) 551 %5 251
s(s+1)( 1 11 )
2 2s +1 2s+3 s+1

+...

And we deduce that Z is analytic near every negative integer —p, with

Z(=p) =) (n*+n -1 +Y(-p)

n>1

For example, we have

S 1 3
Z(0) = 21+Y(0):§—§:—1
n>1
LS 1 3
Z(-1) = 2 — =42 =
(-1) Z(n +n—-1)+Y(-1) 4+4 1
n>1
R
1 21
Z(— _ 2 C1)\2 oy - A
(—2) > +n—1)2+Y(-2) 5090 = "1
n>1
R 5 51
Z — = 2 — 3 — = — —_— =
(-3) > (n*+n—1)%+Y(-3) TR
n>1
R
5 33
Z(—4) = 2 —1)4 )= = =
(—4) Z(n +n—-1)"+Y(-4) 58 ~ 93 1
n>1
3.1.5 A modified zeta function
We now study the function defined for Re(s) > 1 by
i" 1
Gs) =D
n=1 1+n
Then the analytic continuation of Z is given by
R 400
1 1
Z(s) = d
(5) ;1+n5+/1 e

For the integral term we have

too g teo g =
dr = — dz =Y (-1 —d
/1 Tas /1 o1+ L r=2 (1) /1 woths 0

k=0
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the interchange of >, and f1+oo is justified by

11 _NZ‘W—l)k (-~

El+x71& - pstks $NS(1+1'S)

k=0

and limy_ 4o f;roo md:c = 0. We obtain for the integral term the
simple expression

+oo
/1

72 k+1s—1

Thus the analytic continuation of {; is defined on C\{1, é, }3, ...,0} by
R 1 +o00 1
= — —1)k
Gis) Zl—i—ns Z( ) ks —1
n>1 k=1
For —s € C\{1, é, }3, ...,0} we have
Ry = 1
— = —_1)*
G(=s) Zl—l—nerZ( )ks—i—l
n>1 k=1
R R +00 1
S I e S
n>1 n>1 14+mn k=1 ks +1
1 =X
- 5—4‘1(5)—;(— 571+Z k5+1

We deduce that for the function {; we have the simple functional equation

Gi(s) + G~ :7+2z R —

3.1.6 The sums 2521 nFpi(n)

We examine the relation between the sums an e " p;(n) and 2521 e "% f(n).

Theorem 11 Let f be a function of moderate growth and for 0 < z < 7 let

L@, 2) = Ame—ztf(t)dt

Then we have

R 1 R e—? R R
S ) = s Y e ) = S ) e Y e L, 2)
n>1 n>1 n>1 n>1
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Proof
We have (by Example 1 of 1.4.1)

Re—:o(x) = — % T izez - ezz and @,—zx () = %
Then by Theorem 3 we get
R . R . R
eppn) = — =D f() - = > e ()
n>1 n>1 n>1

eZ

2
- 1—€Z/1 e **Ry(x)dx

It remains to prove that

R

z:em/1 e FLf(t)dt

n>1

62

1—e?

2
/ e 'Ry(t)dt = e *
1
Consider the function G defined by
G(z,2) = e”/ e L f(t)dt
1
We can evaluate ZnR>1 G(n, z) by observing that the function G is the solu-
tion of the differential equation
0.G — zG = f with G(1,z) =0

By (2.7) the condition G(1,z) = 0 gives Ry, ¢ = 0, Rg and we deduce that
the function R¢ is a solution of the differential equation

893RG — ZRG = Rf

This gives
xz
Rg(x,z) = Ke*® + ez’“'/ e ' Ry(t)dt
1

Using the condition ff Re(xz)dzr = 0 and integration by parts we get

z

2
_ —zt )
K = 62_1/1 e *' Ry (t)dt

then R (1, z) = Ke* gives

R n €2Z 2

Ze"z/ e P f(t)dt = / e F Ry (t)dt
1 1—e Jy

n>1
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Application: Evaluation of Y2, n*¢(n)

For a function f of moderate growth we define the sequence of functions
(Fr)r>0 by Fo = f and for k > 1

(z — 1)

Fi(z) = /1 "B ()t or Fror(z) = /1 ’ T f(b)dt

Then the Taylor expansion of the function z — e**L(x, z) of the preceding

theorem is
e Ly(x,z) = e”/ “#E(t) (t)dt = Z Fiiq(x)z
1 k>0 E>0

Thus, by derivation of (3.4) with respect to z, we get a relation between

the sums »
Zn wf(n Zn f(n) and Ck:ZFk(n)
n>1 n>1 n>1
that is
R 3 R R
Do) = 53 =Y i) -G
n>1 n>1 n>1
R 5 R 1 R
an(n) = ﬁZf(”)JFiZ **anf —Ci+ G
n>1 n>1 n>1 n>1
R 1 R 1 R
dorfesn) = > fn) =g > nf( Zn2f —oni”f (n)
n>1 n>1 n>1 n>1 n>1
—C1 + 205 — 2C5
Example

For f(x) = 1/x we get

R 3 1
ZHn = 7= Log(V2r) + 3
n>1
X 5 7
SonH, = oy - Log(v2m) — (1) + 4
n>1
S 1 17
D nHy = 2v—Log(Vam) —2('(=1) +{'(-2) + 55
n>1
More generally we have (cf. Candelpergher, Gadiyar, Padma)
Z mP H,, 1= By v+ Z —k) — Log(v/27) + 7, with 1, € Q

m>1 p+1
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3.2 Integration with respect to a parameter

3.2.1 Interchanging ZnRZl and [,

Theorem 12 Let (x,u) — f(x,u) be a function defined for Re(x) > a, with
a <1, and uw € I where I is an interval of R. We suppose that

a) for all Re(x) > a the function u— f(x,u) is integrable on I

b) there is o < m and a function u — C(u) integrable on I such that

|f(z,u)] < Cu)e®! for Re(x) > a and u € T

Then the function u — ZnRZl f(n,u) is integrable on I and we have

/anudu—z:/fnu

n>1 n>1

Proof
By the integral formula (1.14) defining the Ramanujan summation we
have

R +o00 . .
1 1+t — f(1—it
Zf(n,u):f(vu)+z/ f( +Zau2)t f( Z7u)dt
2 0 e ™ — 1
n>1
Since by hypothesis
|f(1+itvu)7f(17itvu)‘ feY eat
6271'15 -1 S C(U) 2e eQ‘ﬂ't 1
we get
R 1 +oo eat
|Zf(n,U)\ < C(u) (56 +/0 2e mdt)

n>1

which proves that the function u +— Z§>1 f(n,u) is integrable on I. There-
fore -

/anudu—/flu du + 1 //+°0 1+it’:2)m—j§1_it’u)dtdu

n>1

It remains to prove that this last integral is

o L St it wdu — [, f(1 = it wdu
627Tt -1

0
This is a consequence of the Fubini theorem since

400 +oo aoct
// At w) = O =it g <// Clw) g didu < +o0

627'rt 1
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Example
In (1.4.1) we have seen that

t 1 t
Zsm (7nt) COS( ) + fcot(%) for t € 0, 1]

this gives

By the preceding theorem this is equal to
1

1/2 cosirn sin(irn
Z/ tsin(mrnt)dt = Z(— 27r2n + 7522712 ))

n>1 n>1

and since we are in a case of convergence this last sum is

1o (=t )”*1 1 i +°0 cos %mcd +9° sin %mcd
— — —=—dzr — ——dx
47 w2 L= 2n —1)2 2nx 1 w222

n=1

Finally using integration by parts we get

/4
/ x cot(z)dx fG + wLog( ) (G is the Catalan’s constant)
0

And by the same type of calculation we get

/ﬂ/4 22 cot(x)dr = *7TG + i7T2LO (2) - §C(?’)
A 32" N T 6

3.2.2 The functional equation for zeta

By the integral formula (1.14) defining the Ramanujan summation we get for
u > 0 the formula

R 1

Z 1 :1+Z./+oou+zt ultdt
nZln—l—i—u 2u 0 2t — 1

and by the use of the shift property we have

R +00
1 1 1 1 t
= Log(1+ =) — — +2 S B —
;n—i—u o9 +u) 0 " /0 e2mt — 1 u? +¢2

this gives the integral formula

R 1 1 t

1 1 oo
= Log(1 + — 2 - — — ) ———dt
T; n+u o9(1+ u) + /0 (627Tt -1 27rt)u2 + 2
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By the Mellin transform for 0 < Re(s) < 1 of the two sides of this last relation
we can obtain the functional equation of the Riemann zeta function :

a) for the left side we can apply the preceding theorem since for 0 < a < 1
we have for Re(z) > a

us L uRe(s)—l
| | <
r+u a+u
and the function u — % is integrable on 0, +-o00[. Thus
+oo LN R oo 1 &
u®™! du = ut™! du = ns~t

/0 Zn—i—u Z/O n+u Simﬂ':sZ
n>1 n>1 n>1

b) for the right side we get

+oo L 1 +oo L +o0 1 1 t
= Log(1+ —)d 2 5= - — — ) ———=dt d
/0 “ og(1+ u) ut /0 “ /0 (627‘171 27rt>u2+t2 Y

which is

+oo +oo
m 1 1 t
2 - — w Tt ———du dt
ssinms /0 (62” -1 27rt) 0 u? + 2

From a) and b) and since 2321 n®~! =((1—5)+1 we get for 0 < Re(s) < 1

il <<15)2/0+°°<1 1)/0+Oou51tdudt

sin(7s) et — 1 2mt u? 4 t2

Evaluation of this last integral (cf. Tichmarsh and Heath-Brown) gives the
Riemann functional equation

T _t(1-s)= 2(27r)‘51“(8)4(8)sm7(;/52/2)

sin s

3.2.3 The case of a Laplace transform

Theorem 13 Let f be a continuous function on [0, 00| such that there is
a <1 and C, >0 with

|F(€)] < Cuet® for all€ >0
and consider its Laplace transform f defined for Re(x) > a by

+oo R
fa) = /0 e f(o)de

Then f is analytic for Re(x) > a of moderate growth, and we have

R 400 R
S = [ et o - p feae. (3.5)

n>1
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Proof
By hypothesis R
|ef:r£ o))< Cae*(Re(r)*a)i

and for Re(x) > a we have

(s

T o (Re(o)-ae 1
— e(r)—a d —
/0 ¢ ¢ Re(z) —a
This proves that the function f is analytic for Re(x) > a and of moderate
growth. R
Then we apply the preceding theorem to the function (z,€&) — e™*¢ f(€),
this gives
R +o00 ) +o00 R )
S [ eriea= [y e i
n>1"0 0 n>1
and since »
1 1
-n§ _ ,—¢& _ =
Z € =¢€ (1 —e—¢ 5)
n>1

we get the result.
O

Remark

With the same hypothesis of the preceding theorem we have an integral

expression for the fractional remainder

T +oo 1 1
Ry == [ fwars [ e - ¢

Example
Take f(z) = L for Re(z) > 0 then

- +o0o . Ez—l
fa)= [ et

Thus for Re(z) > 0

1 o1 e 1 1
O P ST il AR =

n>1

and

(3.6)
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Theorem 14 Let f be a function of moderate growth such that for Re(x) > 1
we have

00 1
flz)= chﬁ
k=1

where the power series Y, cxz® has a radius of convergence p > 1.
Then if p > 1, we have

R
> fn) —CI'Y“"ZCI@ 7 (3.7)

n>1

This result remains valid for p =1 if this last series is convergent.

Proof

We begin with the case p > 1.

Forevery p—1<e<pletr= 018
such that

lex| < Mr* for every k > 1

Thus the series Zk>1 Ck (ik 11), is convergent for all £ € C and the function

is an entire function with |f(£)] < Celél. The function f is the Laplace
transform of the entire function f because for Re(z) > r we have

400 t+00 k—1 k—1
/0 z:cke_””5 § 5 ch/ —zg 5 df ch - = f(z)
k=1

where the interchange of the signs [ et Y is justified by

+oo +00 +oo
/ Z |ep|e Re(@)e ) —ydé < Mr/ e~ Be@ =8¢ « 4o
0 0

Thus by theorem 13 we get

o 1 1 = gh—1
S s) - [T - D g

n>1 k=1
Since
1 1 gh-1 1
—£ _ —£ ré < (1 T)E
et g ol S G e <
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we can again interchange f et >, and so we get

R [eS) +o0 B 1 1 é—k—l
Zf(n):;ck/o e 5(1_6_5_5)md§o

n>1

and by the preceding example

1

R 400
S i) =+ Y el - )
n>1 k=2

It remains to extend this result to the case p = 1.
Let 0 < a < 1, if we apply the preceding case to the function x +— f(Z) we
get

R n +o00 1
Y ) =aya+) al((k) - —)a"
Q@ k—1
n>1 k=2
By the theorem of analyticity we have
R R
im > f()=) f)
n>1 n>1
and by the Abel theorem on power series we have
00 1 00 1
. k) _
il—>m1 (cry o+ ch(C(k) T E 1)04 ) =c1y + ch(g(k) - m)
k=2 k=2
if this last series is convergent.
a
Remark
Since
L] R 1
Zg:’yand Zﬁ:g“(k)—k_l for k #£1
n>1 n>1

the preceding theorem can be stated in the form of the result of an interchange
of the signs 327 | and 37 -

R +oo 1 +oo R 1

Cr—F — Cl e

Z Z nk Z Z nk
k=1 n>1

n>1k=1
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Example.

Let x € R and f(x) = ZnRZl € we get by the preceding remark

+o<>

k k R 1 +oo (_1)k
:Z anﬂ :'H'Z Kl (C(k+1)_ﬁ)xk
k=0 n>1 k=1 ’

Let us now see how this function is related to the heat equation in R2. Con-

sider, for X = (x1,72) € R? and ¢ > 0, the function
R
1 1x12
U(X.t) = T A(n+D
(X,%) Z Nt
n>1

It is easily verified that this function is a solution of the heat equation

U =02, U+ 02

T1T1 962962

Using the well known heat kernel we get

1 2
v = [ e Uy 0)dy

Thus, using polar coordinates, we have for ¢t > 0

R R
1 2 2 1 2 1 2
Z : T 67477/ IO(TP pe 22 22

= n+t) 2t

where I is the Bessel function

Withxz%anduz%weget

7£1/ (2\/xu
ntt — et —
n+t t

Je~ (Z Ee*%)du

n>1

For t = 1, by the use of the shift property, we see that f verifies the integral
equation

2 “+o0
]. xT
f(zx) e*"”—/ —efﬂdu—i—e’””/ Io(2v/zu)e™™ f(u)du
1 u 0
Note that
R _ =z +oo _ = 400
e n —1 e n—1 e v —1
= _— = - - d
f(x) ; — +7 7+§ - /1 — dv
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The function

is the exponential generating function of the zeta values

ok
g(x —’erZCkJrl 1)k i

k=1

It is easy to prove that the integral equation on f now gives a simpler integral
equation for this generating function g, that is

g@)=e"+e " /000 e "Io(2v/zu)g(u)du

3.2.4  Series involving zeta values.

Consider an integer m > 0, by the shift property we have

R
Z(n + 1)"Log(n+1) Z n™ Log(n / 2™ Log(x)dx
n>1 n>1

On the other hand we have the expansion

1
(n+1)"Log(n+1) = Z C9 n? Log(n Z C¥ n? Log(1 + )

ZC’J n? Log(n ZCJ n’ Z —

=0
Since
X 1
JT, — (5 = I
Z:ln og(n) = ~¢'(=) = Z 7y
we get the relation
m—1 , m +oo (_1)k—1 2
— Z CL (¢ (—))) + ZC’J Z 7§R(k —j) = / 2™ Log(x)dx
=0 k=1 1
m—1
Y O
Jz::o <] + 1)
For example we get:
with m =0 N
0 —1)k-1
Ccty+a =0
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withm =1

1 1)k: 1
Log(v2m) + wzk e =1
with m = 2
, I N o 4
Log(v2m) — 2¢'(—1) + 37T kazz m((k) =3
with m = 3
= (—1)k1 19

Log(v2m) = 3¢'(~1) =3¢/ (- )+47+6Zk DI

and more generally we have

S i+ — s fﬁak)e@
mn J m+17 m! k...(k+m)

Jj=1

We can give another form of the preceding relation if we consider the
function

R 1 too —1)kk too —1)i-1
S Lo+ =Y SEE S B R
n>1 k=0 =1

if we use the formula we have proved in 2.1.2, that is

R 1
1
Z e " Log(1 + (e — 1) Z e~ " Log(n) + / Log(t + 1)e”*'dt
n>1 n>1
and (by the theorem of analyticity) the expansion

R +oo (_1)k—1 1
e Log(n) = Y (k) + )

n>1 k=0

we get the relation

+oo( kk+oo

D

k=0 Jj=1

foo ko k
Rk = -y T
k= ’

0
X (DR 1

+(1—¢€%) 5
2R (k)

1
—|—/ Log(t + 1)e”*dt
0
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Expanding in powers of z this gives an explicit evaluation of the sums
+oo i
=17
—-C(J)
=t k
We get for example
+o00 (_1)j 1
Z 1 C(j) = —Log(V2rm)+ 27 +1 (cf. Singh and Verma)
— J
j=2
- (-1 , sy 12
Z - 2((]) = —2¢(-1) — Log( 277)+§7+§
=t
400 i
(_1)j . ’ ! 1 7
= -2) — -1)-L 2m) 4+ = —
3 7ael) = 3D =B ~ LogVam) + G+ g
= (_1>] ’ ! i 1
j+4<(3) = —40(=3)+60(=2) =4 ((=1) = Log(vV2m) + v + o5
j=2
Remark
Note that a series like >, o, > k) g divergent but we have
+oo +oo
C(k)—1 1 1
Z A = Z(—LOQ(l - g) - ﬁ)
k=2 n=2
400 1
= L 1)—L —
;( og(n+1) = Log(n) — ——)
R R R
= ZLog(n—i—l) — ZLog(n) —Z ]
n>1 n>1 n>1
400 1
1)—L —
+/1 (Log( +1) — Log(a) ~ — =)
= 1 _—
This technique can be applied to evaluate the sum Z+°° S i]_?l Since
pPEE I o N (CRY i A
k=1 k+ 1 n=1 k=1 k+ 1

we can write

where f(n) is given by the function
f(x) =2(x +1)?Log(z + 1) — (x + 1)*(Log(z + 2) + Log(x)) — 1

83
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Thus we have

< R +oo 3

And, using the shift property, we deduce that

ZCk+1 §_Log()

We can apply the same method to get

X2k + 1) —
_L 2) —
Z P 0g(2) — v

3.3 Double sums

3.3.1 Definitions and properties

We study iterate Ramanujan summations
R R
> D fmm)
n>1m>1

Theorem 15 Consider a function (x,y) — f(z,y) analytic for Re(xz) > 0
and Re(y) > 0. If there is C > 0 and o < 7 such that

|F(a,y)| < Centizt+inh (33)

then we have

Proof
First we note that (3.8) implies that

z+— f(z,y) in O™ for all Re(y) >0

y— f(x,y) in O™ for all Re(z) >0

For Re(y) > 0 consider the function f, : © — f(z,y) and its fractional
remainder Ry € O7. If we set R(x,y) = Ry, (z) then we have
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with ff R(z,y)dz = 0. Thus for Re(y) > 0 we have

R

Z f(m7 y) = R(Ly) (310)

m>1

This function R is given in Theorem 1 by the integral expression

f(xay) . oo f(x—i—it,y)—f(x—it,y)
fa . f

e27rt -1

dt

R(‘Tvy) = _zx f(t’y)dt—i_

By this integral expression we see that the function R satisfies an inequality
like (3.8) (with another constant C).

Thus for Re(z) > 0 the function y — R(z,y) is in O, thus by Theorem 1
we get a function y — W(x,y) in O™ such that

W(z,y) —W(z,y+1) = R(z,y) (3.11)

and ff W (z,y)dy = 0 for all Re(x) > 0.
This function also has the integral expression

Y R , +ooR , it —R : it
1 0

By definition of the Ramanujan summation we have for all Re(x) > 0

ZR(m,n) =W(x,1) (3.12)

n>1

By (3.12) and (3.10) we get

R R R
W(1,1) =Y R(l,n)=>_ Y f(m,n) (3.13)
n>1 n>1m>1

Now it remains to prove that W(1,1) = ZZN fo f(m,n).

By (3.9) and (3.11) we have the relation

Thus if we set

and define for Re(x) > 0 the function f, by f.(y) = f(z,y) then

T(mvy) - T(:L'vy + ]-) = fm(y)
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Using the above integral expression of W (z,y) we verify that W also satisfies
an inequality like (3.8). Thus for Re(x) > 0 the function y — T'(z,y) is in
O7T. Since we have

2 2 2
/ T(x,y)dy = / W (z,y)dy — / W(z+1,y)dy =0
1 1 1
then it follows that for Re(z) > 0 we have

Ry, (y) =T(z,y)

We deduce that

R
Z flz,n) =T(x,1) = W(z,1) = W(z+1,1)

n>1

This gives for any integer m > 1
Z fim,n)=W((m,1) —W(m+1,1)

Since the function z +— W (z,y) is in OT for Re(y) > 0 then

R
Z (W(m,1) — W(m+1,1))

m>1

is well defined and we have by the shift property

R R R R 9
S8 fmn) =S Wim 1) = Y Wim+1,1) = W(1, 1) _/1 W(a,1)dz

It remains to note that by (3.12) and Theorem 10 we have

2 2 R R 2
/ W (x,1)de = ZR(x,n)d:L'fZ/ R(z,n)dz =0
1 1 > n>171
O
Remark

Note that the sum 2222 Y omane / (n+m) is well defined for f € O™
since we have for k > 2

> fln+m)=(k=1)f(k)

m+n=k
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Thus we have

R R R
YD fAm) =) (k=1f(k)=> nf(n+1)
k>2 m+n=k E>2 k>1

But we don’t have equality between the sums
R R R
S Y e wd Y fem).
m>1n>1 k>2m+n=k

Let us examine the relation between these sums. Let F(z) = [° f(t)dt then
by the shift property and Theorem 5 we have

R R 1 R R R m+1
)IDINCETONENED SHUOED SEICIND Dl RNIOLY
m>1n>1 n>1 m>1 m>171
R R n R m—+1
= ;(n—l)f(n)+27;/l f(x)dx—kmz;l/m f(x)dz
R R 2
= Y=+ 23 P+ [ Py
Next we observe that
R R
Z Z f(n+m) = an(n—i—l)
k>2m+n=k n>1
R 2
= S (- 1)fn) + / (z— 1) f(z)da
n;' )
- Z(n—l)f(n)JrF(Q)—/ Fla)da
n>1 1

Thus we obtain the following formula of diagonal summation

R R R R 2
>N fnm)=>" Y f(n+m)+QZF(n)—F(2)+2/l F(z)dx
m>1n>1 k>2 m+n=k n>1

or in another form

R R 2
ZZf(n—l—m):Z(n—l)f(n)+QZF(n)+/l F(y)dy  (3.14)

m>1n>1 n>1 n>1
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Example
Consider the sum En>l Zm>l . We have
_ f: i m+n i f: n
n>lm>1 " s R P R
1 & & n
4ot

Il
NG
|
M
Mﬁ\
3
+13
3

m>1n>1
thus we get
R R
>3 =g
n>1m>1 m+n
Since Zm>1 m+n =~ — H, + Log(n+ 1), we get
X 5 1
Zan 127+ZnLogn+1)—§
n>1 n>1
Note that
R
ZnLog(n+1) = Z(n+1)Logn+1 ZLogn+1
m>1 n>1 n>1

— (1) — Log(v2m) + 1
thus we get another proof of the relation

S, - >~ Log(¥/am) — ¢'(~1) +

n>1

More generally for a positive integer ¢ we have

29 2¢+1 2¢+1
_ m=aT" + n=d
2 :(_1>knkm2q kE_ -
m+n
k=0

and by the preceding theorem

m2a+1 4 p2at1 R R m2a+1 R R n2a+1
ZZ = 22 +2 2

m n m n m n

n>1m>1 + n>1m>1 + n>1m>1 +

R R op2a+r R R 241

= X2 et

n>1m>1 mesn n>1m>1 mesn
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thus we get

2q
(DR (k)R (—2q + k) =2 ey

then we have

R R
> o0t H, = Y n* M Log(n+1) + (R (-2¢ - 1)
n>1 n2>1
1
kR R
_§kzzo(—1)g (—k)C™(—2q + k)

this gives fo n24t1H,, in terms of the values ¢'(—k) for k = 0,1, ...,2¢+ 1.

3.3.2 Some formulas for the Stieltjes constant v,

The Stieltjes constant v; = Zzzl L"f’qim) is related to the sum 2221 Log(::H) :

We have

i Log(m + 1) _ i Log(m + 1) N i Log(m +1) 1
m m+1 m+1 m
m>1 m>1 m>1
R 2 R
L L Z L 1)1
_ Z og(m) +/ og(x)dx+ og(m+1) 1
m 1 x m+1 m
m>1 m>1
s Log(m ) Log(m+1) 1
= E AN )+ E -
m m+1 m
m>1 m>1

. . L 1 :
Since for the last series »_, -, %% we are in a case of convergence,

then we have

% Log(m+1) 1 X Log(m + 1 /+°° Log(z + 1)
yotunall 5wl [Tl D
m+1 m 1 z(x +1)

m>1

Loglm+1) =% 1_ ,
- ZO9MT L) T Log?(2
7n§::1 m(m+ 1) 12 27% )

Finally we get

R
Log(m + 1) Log m+ 1)
E — =7 — = E 3.15
= m - + m(m+ 1) ( )
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Proposition We have the relation

R R
Log(m+1) H, ~*
D D (3.16)
m>1

m
m>1

And the Stieltjes constant 1 is given by

@ 1 1 [? 9 X Log(m +1)
-2 _ 4z dr — _— 3.17
n=" 2+2/1<w<x>> My (3.17)
Proof
We have by the linearity property
R R R R R R 1 1 R R
1 1 1 mta .,
PBD DD D Disrsrumial) D Bl D Dy
m>1 n>1 m>1n>1 m>1n>1 m>1n>1

Interchange of m and n gives trivially

1 1 E1& 1
Zgzm—i—nzzﬁzn—i—m

m>1 n>1 n>1 m>1

and by the preceding theorem

YIED PRI o) SLSL
n>1 m>1 n+m m>1n>1 nn+m
thus we get
R R
1 1 1
I I U 19
m m+n 2
m>1 n>1
Since 2521 i =7 — Him + Log(m + 1) we have
o1& 1 o
> — =Y (v~ Hp + Log(m +1))
m m-+n m
m>1 n>1 m>1
that is
R R R
1 o, H,, Log(m + 1)
DD Dk Bl Dl D
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which gives by (3.18)

This last relation gives by (3.15)

R “+o0

H, ~* = Log(m + 1)

-y TN Logim 1) 1

" m>1 m 2 12 m=1 m(m + 1) (3 9)

The conclusion is obtained by the use of (2.6) that is

RoH, 1 oo 12 )
= - = d
Z;,L 2@@)1+W)+2£(M0)t
O
Remark

Note also that

Logn—|—1
Z Z/ 1—|—mcaj

n>1 n>1

By Theorem 12 we have

Log (n+1)
Z / Zl—l—na:

n>1

and by (1.34)

xT

R
Z 1 dp — Log(: +1) —¢(L +1)
= 1+ nx

therefore we have

R Lo n+1 T Log(x +1) —(z + 1
3 g(n +1) :/1 gz +1) —Ple+1)

n €T

n>1

By (3.15) this gives

72 X Log(m+1) /Mme+n—meux
TR ) x

(3.20)

There are similar integral expressions for the sums Z+°° % with
an integer p > 1. Using the finite Taylor expansion we get

— - IR A B |
Log(z +1) :Z + (—=1)PaP —
1

1t o
=1 x
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which gives for every integer n > 1

k np—k

P—=/ 1\k—1 +o00
Log(n+1) _ (-1) 1 n (—l)p/ 1 1 dQt
np .t la(t+n)

k=1

and by summation we get

+oo p—2
Log(n+1) <~ (=1)* (=" (x4 1)
nz::l w2k ¢( —k)+p_17+(—1)1“ 1 —da

Proposition We also have the integral expressions

2 1 1 ! Vyp(z4+1)+ v
= _ -4z 1))%dz — —d 3.21
n=T gty [ Gernra- [ HEE e )
and
2 1 +o0
1 v 1)—-L
6 0 x 1 X
Proof
We can obtain another formula for «; by using the relation
s 1 1
> =y Hat Lt o)
m+n—1 n
m>1
which gives
R R R R
Log(n) 1 1 9 H,
B ASRA P — (2 +1
P D D s Sk Dh=aial (O R
n>1 n>1m>1 n>1

By the preceding theorem this last double sum is also
R R R R R R
1 1 1 1 1 1
Z Z nm+n—1 Z Zﬁm+n71 _ZZ mm+n—1
n>1m>1 m>1n>1 n>1m>1

thus we have
R R
n=> fn)—2+) = —(@2)+1
n>1 n>1 n

with
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For n > 1 we have by (1.34)

n—1 n—1

1 &1 & 1 1
f(n) = (ZE_Zer ) = —(y+ ¥ (n) = Log(n))

and for n = 1 we have f(n) = {(2) — 1. Thus we see that the function f is
given by

v+ ¢ () — Log(x)

f@) = o
[ = ¢@2)-1
Using the shift property we have
R R R 2
H, Log(n +1) Y+ ¢ (x) — Log(x)
=N 2 N T @) -1 -
> )= 3 = S D ) - - [ IR Ry,
n>1 n>1 n>1
which is by (3.16)
R
1 2 ! 1
S fn) = ,yzy;,l,/ Y+ +y
2 4 0 X
n>1
this gives
oy Ry
T T T, x '

and (3.21) is obtained by using (2.6).

With the preceding results (3.17) and (3.21) we get

1 y+Y+1), = Log(m + 1)
/0 x dv = 221 m(m+ 1)

and by (3.20) we have

2 400 +oo —
=T w(m+1)+vdx7/ Y(@+1) —Log(z +1)
1

this is (3.22) since

/+°° Log(z +1) = Log(x) , _ /+°° Logk+1), _ x*
1 1
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Remark
The series >, -, L(H, — Log(n) — ) is convergent and we have

o0 R o0
i H, — Log(n) — v Z H, — Log(n) — v N T (r +1) — Log(z)dx
n n 1 x

n=1 n=1

Since by (3.19) and (3.20) we have

R oS
ZH" :172+7T2_/+ (@ +1) — Log(x) .
2 27 T2, z

this gives the following result (cf. Furdui)

1, w2
(Hn — Log(n) —=7) = =7+ 5 —n

X1
n 2 12

M-‘r

Il
—

n

3.3.3 A simple proof of a formula of Ramanujan

Now we use double sums to give a new proof of the Ramanujan’s relation (cf.
Grosswald): for ¢t > 0 we have

+o0
1 1.7 1
; Z:l eZmﬂ/t +t Z eQmTrt = (t + g)ﬂ o Z (324)
Let us start with the well known identities
A S S
n:1x2—|—n2 a 2 e2mz_1 2
+oo 2
x s 1
/1 mdt = z5-¢ arctan(;)
We deduce that
f: v em 1 +a arctan(l)
224+ n2 2 _—1 2 T

n>1
Let t > 0, using the preceding relation with x = m/t we get
R

R
1 mm 1 1 t
Z Z 2 _’_thQ =3 Z i1 4 + n Z marctan(a) (3.25)

m>1n>1 m>1 m>1
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Consider for ¢t > 0 the functions

R R m?
10 = 2 e

m>1n>1
1 = mm
S(t) = g Z e2mm/t _ ]
1 & t
Alt) = : Z marctan(E)
m>1
Since we have
R “+o00
1 mm t T
— —— =S50) - — d
tz;lezm”/t—l ®) 47T/2t“ e 1"

then by (3.25) we have the relation

1t [T

SO=10) - A0+ 1+ [ wq

dx (3.26)

The relation (3.24) is simply S(t) + S(3) = (t+ )5 — 1.
To prove this relation we use the following expression of A(t).

Lemma We have

1 1 S S it
A(t) = 5((15 + g) arctan(t) + 1) — 4—“/0 = 1dx -7
From (3.26) we deduce that
1 xt 1 1
S(t) = f(t)+g(t) + 1T 5((t + E) arctan(t) + 1) (3.27)

where

t “+o00 T 1 27t T
1) = — do + — d
9(t) 47r/2: o1 m ), o™

For this last function g the equation

+oo T
g@+m5:<t+1>A i

t A | 4t er — 1

is immediately verified. And since f0+00 g dr = %2 we get

1 Tt T

9 +9(3) =51+ 55 (3.28)
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It remains to find a similar relation for the function f. By theorem 15 we get

1
f(;) - sz%z—ﬂﬂ

m>1n>1

" x
%;%bﬁﬁiﬁ
R R n2¢2
- 232:7?:%5
>1n>1

We have

R R SRS |
Zzn2t2+m2_zz _Zi_i

m>1n>1 m>1n>1 m>1

Thus we obtain .

O+ ) =1

i (3.29)

Finally by (3.27),(3.28), and (3.29) we have

1 + Tt + T
4 24t
7rt 1

1 1

== - ) +1
4+4 2((t—|—t)arctan()+)
1
4

S +5(;) =

+ T ey

1 1
%3 =) arctan(g) +1)

t

since arctan(t) + arctan(7) = % this proves (3.16).

Proof of the Lemma.
Expanding the function arctan and by using theorem 14 we get

R H4oo +00
_ ()% o 1 . (—1)k¢2k 1
Alt) = 2k;+1t m%*Z 2k +1 (C(Qk)fzk—ﬁ

Since ¢(2k) = & Dl 9 Bsy, we have

2 2K)!
= (4)’%2’“«%) 1 i" Bow (2mt)2* 12 g e T

[t M __ 1 _ L
£ 2k +1 242k +1 (2h)! art Jo  er —1 4

and it is immediately verified that

K ()R 1

_kzzom 2((t+ )arctan(t) +1)
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Thus we get

1 1 1 oy Tt
Aty == ((t+ - t)+1) — — - —
(t) 2(( t)arctan( ) ) 1 tA pe 1dx 1

O

3.3.4 The functional relation for Eisenstein function G,

Let k£ be an integer > 1 and let Gg; be the Eisenstein function defined for

Im(z) >0 by .
Gan(z) =D > m + )

where this double sum is restricted to (m,n) € Z\{(0,0)}.
It is well known that G5 satisfies the modular relation

1
ng(—;) = ZZkGQk(Z)
For k = 1 we consider for Im(z) > 0 the Eisenstein function
1
G = —

where this double sum is restricted to (m,n) € Z\{(0,0)}, more precisely

+oo “+o0o 1
T i neo

Since we don’t have absolute summability we cannot interchange " and
> ., and we have only

1 1
Gz(*;) = 2 ZZ [CETDE

But it is well known (cf. Busam and Freitag) that this function G2 satisfies
the non trivial relation

Gg(é) = 22Gy(z) — 2imz (3.30)

We now give a simple proof of this relation thanks to the Ramanujan sum-
mation.
The relation (3.30) is equivalent to

1 1 24T
2 i S i

where the sums are restricted to (m,n) # (0,0).
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These sums can be written in another form, we have

“+oo +oo

1 1
ZZ (m+nz)? ZZ (m+nz)? (m—nz)2)+2(1+?)4(2)

n=1m=1

Thus if we set
+oo +oo

1
ZZ (m+ nz)? (mfnz)2)

n=1m=1

and
+oo 400

1
ZZ (m+nz)? (m—nz)Q)

m=1n=1

we see that the relation (3.30) is equivalent to

A(z) — B(z) = %

To compare A(z) and B(z) we can use the Ramanujan summation, since
by Theorem 15 we have the commutation relation

1
ZZ (m +nz)? (mfnz ZZ (m+nz)? (mfnz)Q)

n>1m>1 m>1n>1

Next we use the relation between the Ramanujan summation and usual sum-
mation to transform this relation into a relation between the usual sums. Let
us start with A(z), we have

+oo 1 1 R 1 1
mzzl((m—i—nz)QJr(m—nz)?) - mz>1((m+nz)2+(m—nz)2)
+ + !
1+nz 1-—nz
this gives
) = )
—n2)2 — )2
— = m+nz (m nz) v o m+nz (m nz)
+oo
1 1
* ;(1+n2+1—n2)

Using again the relation between the Ramanujan summation and the usual
Cauchy summation we obtain

400 R

1 1
le>1 (m + nz)? (m—nz)Q) - lex (m +nz)? (m—nz)Q)
oo R 1 1
* /1 Z((m+t2)2 + (m— tz)z)dt

m>1
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Interchanging Ramanujan summation and integration we get

+o00 R R
1 1 1 1 1
dt = - -
/1 ngl((m—l—tzﬁ * (m—tz)Q) zmz>1(m+z m—z)

Therefore we finally obtain

1
ZZ (m+nz)? (m—nz)Z)

n>1m>1
1 1 1 1 1
+ ;(1+n3+1—n2)+;;(m+z_m—z)

The same calculation with ) >

1 .
n Tmna)z 8ives

B(z

X 1
Z: (m+nz)? (m—nz)Q)

+oo
1 1 1 1 1
(1+nz+1—nz)+gmzzl(m+zim—z)

+

FVME ‘VM‘\‘)

99

By Theorem 15 the double Ramanujan summations in the last formulas for

A(z) and B(z) are the same, so we get

A(z)—B<z>=/1+°o< L, 1 >dt—1/1+°°< L]

1+tz 1-—tz z t+2 t—=z

and finally

A(z)— B(z) = X lim (Log(1+T%) — Log(1 —T2)) = ™

z T—+oo
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Chapter 4

Transformation formulas

In this chapter we study some transformations that give interesting rela-
tions between the Ramanujan summation and other summations. In the
first section we examine the Borel summability of the series deduced from
the Euler-MacLaurin formula. In the second section we use finite differences
and Newton series to give a convergent version of the Ramanujan summa-
tion which generalizes the classical Laplace-Gregory formula. In the third
section we use the Euler-Boole summation formula to link the Ramanujan
summation of even and odd terms of a series with the Euler summation of
the corresponding alternate series.

4.1 A Borel summable series

4.1.1 A formal transform

In the preceding chapters we have seen that the Ramanujan summation of a
series ) -, f(n) is related to the series involving the Bernoulli numbers

ORIt

E>1
by the formulas
R m
By o1 /+Oo bm+1($) 41
n)=— —0 1)+ — ™ x)dx
n;f() ;k! IO+ | G @
or
R m 1
B B, (t
> ==Y 2 + 7 [ Ron s+ )22
n>1 k=1 0 ’

101
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The series DL9k=1£(1) appears more directly in an operator setting of
the difference equation. Let E be the shift operator on functions defined by

Eg(z) =g(z+1)
by the Taylor formula we get formally
E=¢

and we can write the difference equation Rf(z) — R¢(x 4+ 1) = f(z) in the
form

(I—e”)Rp=f

which gives formally

Ry=—f= R DL

k>1

If we interpret the operator 9! by

= /1 F(t)dt

we get formally

_ . ky Bk:+1
Ry(z) = /f t)dt ’;)a k+ 1)
= /f Ydt + f(z Zak ﬂ
= (k+1)!

this last series is noted &(x) (cf. Hardy p.341). Taking x = 1 we get formally

S +
3" f(n) = £(1) - &( eyt m

n>1 k>0

This last series is often divergent, but we can give a meaning to this sum by
the Borel summation procedure.

4.1.2 Borel summation

Let 3,~an be a series of complex numbers and S,, = ZZ;& ay the partial
sums (we set Sp = 0). As in the Abel summation method we can try to define
a summation of this series by taking a generahzed limit of the partial sums.

We suppose that the series Zn>0 o =S, is convergent for every ¢ > 0 and

we set
400 n
E an = lim et E — S, when this limit is finite.
‘ n!
n—

t—+oo
n>0
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Since the series > -, %Sn is supposed to be convergent for every ¢t > 0, the

function
+oo g

it e Z Sn

is an entire function and we have

+oo tn tn—l

st) = _tz S +€_tz(n—1)!sn

n=1

et Z S = S0)
ot Z ﬁan

Since s(0) = Sy = 0, we get

thus we have

B +oo 400 "
Z Gy = /0 e_””(z Fan)daz when this integral is convergent.
= n=0

This definition is a little too restrictive since it supposes the convergence
of the series ano “ran for every x. We can give a more general definition
of the Borel summation if we use analytic continuation:

We say that the series Y ., an is Borel summable if the power series

Y >0 %lan has a radius of convergence R > 0 and defines by analytic con-
tinuation an analytic function z — a(x) in a neighbourhood of [0, +oo[ such
that the integral f0+oo e~ %a(x)dx is convergent.

In this case we set

Example
Consider the series > ~gan =3, 50(—1)"n!, then for [z| <1 we have

+oo 1

= :En n.,..n
;anH:Z(—l) v 1+=z

n=0
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By analytic continuation we have a(z) = H% and we set
B 400 1
Z(—l)"n! = / e_””l dz
n>0 0 Tz

Similarly for Re(z) > 0 we get

B
—1)"n! oo 1 e 1

E (il :/ e’ dm:/ e * dx
Zntl 0 z+x 0 1+z

n>0

Remark

As in the preceding example we see that with some hypothesis the Borel
summation of the series ) -, -#4r is related to the Laplace transform of
function z — a(zx) by

B

+oo an
—Xz _
/0 e a(x)dr = g pos

n>0

For a function f of moderate growth this gives a Borel-sum expression of
SR f(n)e™® for 0 < 2 < .
Since we have

R

+oo +oo
Z f(n)e=™ = Z f(n)e™™* — e_z/o flz+1)e **dx
n=1

n>1

and by the Taylor expansion

+o0 n
fle+1) =30
n=0 !

we get
R 400 B o f(1
> fes =3 fues - e 3 I
n>1 n=1 n>0

Taking for example f(z) =¢(x +1)+ywegetfor 0 <z <

B

_ Log(1—e%) e * _ (=1)"n!
N Hpe =2 ) f ey 1)1
n>1 ‘ 1—e™* o ‘ n>1 zntl (C(n - ) )
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4.1.3 Borel summability of Euler-MacLaurin series

Theorem 16 Let a function f be analytic for Re(z) > a, 0 < a < 1 such
that there is C > 0 and s > 0 with

[f(2)] < Clz] ™

Then the series .
~Y o (=) By

k>0

is Borel summable and we have

R B _1\k+1
> 1) = 10 = Y oty e (41)

I
= = kE+1)!

Proof

Since the proof of this theorem is given in the book ”Divergent Series” of
Hardy we just give a sketch of the proof.

For the Borel summability we must consider the series

—1)EH By th

“+o0
_ (
alt) = gakﬂl) k+1)! &

and prove that it defines, by analytic continuation, a function such that the
integral f0+°o e ta(t)dt is convergent. To get a simple expression for this
function we use an integral expression of the derivatives 0% f(1).

Let a < § < 1, by the Cauchy theorem we write

o) L[ f(u)
k! 2im (u — 1)k+1

d—ioco

Then we get

d+1i00 —u
a(t) L/(; f(u)(M l)du

= %n et/(—w) 1 ¢

—100

This gives the analytic continuation of the function ¢ — a(t) and we have

+o00 d+1i00 +oo —u
/0 e ta(t)dt = ! f(u)(/o eft(etl/(ﬂiu)_)l - %)dt) du

B 2im d—ioo

Now we use the formula

ewt—1 ¢t

+o0 w
/0 e !( - 1)dt = —Log(w) — (1 + %)
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and we get the Borel summability with

5 _1)k+1 d+ico
Za’“f(l)w _ i ) (Log(1 ) ~ (2~ w)d
k>0 e

It remains to prove (4.1), that is

d+i00
> ) = F0) = 5= [ ) (Log(1 = )~ b2 = )
n>1 —ie0

d+i00
F) 4+ = /5 F() ($(1 — w) — Log(1 — u) — ——)du

27T J5_ioo u—1

N

Kﬁ-

=
I

1 d+1i00

= f(u) (1/}(1 —u) — Log(1 — u))du

2im §—1i00

Since by (1.34)

=VU(1—u)— Log(l —u)

n>1

we have to prove that

d+ioc0
S fn) = - /5 F(Y ——)du

2 Js_,
n>1 o0 n>1

and by the Cauchy theorem it is equivalent to prove that

i i R
d+100 1 1 d+100 1

L
3 et D S

d—ico n>1

which is an immediate consequence of Theorem 10 applied to the function

9w, u) = fu) ;.
O

Remarks

1) As it is observed in Hardy’s book ”Divergent series”, the result of the
preceding theorem remains valid if the function f is such that |f(z)] < |z|°
for some ¢ € R.

2) The preceding theorem is not valid if the function f is only analytic
for Re(z) > 1 and in a neighbourhood of 1.
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Take for example

)= o = LV e D

Then in the disq D(0,1) we have f(z) = 3725 (—1)(z — 1)* and the series
S(1) is reduced to
—B;+0+04+0+...

thus it is Borel summable and

B
(71)k+lBk 1 1
f) - kzzoakf(l)Tl)!Jr =3

But the Borel summability of the series &(1) does not necessarily imply the
validity of (4.1) since we have by (1.34)

R
Z (n—1)2 -

R
1+z Zn 172

| —
an

n=1 n=1
1 ) ) T
- Zw(z)—w(—z» 2
= 0.5058777206
Example

For f(z) = & we get for s # 1

1 1 &~ Brn
e p— + —
((s) = o + 5 +k§>1 G 1)!s(s+ 1)..(s+k—-1)

and for s = 1 we have

EB: Bk+1
Z

w\)—*

4.2 A convergent expansion

4.2.1 Bernoulli numbers of second kind

The Borel summation formula (4.1) is not very practical for numerical eval-
uation since the Borel summation of a series ), . aj involves analytic con-

tinuation of the function z — a(z) given, near z = 0, by a(z) = Z;i—)f) ak””k—l:.

To obtain a more useful formula involving convergent series we use in
place of the operator 0 the difference operator A defined on functions by

Ag(z) = g(z +1) — g(z)
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The difference equation R¢(z) — R¢(x + 1) = f(x) is translated in the form

—ARy = f
which gives formally
Ry = —if
Now we need an expansion of similar to the expansion of - 1 in term of

Bernoulli numbers. To get such an expansion we use the fact that A=e?—T
thus
1 1

log(I +A)  log(e?)

and
I 4 I I

-9 - _ =
A Tlglra) A
we are thus led to the following definition.

Definition
We define the Bernoulli numbers of second kind (3, by

n __ ﬁn+1 n
log1+t Zit _1+Z

We get

:_7 __a 1f+2 ﬁn-&-l n

This gives formally

> 1w = 3 (a0 (1.2

n>1

In the following section we show that this series is often convergent and gives
a numerical evaluation for the Ramanujan summation.

Remark
The Bernoulli numbers of second kind [, are given by By = 1 and the
relation
)
=0
Z kl'n— k —I— 1
this gives
1 1 1 19 9 863
61_57 62__6; /83_17 ﬂ4__%a 65_17 ﬂﬁ__ga
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We can give a simple integral expression of the Bernoulli numbers of
second kind. It suffices to write

t zx—1)..(z—n+1)
— = e = ¢ d
log(1+1t) /0 bt = Z / n! v

n>0

thus we get for n > 1
1
Bn = / z(z—1)...(r —n+1)dz (4.3)
0

4.2.2 Newton interpolation formula

By the relations (4.2) and (4.3) we see that the Ramanujan summation can
be related to the Newton interpolation series of the function f. We now turn
to the basic definitions and properties of these series.

The Newton interpolation series are series of type

z—1)...(z—n
2%( )=z )

Where we always use the convention: (z —1)...(z —n) =1if n = 0.

These series have a ”half plane convergence” property given by the fol-
lowing theorem (cf. Nérlund).

Theorem 1 of Norlund
Let xo < 1. If the series ano an (zo—1)...

n!
series Y, g anw is uniformly convergent on every compact of the
half plane {Re(z) > xo} The function

(zo—n) s convergent then the

= (z—1)...(z — n)
Zan—

is analytic for Re(z) > xo and there exists C > 0 such that

f(2)] < Cel#IF 7|70t s

With the hypothesis of the preceding theorem we see that the coefficients
ay are related to the values f(1), f(2),...f(k),... of the function f by

k
k+1 Zan ( —n—|—1 Z g
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We can invert this relation to get an expression of the coefficients a, in
terms of the values f(1), f(2), ... of the function f, we get

apn = zn:f(k +1)CE(-1)"k

k=0
This last formula is related to the A = E — I operator by

n

AMf(1) = (E-D)"(f)(1) = Y EXH)Cr(-1)" " = Z FlA1)CR (1) "

k=0 k=0
Thus we have
an, = A" f(1)

This result gives the solution of the interpolation problem of finding an ana-
lytic function f given the values f(1), f(2),...f(k),....
If these values satisfy the condition that the series

—-1)... —
E A" f(1) (o= 1) '(xo n) is convergent for some zg < 1
n!
n>0

then the analytic function f is defined for z € {Re(z) > x¢} by

+o00
f(2) = Z Anf(l)w (4.4)
n=0

n!
which is the Newton interpolation formula.

The following theorem (cf. Norlund) gives a simple growth condition on
a function f to obtain the validity of the Newton interpolation formula.

Theorem 2 of Norlund
Let g < 1. If a function f is analytic for Re(z) > xo and verifies

If(2)| < Clel?1L0g(2)

for a constant C' > 0, then for Re(z) > sup(zg, 1/2) we have

= — z—n
flo) =3 arpyE=theon)
n=0

n!

this series is uniformly convergent for Re(z) > sup(xg,1/2) +¢ (¢ > 0).
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4.2.3 Evaluation of A™f(1)

To get the expansion of a function f in Newton series we have to evaluate
the terms A”™f(1), this can be done by

A" f(1 Zf k+1)Ck(—1)"* (4.5)

k=0

but it is often more simple to use formal power series and find an explicit
expression of the exponential generating series

n tn
>oA f)—.
n>0
We have a simple expression of this series, since
Arp)s (k _kt (ks ls DT
> AW = >3 stk =Y s
n>0 n>0 k=0 k>0 1>0

thus we get
n tn
dA JM)=e Py A k+1 — (4.6)
n>0 k>0

We can also remark that by the Laplace transform of (4.6) we also obtain a
simple expression of the ordinary generating series

> ATf(1)z

n>0

since we have formally

“+oo n
S A1) = %/0 et ZA”f(l)%dt

n>0 n>0
thus we get
S ATf1) = 1/%0 e flk+1) A
2 ), k!
n>0 k>0
this gives finally
A" f(1)2" = (k+1 k 4.
S A1) = = ST () (@7)

n>0 k>0

As a consequence of this relation we have the reciprocity property

ATf(1) = (=D"g(n+1) & A%(1) = (=1)"f(n+1) (4.8)
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To prove this relation we observe that

z Z
z+1 :_Z(:)Zi—i-l:_
and 1
z
Z(—l)"g(n+1)z”: me( +1)(z+1)k

is equivalent to

Z+1Zgn+l Z—l—l ka+1
n>0 k>0

Remark: Ramanujan’s interpolation formula
The formula (4.6) connects the Newton interpolation formula to an inter-
polation formula that Ramanujan uses. If we write

1 teo
—Do(z—k)=(-1)f——— “thEdt
G=ee=R) = (Ve | e
then we have formally

AFf)(1 1 too ~DF Ak (1
kzm(k!)()(z—l)...(z—k)_r(_z_'_l)/o t%e ;0( )(k! Y gy

Thus by (4.6) the Newton interpolation formula becomes the Ramanujan
interpolation formula (see Appendix)

+oo
F&) = 57 / ’ZZ k| F(k+ 1)tkdt

k>0

Examples
1) If f(x) = 2 then

n>0 ’ k>0

thus

2) It is easy to get a simple formula relating A”¢(1) to A™f(1). By
definition of ¢y we have

Api(z) =pp(z+1) —pf(x) = f(x + 1)
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thus
App=Ef =(E—~1+D)f=Af+f

This gives A% (1) = f(1) and for n > 1
App(1) = A" f(1) + A" f(1) (4.10)

If we take f(z) = 2, then we get by (4.9)

Antp;(l) _ (_1)n+1

= —— fi >1 4.11
@ n(n+1) o= (4.11)

3) There is also a simple formula to evaluate A™(2¢;)(1). We have

1 n 1 k+1
A"(Zep)(1) = Z(me(j))Cﬁ(—l)"_k
k=0 j=1

S G Chr
=0 k=i

k+1

now it is easy to verify by induction that

- 1 |
ki _1\n—k — (1 I
> Ch1)" T g = ()G
k=j
thus we get
1 1
A" (= 1) = A" f(1 4.12
(o)1) = —=A"f() (412)
If f(z) =1, then by (4.9) we get
Ao = 2oart) = B (413)
e S n+1 oz (n41)2 '
and by the reciprocity property (4.8)
1 1 Hn+1
"—(1)=(=1)"(—¢a2 1) =(-1)" 4.14
A1) = (1 e+ 1) = () (114)

4) Let xf be the function x — x f(z) then

Al@f) =@+ Df+1) —af(z) =2(f(x+1) - f(2) + flz+1)

thus
Al(zf) =zAf+ Ef
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and by iteration we get for n > 1
AMzf) = xA"f + nEA" f = (2 +n)A"f +nA"Lf
This gives A%(xf)(1) = f(1) and for n > 1
A™xf)(1) = (n+ A" f(1) +nA" 7 f(1)
we deduce the recursion formula for an integer k£ > 1

A™M(* f)(1) = (n+ DA™ (@ TH)(D) + nAmTH @ T)(1)

If we take f(x) = @1 we get by (4.12)
Alagps)(1) = 2
and
(=D"

A”(x(p%)(l) = Py — forn > 2

For f(x) = 2%p1 we have

Al(a?QQO%)(l) =5, AQ(zch%)(l) _ ].2i
and
n(, 2 . (—1)n_1(n+2)
A" (x W%)(l)—m forn >3

5) Let z #£0,—1,—2, ..., then we have

(=1 n! ) /0 Nz —1)dr =Y CRH(-1)"F 1

z(z+1)...(z+n P z+k
thus
n 1 i n! o 2L (Z)(n+1)
A (zflJra;)(l)_( 2 z(z+1)...(z+n)_( 2 I'(z+n+1)

If f(z) = Fr(é)i%) then by the reciprocity formula (4.8) we get

1
zZ4+n

A"f(1) = (~1)"

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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4.2.4 The convergent transformation formula

Let f be given by the Newton interpolation formula, then for any integer

n > 1 we have
Jr

o Ak
f(n) = (Akﬂ(n— 1)...(n — k)
k

[}

(remember that by definition we have (n —1)...(n — k) =1 if k = 0)

To evaluate the sum Zf>1 f(n) we try to prove that

R +o0 k R
ICEDS (Ak% SN (n—1)..(n—k)
n>1 k=0 n>1

and use the following lemma :

Lemma 17 We have for any integer k > 0

(5= 1)z — (k+1) + ]fli:ll

R 1y (a—k) = I

(remember that by definition we have (x —1)...(x — k) =1 if k=0).
Thus

R 3
Y (n—1)..(n—k) = 15 (4.22)
k+1
n>1
Proof
Note that

(z—=1)..(z—(k+1)—zz-1).(z—k)=—(k+1D(x-1)...(x—k)

thus

Roety. ot :_kil(x_1)...(x_(k+1))+k%l/l (@=1).. (2= (k+1))dz
and we get
R 1 2
nz;l(n —1)..(n—k) = et /1 (. —1)...(x — (k+1))dz
this gives
kij—l/l (2= 1)z = (k+ 1)) = i - /O 2@ —1).(z — k)da = /fk++11

O
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Theorem 18 Let f be analytic for Re(z) > xo with xg < 1, such that there
exists C' > 0 with
f(2)] < Cel#IEes)

If we set for k>0

and .
ARF() =) FG DO
§=0
then the series 3~ %(Akf)(l) is convergent and
R _ = 5k+1 k
n>1 k=0 ’
Proof

By (4.22) it suffices to prove that

+o00 k
Ry(x) = %R@—l)m(x—k) (4.23)

By Theorem 2 of Norlund we have the following expansion

k
f@) =Y AW 1y (k)

k!
k>0

where this expansion is uniformly convergent in every compact in the half-
plane Re(z) > ag = sup(zg, 1/2). Now to prove (4.23) we use the expression
of R(z—1)...(x—k) given in the preceding lemma and we consider the series

(A1)
%}) Gy @ Do = (kD)

If we write the general term in the form

(ARf)(1) (A*f)(1) x - (k‘+1)}

(k+l)' (x_l)(x_(k—i_l)) = Kl (Z‘—l)(a:—k:)[ 1

and apply the classical summation by parts then we see that this series is also
convergent for Re(x) > ap. Then we can define for Re(x) > ap an analytic
function

+o00o k
R(z)=-Y m(x 1)z — (k+1))
k=0
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This function satisfies the difference equation
R(z)— R(z+1) = f(x)
and by Theorem 1 of Norlund we have
[R()] < Cell3[afoot

Thus the function R is in O™, and the function Ry is given by

Ry(x) = R(x) — /1 R(t)dt

Note that R(1) = 0 and by uniform convergence of the series defining R on
the interval [1,2], we get

—+00

“+o0
(A’“f)( )
/R (k+1) /1(33_1) (r—(k+1)) Z

k=0 k=

H

Remark
Note that for any integer m > 1 and if g(x) = f(z + m), then we have

=Y flk+m+DCH-1)"F = A" f(m+1)
k=0

and by the shift property

R R m m+1
St =S g+ 3 fn) - / f(x)dz
n>1 n>1 n=1 1

thus for any integer m > 1 we get

“+o00

m+1 m
[ s 3 s = 30 g (88 m1) - 84 (1)

which is the classical Laplace integration formula (also called Gregory’s for-
mula) (cf. Boole).
Replacing m by m — 1 we write this last formula in the form

o0

> s [ st = 3" o)+ fm Zo(ffi)!ﬂf(m)

n>1

which shows the analogy with the Euler-MacLaurin expansion

- [t )iz =3 fn) + Fm )+ 3 e m)

n>1 k>0
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Examples
1) If we take f(z) = 1, then by (4.9) we get

By (3.3) we get

with (4.24) this gives

Log(V2r) = % +

3) For f = xzp1, we have f(n) =nH,, and we get by (4.17)

R +oo k
S ntty= 5~ 6 T Gy
n>1 k=2 + )
By (3.4) we get
5 )k ,Bk+1
! p— R—
¢'(=1) = ;37— Log(v2r Zk —

With (4.21) and (4.23) this gives

400

25 1 (—1)*(13k +11) By
_@_Ekz k—1)(k+1) (k+1)!

By the same type of calculations we get also

& 2 +2) B
D n*Hy = 48 Zk )(k++)

n>1

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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which gives by (3.5)

+2) B
—2) (k+1)!

¢ (-2) :—%7+Log(r)+2c +Z( D*

Similar formulas can be obtained for 23;1 n*H,,, which gives expansions of
¢'(—2k), thus of ¢(2k 4+ 1) (cf. Coppo and Young).

4) By (4.13) we get

1k
Z Z ﬁkﬂ % (4.29)
n>1 + )
And by (4.14)
9 R .

m Br1 (1) Hppa

S 4.

6 +;n ACEINUESY (4.30)

5) By (4.21) we get for z # 0,—1, -2, ...

BT &R B 1
; [(z +n) ;; (k+1)! <_1)kz+k (431)

Since it is immediately verified that for Re(z) > 1 we have

_TE-1r(z) [?T(z-1l(x)
M T Tere 1) /1 fere_D»
this gives
ErErm) 1 [2T(- D)
n>1 L(z+n) _2—1_/1 l—‘(z—&—x—l)dx (4.32)

thus we get in this case

+o00 2
B 1 _ L [PTGoUNw),
kzzo(kJrl)!(_l)szrk_z—l /1I‘(z+x—1)d

6) By (4.20) we get for z #£0,—1,-2, ...

R +oo

1 _ Brt1 k!
Zz—1+n_kzzo(k+1)!( 1)kz(z+1)...(z+k)

n>1
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which gives by (2.4)

—+o00 X
_ Br+1 (=1)Fk!
Log(z) =v(z) = kzzo k+ 1)l z(z+1). (z+ k) (4.33)
Remark
Let f € O™ and F(x) = flx f(t)dt, we have by the shift property
R k R
AN = YCHDFI Y S+ n)
n>1 7=0 n>1
k R
= Y CHEDRI (Y F) = erG+ D)+ fG+ 1)+ F(+1)
§=0 n>1
that is
R
> AFf(n) = —AFps (1) + ATF(1) + AFF(1)
n>1

this gives by (4.10), for k > 1, a formula that generalizes the shift property

R
> AFf(n) = —AFTF(1) + AFF(1) (4.34)

n>1
For f(z) = 1 we have by (4.19)
—1)kk!
x z2(z4+1)...(z+ k)
thus by (4.9) we have for k > 1

R
(=D*%! N
= (—1)"=+ A"Log(1)
7; nn+1)...(n+k) k
For k > 1 the series %, —— L™k t and si
or k > e series 3,5 gy 7y 1S convergent and since
1 - 1 B k
nn+1)..n+k—-1) (n+1..(n+k) nn+1)..(n+k)
we have
i‘) k! !
—n(n+1)..(n+k) -k

Thus for £ > 1 we get

A*Log(1) = (-1 [

e k!
dz
1 z(z+1)..(z+k)
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4.3 Summation of alternating series.

4.3.1 Euler summation of alternating series

Consider the Euler polynomials F,,(z) defined by the generating function

n! i er +1

E,.(x) , 2e**
3 (@) n _

n>0
We define the numbers E,, = E,,(0)

1

1 1
Ey=1,FE =——FE=0FE;3=—-FE;=0,E;=——, ...
0 s 441 25 2 s 43 47 4 s 145 27

These numbers are related to the Bernoulli numbers by

72(2n+1 _ 1)

E =
" n+1

By, forn>1
(we don’t call these numbers ”Euler numbers” since the Euler numbers are
usually defined by 2"E,(3) ).

With the generating function we verify that E,(1 — ) = (=1)"E,(z) for
n > 0, and we define for t € R the functions

em(t) = (D) (=1)™E,, (t - [t])

We can define the summation of alternating series > ., (—1)" f(n) start-
ing from an analogue of the Euler-MacLaurin formula that is the Euler-Boole
summation formula (cf. Appendix)

fA) = f)+ ..+ (D" f(n) = %Zakf(l)%

which we can write in the form

m +00
FO) =t (O ) = 53O 4y [ e (0 de
()t & 5
+ T’;)akf(nﬁ—l)k—f

_ 1/00 L (O (1) dt

2 Jpag m!
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We see that this formula has the same structure as the Euler-MacLaurin
formula, with the constant term

N Be L L mt1
_2;06 F7 +2/1 —rem ()" (1) dt

which is, by integration by parts, independent of m for m > M.

We can proceed, for an alternating series >, -, (—1)¥7! f(k), as in the
Ramanujan summation, defining the Fuler summation of this series by

13

k—1 A 1 1 el m+1
> (1w = O = 5 30 w5 [ amen ")

E>1

As in the Ramanujan summation it is useful to give a definition of the
Euler summation not directly dependent on the Euler-Boole summation for-
mula.

If we set

1y =50 S ot B L [T Lo a

then the Euler-Boole summation formula is

F) = o+ (F1)" 7 f(n) = O(f) + Ty(n + 1)

thus
(=D)" 7 f(n) = Tr(n+1) = Ty(n)
Now if we define the sequence Ay by

Ap(n) = (=1)"Ty(n)

we get
Af(n) + Af(n + 1) = f(n) (435)
and .
D ()" f(n) = O(f) = =Ty(1) = A(1) (4.36)
n>1
By (4.23) and (4.24) it is natural to define the Euler summation by
£
Y (0" () = O(f) = 45(1)
n>1
where

Af(x) + Ap(z+1) = f(z)
But this equation does not specify a unique function Ay since we must avoid
the solutions of the equation A(z) + A(z +1) =0.
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Lemma 19 If f € O7 there exists a unique solution Ay € O™ of
Ap(@) + Ap(z +1) = f(z)

and we have

T z+1
Ap(z) = Rf(2w)(§) — Ry(22)(—5—

—). (4.37)

Proof

Uniqueness of the solution: if a function A € OT is a solution of the
equation A(z)+ A(z+1) = 0 then the function R(x) = A(z)e'™ is a solution
of the equation R(xz) — R(z + 1) = 0, and is of exponential type < 2, thus
by Lemma 1 the function R is a constant C' and we have A(x) = Ce'™, and
A € O™ implies C = 0.

Existence of the solution: since the function z — f(2x) is in O, then
by Theorem 1 the function Ry o,) € 0?7 is a solution of the equation

2
Rf(zm) (.’L‘) — Rf(gm) (.’L‘ + 1) = f(2x) with / Rf(gx) (x)da: =0
1

If the function Ay is defined by (4.37) then we have

A@) + Ap@+1) = =Rpon(G + 1)+ Rean(3) = /().
]

Definition 6
If f € O™ there exists a unique function Ay € O™ which satisfies

Ap(x) + Ag(e + 1) = f(2)
and we define the Euler summation of the series Zn21(—1)"_1f(n) by

£

Y (=1 (n) = Ap(1)

n>1

Remark
Note that if f € O™, then the function g : x +— f(z)e'™® is in O*" and by
Theorem 1 there is a unique function R, € O*" which satisfies

Ry(z) — Ry(z+1) = f(z)ei™

Then the function A(z) = e R, () is a solution of A(z)+A(z+1) = f(z),
but A is not necessarily the function Ay of the preceding definition since it
is not necessarily of exponential type < .
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Examples
1) By the generating function of Euler polynomials Ey(x) we verify that
3 En(z) + By(z +1) 5, 2(e™ + eotD)?)

_ _ xTrz
k! == er+1 =2

E>0
thus the Euler polynomials are solutions of
Ei(x) + Ex(x +1) = 22" for k >0
and by the preceding theorem we get

1
Agr(x) = iEk(x) for k>0

We get for example:

B Ek (1 _ 2k+1
_1 n—1_k _ Zr
7;( =5 k+1 e
thus for any integer k£ > 1 we have
£
Z(_l)nfank — O
n>1

2) For f(z) = 1 we have Ry = —1) and since in this case f(2z) = 1 f(z)
we get by (4.37)

Ap(e) = SR(G) - 5Ri()
1 r+1 T
= 5(%/1( 2 )—‘/’(5))
Thus A 1 is the classical function
1, x+1 T, X (=)
Blx) = - (( )—9(35) =) —
(2) = 5 (W(— >) 7;) notw
and we have
& n—1 +oo n—1
> s =3 o)
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3) If f(x) = Log(x) then Ry(z) = —Log(L'(x)) + Log(v/2m) — 1, thus
Riog(20) = Riog(2) — Log(T'(x)) + Log(v27) — 1
and we get
Riogtan) = (3 — )Log(2) — Log(D\(x)) + Log(v2r) ~ 1
therefore
Ag(w) = 5 Log(2) — Log('(x/2) + Log(T((x + 1)/2)

Which gives Af(1) = 1Log(2) — Log(I'(1/2)), thus

£ 12
> _(=1)""'Log(n) = 5 Log(>) (4.38)

P
n>1
4) We have for |z| <7

ez’xz + ei(:c+1)z _ eimZ(l + eiz)

izz

thus Agies = %= and
£
Z(_l)n—l inz _ e
>1 1+e*
n

We deduce that for —m <t <

£ 1 £ 1t
n—1 _ n—1 _: _
Z(—l) cos(nt) = 3 and Z(—l) sin(nt) = 3 tan(i)
n>1 n>1
Remark

Classically the Euler method of summation of a series ), - ay is defined
by (cf. Hardy) a

& +oo 1 k
ap = — Cla;+1 (when this last series is convergent
2k+1 kYi+ g
n>1 k=0 j=0

thus if a, = (=1)""1 f(n) this gives
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To see how this definition is connected with our preceding definition we use
the Newton expansion of the function f. If f is analytic for Re(z) > o,
xo < 1 and such that

|f ()] < CelrlFes)

for a constant C' > 0, then for Re(z) > sup(xo,1/2) we have by theorem 2 of
Nérlund

_+OO (x—1)..(x — k)
7o) = 3 g =

If we admit that, as in (4.16) for R, we have

X ke A1) (o)
Af(x) = ZA f(l)T
k=0 ’

then it suffices to evaluate A, _1). (»—)- This is done by using the immediate

result ( o1
1 (14 2)*~
Agzyer = 55—

fi <1
2 142 or |z]

By the binomial expansion of (1+ 2)2~! for |z| < 1, and by identification, we

get
(1)K S~ (= 1)e(z— 7)o
Ag=1)..(a—k) = ST Z 7l (—2)

=0
Thus

= R (m—1).(z— ;
Af(x) — ZAkf(1> (2]61)1 Z ( 1).7'( .7) (_2)]
k=0 j=0 ’

and with x = 1 we obtain

& +oo (—l)k
Y (=) f(n) = S (ATH(1) (4.39)
n>1 k=0

that is the classical Euler summation of alternating series.

4.3.2 Properties of the summation

The properties of the Euler summation are very easily deduced from our
definition.

1) Linearity

Since the equation defining A is linear we have immediately the property
of linearity

£

&
YD Haf(n) +bg(n) = ay (1) Hf(n) +b) (=1)" " g(n)

n>1 n>1 n>1
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2) The translation property
Let f € O™. Since we have

Af(l‘ + 1) + Af(m + 2) = f(l‘ + 1)
we deduce that Af,1y(x) = Ay(z + 1), thus
£
DT (1) = Ap(2) = £(1) - Ap(1)
n>1

which gives the usual translation property

& E
DD ) = £(1) =D (=D f(n) (4.40)

More generally, we have for any integer p > 1
Af(x+p)+Af(x+p+1) = f(z+p)

thus if we note f(+p) : x — f(x +p) then A () = As(z + p) and

R
D= f(n+p) = Ap(p+1) = (-1)PAz(1) pHZ )T R)
n>1
Since P
()P A (p+1) + Ap(1) = S (—1)F L f (k) (4.41)
k=1

we get the usual translation property

R p &
DN i p) =Y (DM ER) + ()P Y (=) f(n)
n>1 k=1 n>1

3) Relation to usual summation.
Let f € O™ and suppose that the series >~ - (—1)" f(z+n) is convergent
for all Re(z) > 0 and defines the function -

g: zHZ x+n

n=0

We have

o0

g(z)+g(x+1) = Z -

n=0

NE

(=D"f(z+n) = f(z)

3
Il
_
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If g € O™, this function is by Lemma 17, the unique solution of the equation
g(x) + g(x +1) = f(z). Thus we get

and

n 1f

Pﬁ
HMS

2

In this case we say briefly that "we are in a case of convergence”.

Example
By the translation property we have

& &
> (=1)"'Log(n+1) == (~1)""'Log(n)

and by (4.38) we get the well known result (cf. Sondow)

+oo
S ("G~ Log" ) = Log(H)

n=1

Remarks
1) Since we have pf(n+1) = ps(n) + f(n), we deduce immediately from

(4.40) that

£ 1 £

D (1" pg(n) = 3 Yo (=1 () (4.42)

n>1 n>1

For example we have

£
d (-1 'H, = %Log(Q) (4.43)

n>1
Since
R
pr(n) = Cs — Re(n) + f(n) with Cy =Y _ f(n)
n>1

and prl(fl)”*1 = 1, we deduce from (4.42) the following relation with

the Ramanujan summation

£ &

R
Yoy =2 (1" Rp(n) = Y (=1)" ' f(n) (4.44)

n>1 n>1 n>1
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2) Let f € O™ and F(z) = [, f(t)dt. We have

/:H Af(a:)dar+/m+2Af(a:)dx=/Hlf(x)dx

x+1 x

thus we get
£

v |

n+1 2
flz)dx = / Af(x)dx
n>1 n 1

and by the translation property this gives

£

2
> (1) 'F(n) :_%/1 Ay (x)dx (4.45)

n>1

4.3.3 Relation with the Ramanujan summation

The Ramanujan summation of even and odd terms in a divergent series
Y n>1 f(n) is simply connected with the Euler summation of the alternating

series Y, o1 (=1)" " f(n).

Theorem 20 For f € O™/? we have

R 1R 1E
S fen-1) = 23 )45 Y1 )
n>1 n>1 n>1
R 1R £ 12
DI = 5 f) =53 (DM 4 [ @
n>1 n>1 n>1 1
Proof
It is equivalent to prove the following assertions
R R R 1 2
D f@n-1)+ > f2n) =) f(n)+ 5/ f(t)dt (4.46)
n>1 n>1 n>1 1
and
R R £ 1 /2
S -1 = Y fem) = S (0" - 5 [ e (aan)
n>1 n>1 n>1 1

We have already proved assertion (4.46) which happens to be (2.18).
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To prove (4.47) we consider the function g :  — f(2z). By Lemma 19
we have

z z+1
Ag(@) = Ry(5) = Ry(*5)
this gives
£
> (=1)" 1 f(n) Zg
n>1 n>1

But Ry(3) is given by (2.2) with 2 = —1, and we get

£ 1
> (=1)" " f(n) Zgn—f Zg / g(t)dt
n>1 n>1 n>1
that is
£ R R 2
DN ) =Y fen-1) =) @)+ [ f)dt
n>1 n>1 n>1 1
O
Remark

For f € O™/? the preceding theorem gives

£ R R 2
S Em) = S fm) -2 fen) + / f(t)dt
b n_’R " R

= 2) f@n—-1)-> f(n)

This last formula shows that if f depends on an extra parameter z or t,
then the theorems of analyticity and integration of chapter 2 remains valid.
For example, we know that for Re(z) <0

£ +o00

In(e* +1
§ :(_1)n—16ann _ § :(_1)n—leann _ n(f +1 )
n>1 n>1 e+

Since this function of z is analytic near 0, by derivation with respect to z, we
obtain

£
1 In(2)
1 n—1 Hn _ - _
;( )" 17 4
£ 1
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As another example, we have for Re(s) > 1

£ +o00 1

Syl oS — a2

ns
n>1 n>1

This function of s is analytic for s # 1, by derivation with respect to s, we
have

€ 1 1yn—1 oa(n
> (”n—“’” = ()27 = 1) = ((5)2'*Log(2)

This gives for any integer k > 1 the relation

i(—l)“ln%g(n) = 241 L Log(9) 4 (24 - 1) (-R)
for k = 1,_2 we have
S (1" nLog(n) - SLog(2) +3¢' (1)
S Loyl =7 (2) = 15 €)

From the translation property we deduce the values of the convergent sums

—+oo

(1) nog(" ) — 1) = 5 — £ Log(2) — 5 Log(x) — 6 (-1)
n=1
+oo
S (- nLog(" ) —n by = BB LI )y T
n=1
Examples

1) We have by (4.38) and the preceding theorem

X 1 1
Z Log(2n —1) = §L09(2) - -

2
n>1
thus
R 1 1
Z (Log(2n — 1) — Log(2n) — %) = Log(V2m) — 37
n>1

and, since we are in a case of convergence, we get

+oo 1

>~ (Log(en — 1) ~ Log(2n) — ) = Log(v/7) — 57+ 5

n=1
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Note that for f € O™/2, by the shift property applied to z — f(2z — 1),
we have

R 1 R 1 &
> f@en+1) = 5Zf(n)jﬁz:( D" f(n) /f2t—1
n>1 n>1 n>1

In the special case f = Log this gives
R

1 3
Z Log(2n+1) = §Log(2) + 5Log(3) ~5
n>1

Thus, if we consider the sum 2521(Log(2n — 1)+ Log(2n 4 1)), we get

R R R
Z Log(4n*—1) = Z Log(2n—1)+ Z Log(2n+1) = Log(2)+ gLog(S) -2
n>1 n>1 n>1
which gives
3 3
Z Log( 1—— = Log(2 )+ Log(3 Z Log(4n?) §L09(3)—Log(27r)
n>1 n>1

Since we are in a case of convergence, we get

Z Log(1 = Log(~ 2)

and by expanding the logarithm this gives

If we consider the difference 2321 Log(2n+1) — 2521 Log(2n — 1) we find

and by the use of

1+4 X 1 1
Log( fc) = Z 2%k (2k + 1) 22k+1
k=0
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this gives

C2k+1)
Z22kzl<;+1 = Log(2) =

2) Since for s # 1 we have

&

3 EULo0t) 11— 915 - ¢(s)2 Log(2)

nS
n>1
we get by the preceding theorem

R

Z(Qn —1)Log(2n—1) = ('(-1)+ éLog(?) — é
R ) 1 9 9
2(211 +1)Log(2n+1) = (¢'(-1)+ gLog(Q) + 1L0g(3) ~3

We deduce that

R 1 3
Z nLog(4n? — 1) = ¢'(=1) + = Log(2) + = Log(3) — =

= 6 8 8
This is related to the series
C2k+1) X ) o1
Z Oy ;(4nLog(4n —1) —4nLog(4n”) + E)
and we obtain
C(2k+1) , 1
=—-12¢(-1)—~vy—=Log(2) — 1
Z4kk+1 ¢'(=1) = 7= 3 Log(2)
By the same type of calculations we have
R 1
> (2n—1)’Log(2n —1) = 3('(-2) - 5
n>1
s 9 27
> @n+1)°Log2n+1) = 3('(-2)+ 5 Log(3) — T2
n>1
We deduce that
S 14

§4n2L0g(4n2 —1) =6¢'(=2) + Log(2) + gLog(S) i
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This gives

f—f(%) 14 C(~2) - Log(2) + &
Pkt 1)

3) Consider an integer k > 1 and f(z) = Logi() then by the preceding
theorem we easily get an expression of the StleltJes constants

o = Z Log:(n)

n>1

in terms of alternating series. We have

iLogk@n) _ ;iLogkm) _;i (-)""'Log"(n) |, 1 / Log*(x)
2n 2 n 2 n 2/ z
n>1 n>1 n>1
1 1 (=1)" 'Logh(n) | 1Log"*'(2)
= gn—32
2 2n>1 n 2 k+1

but the binomial expansion gives

R R k ;
Z Log*(2n) 1 Z (Log(2) + Log(n))* 1 Z €9 Log* Z Log’ (n)
2n 2 n 2 n

n>1 n>1 7=0 n>1

thus (with y9 = ) we get

R k
Logk(Zn) 1 . b
E —5, — 3 E Cl~v;Log® 7 (2)

n>1 §=0
; i i (=1)""'Log"(n)
Since we are in a case of convergence for the series ) -, *———"—" we
obtain B
ZCHJLOQ (2) = (4.48)
where
5, = Log™™'(2) R (0" Logt(n)
= — -7 < =~ 7
k+1 = n
We have for example
Log*(2) 5~ (=1)""'Log(n)
VLog(2) = 20 2) _ 5% D" Logln)
n>1
Log*(2) X (=1)""'Log*(n)
2 — _
vLog”(2) + 271 Log(2) = — > -
n>1
Log'(2) = (=1)"~'Log®(n)
Log®(2) + 371 L 372 L
YLog*(2) + 371 Log*(2) + 312 Log(2) = — -> -
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We can easily invert these relations by using the exponential generating func-
tions
P ~ _ 2P
G(z) = ZWE and G(z) = Z’V’CH
E>0 E>1

The relation (4.48) is simply
(e*1°9) _ 1)G(2) = G(2)

thus we have

G(z) = G(2)

ezLog(2) _ 1
This gives Stieltjes constants 7, in terms of linear combinations of the con-

stants 4y, involving powers of Log(2) and Bernoulli numbers (cf. Zhang and
Williams).

Remark
Let g € O™/4, then by applying the formulas of the preceding theorem to
the function z — g(2z + 1), we also get

R 1 R 1 &
— n—1
Z gldn—1) = 3 Zg(?n +1)+ 3 Z(—l) g(2n+1)
n>1 n>1 n>1
R 1 R 1 £ 1 /2
dn+1) = = n+1)— = 1) tg2n+1)+ = 2t + 1)dt
Soattn+) = 53 ant =530 ey g oy

4.3.4 Generalization
Let N be an integer > 1 and
Oy = {e¥™/N m=1,.,N—-1}

For a root of unity w € Qy and a function f in O**/N we can define a sort
of Euler summation of the series >, -, w" ™! f(n) by

Eu
D oW (n) = A1)

n>1
where A% is the solution in O27/N of the equation
Aw) - wA( +1) = f(x)
Like in Lemma 19 this unique solution A% € O?7/N is given by

N—
Af(x) = ) W Ryva)
k=0

[

r+k

) (4.49)

(where we use the notation f(Nz) for the function : z — f(Nz)).
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Note that if the series > o, w™ ! f(n+x—1) is convergent for Re(z) > 0
then we immediately have

+oo
= Zw"‘lf(rH—x— 1)

n>1
thus in this case
Eu
§ n lf § wn 1f
n>1 n>1

The relation with the Ramanujan summation is easily obtained by (4.49)
since, for kK =0,...,N — 1, we have by (2.2) (with z +1 = %)

k41 s w
n>1

thus we deduce from (4.49) that, for w € Qp, we have

Eu N-—1 R
> W f(n WY f(Nn+k+1-N +—Z dz
n>1 k=0  n>1 ’f+1

Since w € Qn = {2™/N m =1,..., N — 1}, this gives N — 1 equations.
There is a supplementary equation (using (2.16) with f replaced by f(Nx))
that is

N-1 R N—
/ fyde=>" " f(Nn+k+1- Z

n>1 k=0 n>1 k“
Thus we have a system of N equations of type

N-1

2imTm
A, = Zbke NF with m=0,..,N—1
k=0

where

R 1 /N
bk:Zf(Nn—&-k‘—i-l—N)—i—f/ f(z)dx
k

n>1 N +1

Since such a system can be solved by

N—
Z 217rnL
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we deduce that, for k =0,..., N — 1, we have

R R £
1 1 —k -~ n—1
> f(Nn+k+1-N) = NZf(n)—FNZw > W' f(n)
n>1 n>1 wENN n>1
1 k+1
+N/1 f(z)dx
Conclusion

As in Theorem 20 we have, for k£ =1, ..., N, the following relation

R 1 & 1 1 [k
Zf(NnJr k—N)= N Z f(n) + N Z w RS p (W) + N/ f(z)dz
n>1 n>1 wEQN 1

(4.50)
where ..
Sp(w) = w" ' f(n)
n>1

s 1E 1 sm 1.
S SGn-2) = 137 fln)+ 185 4 15 )
n>1 n>1
R 1E 1 s ) 1 s .
S SBn-1) = 23 fm) b se () b 1o ()
n>1 n>1
1 /2
+- | f(x)dzx
3N
i 1E 1 4 2 1 s s
S SBn) = 330 f) 4 e TS b Lo ()
n>1 n>1
1 3
+= f(x)dx
3.1
Remark

For k = N we have by (4.50)

N

R R
NY f(Nn) =) fn)+ Y wSsw)+ 1 fz)dzx (4.51)

n>1 n>1 wENN
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If we are in a case of convergence for the series Y. -, w™ ' f(n) then

wS} j{:w

n=1

Therefore (4.51) is
N
NZan Z +ZZ )+/ f(x)dx
n>1 n>1 n=1wey 1
Thus for every integer N > 1 we have
R R +00 N
NI FOn) =3 f)+ Y entufn + [ f@de (52)
n>1 n>1 n=1 1

where

= Z Ww" = N-—1if Nin

wEQN
= -1 ifNn
Applying this formula for f(z) = L%(z), we obtain for every integer N > 1
1 +§€ ( )Log(n)+1L (N)
= — n —
7 Log(N) < N n 9%

and for f(z) = LogT2(x), we have

Lo 1 1
ZEN 0 4 Lpogh (V) - 2aLog(v)

n= 6 2

2L0g

For example with N = 3, we have }_ ¢ w" = 2cos(22%), and we get

2 X 2nm, Log(n) 1
= — =L
= oy Do

1 X onr Log? 1 1
3 cosZ2 P | L pog2(s) — SaLog()
n

3 6 2



Chapter 5

An algebraic view on the
summation of series

The Ramanujan summation differs from the classical summation methods by
the fact that for convergent series it does not give the usual sum. Also there is
the shift property which seems very strange for a summation procedure. Thus
it is necessary to define a general algebraic formalism to unify the Ramanujan
summation and the classical methods of summation of series.

5.1 Introduction

To introduce this formalism we begin with the analysis of the Borel summa-
tion. We have seen in (4.1.2) that the Borel summation is formally given by

the formula
B “+o00 +oo t’n
_ —t
E anf/ e (g ana)dt

n>0 0 n=0

We now show that this formula is simply related to the resolution of a dif-
ferential equation. More precisely let us consider a complex sequence (ay,),
such that the series

+o00 n
f(x) = ;an%

is convergent for x near 0, then the function f is analytic near 0 and such
that for all n > 0 we have
a, = 0" f(0)

And formally we get

Doan=Y_ 9"f(0)= (Y 9"N)0) = (-0 f)0)

n>0 n>0 n>0

139
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Thus >, <, an = R(0), where the function R is a solution of the differen-
tial equation

(I-9)R=f

Assume that f has an analytic continuation near [0, +oo], then this equa-
tion has the general solution

R(z) = — / et f(t)dt + Ke® with K € C
0

To select one solution of this equation we must set a condition on R. We set
the condition
lim e “R(z) =0

r——+00

This condition is equivalent to the convergence of the integral f0+oo e tf(t)dt
with

+o0o
_ —t
K = /0 e~ f(t)dt

and gives the unique solution

+o00
R(z) = ex/ e tf(t)dt

and finally we get formally
+oo
S an = R(0) = / e f(t)dt
0

n>0

This suggests the following presentation of the Borel summation:

Let E be the space of complex analytic functions f on [0, +oo[ such that
for all n > 0 the function z — e~*9" f(x) has a finite limit when x — +o0.

And let’s define the operators

D(f)(z) = 0f(x)

w(f) = f(0)
Voo(f) = $Erfwe—wf(x)

We say that a sequence (a,,) has the generating function f € E if
a, = 9" f(0)

Since f is analytic near 0, then in a small disk D(0, p) we have

+o0 n
@)=Y 0" (0
n=0 '
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Then, by the preceding calculations, the differential equation
R—-0R = f
Uoo(f) = 0

gives a unique solution Ry given by

+oo
R(z) = e‘”/ e tf(t)dt

And we say that the series ) ., a, is Borel summable if the series
m'n
D oy
n!
n>0

is convergent for x near 0 and defines by analytic continuation a function
f € FE and we have

B
Z an = UO(Rf)

n>0
5.2 An algebraic formalism

Definition 7

A summation space 7 =(F, D, vp, vs) is given by a C-vector space E
with a linear operator D : E — E and two linear ”evaluation operators”
v9: F — C and vy : £ — C such that :

(*) The solutions of the equation
Dg=yg
form a one dimensional subspace of E generated by an element o € E with
vo(a) = veo(a) =1

(**) If g € E is such that vo(D"g) =0 for all n >0 then g=0

Remark
By the property (*) we deduce that if Dg = g and v (g) = 0 then g = 0.

Definition 8
Let (a,) be a complex sequence, we say that this sequence is generated
by fe Eif
an =vo(D"f) for all n >0

Then by (**) this element f € E is unique and is the generator of the
sequence (ay,).
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The constant sequence defined by a,, = 1 for every n > 1 is generated by
the element a since D" = « and vo(a) = 1.

Note that if (a,,) is generated by f and (b,,) is generated by g, then for any
complex numbers C, D the sequence (Ca,, + Db,,) is generated by C'f + Dg.

Summation of a series
To define the sum ), - an we can write formally

> an =Y w(D"f) =v(d>_ D"f) =vo((I-D)"'f)

n>0 n>0 n>0

Z an = vo(R)

n>0

thus we get

where R is a solution of the equation
(I-D)R=f

To have the uniqueness of the sum it suffices to have uniqueness of the solution
R of this equation. By linearity of D this is equivalent to say that :

if DR= R then R=0
by the preceding remark this is the case if we add the condition

Voo (R) =0

Definition 9

Consider a summation space 7 =(E, D, vy, Vs). Let (a,) be a complex
sequence generated by an element f € F and let’s assume that there exists
R; € E which satisfies

Ry — DRy = f with v (Rf) =0 (5.1)

Then we say that > ., a, is 7-summable and we define the sum ZZ>0 Gn,
by B B

i
Z an = vo(Ry)

n>0

Examples

1) The usual Cauchy summation

Let E be the vector space of convergent complex sequences u = (tUn )n>0-
Let’s define the operators

D (’ILQ,’LLl,UQ,...) — (ul,ug,ug,...)
Vo (uo,ul,u2,...) = Ug
Voo (Up,u1,us,..)— lim wu,

n—-+oo
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We have the two properties:
(*) The solutions of the equation Dg = g form the one-dimensional sub-
space of E generated by the element

a=(1,1,1,...)

(**) If vo(D™g) =0 for all m» >0, then g = 0 since vo(D"g) = g, for
every g € E.

Let C be this summation space. A complex sequence (a,,) is generated by
f € E if vg(D™f) = a, and since vo(D" f) = f, we see that every complex
sequence (a,) has the generating element

f=(an)
To define Zizo a, we must solve the equation
R—DR=f (5.2)

that is
(Ro,Rl,RQ, ) — (Rl,RQ,R37 ) = (ao,al,ag, )

this gives
R, — Rn+1 = Gn

thus we have

n
Ryy1=Ro— Z ag
k=0

This gives an infinity of solutions of (5.2) since Ry is undetermined, thus we
add to (5.2) the condition vs(R) = 0, that is

lim Rn+1 =0

n—-+o0o

which is equivalent to say that ZZZO ax has a finite limit when n — 400 and

lim Zak = RO = ’U()(R)
k=0

n—-+4oo

Finally we see that the series >, . a, is Cauchy-summable if Y, ax
has a finite limit when n — 400, in this case we say that the series Y., <, an
s convergent and we write simply

C “+o00 n
g an = g a, = lim E ak
n—-+o0o
n=0 k=0

n>0

that is the usual sum of a convergent series.
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2) The Ramanujan summation.

First note that in the preceding chapters we have defined the Ramanujan
summation for series ) -, f(n) indexed by n > 1, these can be seen as series
indexed by n > 0 if we set

Zf(n) = Zan where a,, = f(n+1)
n>1 n>0
Consider the space E = O™ and the operators
Df(z) = f(z+1)
vo(f) =

)
2
vnel(f) = / F(t)dt

We have the two properties:

(*) The solutions of the equation Dg = g are the functions g € O™ such
that

g(z+1) = g(x)
This gives g(n) = g(1) for every integer n > 1 and by Carlson’s theorem
this implies that g is a constant function, thus g is in the one-dimensional
subspace of E generated by the constant function o = 1.
(**) If vg(D"g) = 0 for all n > 0, then by Carlson’s theorem g = 0
since vg(D™g) = g(n).

Consider R this summation space. A complex sequence (a,)n>o is gen-
erated by an element f € OT if for all integer n > 0 we have

an =vo(D"f) = f(n+1)
The equation
Ry — DRy = f
is in this case our usual difference equation
Ry(x) — Ry(x+1) = f(x)

and the condition
Voo (Ry) =0

is simply the condition
2
/ Ry (H)dt = 0
1

that we have used in the Ramanujan summation. And we have

R

Zan = Uo(Rf) = Rf(l)

n>0

which is the definition used in the preceding chapters.
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5.3 Properties of the general summation

5.3.1 The linearity property

For any complex numbers C, D we have
T T T
> Can+Dby,=C> an+D> b, (5.3)
n>0 n>0 n>0

which is an immediate consequence of linearity of D, vy, Voo

5.3.2 The shift property

Theorem 21 If the sequence (a,,) is generated by f € E, then for any integer
N > 1 we have the shift property

T T N-1 N-1

danin= an— Y an+ Y vee(D*f) (5.4)
n>0 n>0 n=0 k=0

In the special case N =1 we get

T T
Zanﬂ = Zan—ao—i—voo(f) (5.5)

n>0 n>0

Proof
First of all we must prove that the series Zn>0 GneN 18 T-summable.
If (a,) is generated by f € E then for any integer N > 1 we have

ansn = vo(D" TN f) = vo (D" (DN f))

thus the sequence (a,;n) is generated by DV f € E. Then the equation
Ry — DRy = f gives

DVR; — D(DNRy)=D"f
but generally we don’t have vo, (DY R;) = 0. Thus we consider
Ty = DNRy —voo (DN Ry)a
then we have immediately
Tny — DTy =DNf

Voo (TN) = 0
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Thus by Definition 9 we have the 7-summability of ano Gn4n and

T

S i = 00(Tw) = (DY (Ry)) — vsc(DV Ry) (5.6)
n>0

Let us now evaluate the expression ZZ>0 Gp — Zg;ol an in the right side
of equation (5.4). -
By summation for & from 0 to N — 1 (N > 1) of the relations

DFR; — D¥Y'R, = D*f
we get

N—
Ry —DVRy=> DFf

Since vo(D* f) = ay, this gives

T N-1
Z apn — Z ar = vo(DV Ry) (5.7)
k=0

n>0

And by (5.6) we obtain

T T N-1
ZanH\; = Zan— Zan—voo(DNRf) (5.8)
n>0 n>0 n=0
To get (5.4) it suffices to note that
N-1 N-1
Voo (DN Ry) = voo(Rp — > DFf) == woo(DF
k=0 k=0
O
Remark

Note that if in Definition 7 we set the additional property:
(***) If veo(g) =0 then vs(Dg) =0

then v (Ry) = 0 gives voo (DN Ry) = 0 for all positive integer N, thus
(5.8) gives the usual property

T T N-1
§ Apn+N = § Ay — E (079
n>0 n>0 n=0

This property is verified for most summations but not for the Ramanujan
summation.
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5.3.3 The associated algebraic limit

To define an algebraic notion of limit in a summation space 7 we start
with the following simple remark concerning the case of the usual Cauchy
summation: consider a complex sequence (an)n>0, then for every integer

N > 0 we have
N

Z(an —nt1) = Qo — AN41
n>0

. N . . e
thus the series ano(an — ap41) s convergent if and only if lim, 1 apn
exists and we have

—+o0
lim a, =ag — g (an — ans1)
n—-+o0o
n>0

Similarly if the series 3, ., ay is T-summable it is natural to define the
generalized limit of the sequence (a,) by

T

li%nan =ag — § (an — any1)
n>0

Then by the shift property (5.5) we see that the 7-limit of a sequence
(an) with generator f € F is simply

li%nan = Voo (f)

Now it remains to prove that like the Cauchy-summation the 7-summation
is related to the 7-limit of the sequence of partial sums defined by

n—1
so(a) =0 and s, (a) = Z ar=0forn >1 (5.9)
k=0

If the series ) - ay is 7-summable we define the sequence (r,(a)) of re-
mainders of this series by

ro(a) = XT: ap and r,(a) = ro(a) — Sak forn>1 (5.10)
n>0 k=0
Since we have ro(a) = vo(Ry) and by (5.7) for any integer n > 1
rn(a) = vo(D"Ry) (5.11)
therefore we see that the sequence (r,(a)) is generated by Ry. Thus we have

h%nrn(a) =Uso(Rf) =0
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Since s,(a) = ro(a) — r,(a), then the sequence (s,(a)) is generated by the
element

ro(a)a — Ry € E
and we have

n—1

h}n(z ag) = Voo (ro(a)a — Ry) = 1o(a Zan

k=0 n>0

Remark
In the case of the Ramanujan summation we have seen that a sequence
(an)n>0 is generated by f € O7 if a,, = f(n + 1) for every integer n > 0.

Thus . .
=Y ar=> flk+1)=> f(k)=
k=0 k=0 k=1

Since we have
pr(n) =¢r(n+1) = f(n+1)
we see that the generating function of the sequence (s,(a)) is ¢y — f.
Thus in the general case it is natural to define ¢ by

or=ro(a)a — Ry + f

it is the generating element of the sequence (s,11(a) = > ;_, ax). Note that
hm Zak = Uso apf Zan—i—vx,
k=0 n>0

5.3.4 Sum of products

We suppose now that for certain elements f, g in the 7-summation space FE
we can define a product

(f,9)— fygeE

which has the usual properties of associativity, commutativity and distribu-
tivity. And we suppose that for the evaluation operator vg we have

vo(f.g) = vo(f)vo(g)

Suppose that for f, g in E we have

D(f.g) = Df.Dg (5.12)

by induction we get for n > 1

D"(f.g) = (D"f).(D"g)
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If (a,,) is generated by f and (b,,) is generated by g then the sequence (a,by)
is generated by f.g, since

anbn = vo(D" fvo(D"g) = vo((D" f).(D"g)) = vo(D"(f.9))
To get a formula for ZZZO anb, we observe that
Ry R, — D(Rs.R;) = Rj;.R;,— D(Rys).D(Ry)
= (Ry — D(Ry)).-Ry + D(Ry).(Ry — D(R,)
= fRy+gRy—fyg
thus if Ry.Ry, f.Ry, and g.Ry are in E we get
Ry R,tg.Rp—fg = Ry Ry — Voo (Ry.Ry) (5.13)

Since Ry is the generator of the sequence of remainders (r,,(a)) and R, is the
generator of (7, (b)) then by (5.10) we get

e T T T e
Z anby, = Z anrn(b) + Z bprn(a) — Z an Z bn, + Voo (Ry.Ry)
n>0 n>0 n>0 n>0 n>0

This is the formula we encounter in the proof of Theorem 2 since in the case of
the Ramanujan summation we have Ry(n+1) = r,(a) if f(n+1) = a,,. Note
that the additional term v.(Rjs.R4) disappears in the case of the Cauchy
summation, since in this case

Voo (Ry-Rg) = voo (R )V (Rg) = 0

Remark
More generally we can define a convolution product of the sequences (a,)

and (by,) by
(axb)n = vo(D"(f.9))
that is the sequence with f.g as generator.
For example if we suppose that for f and g in E we have

D(f.g) = (Df).g+ f.(Dg)

then by induction we get for n > 1

D"(f.9) =) Ch(D"f).(D"*g)

k=0

In this case we get
n

(CL * b)n = Z Cﬁakbn,k

k=0
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5.4 Examples

1) The Cesaro summation
Let E be the vector space of complex sequences u = (uy, ), >0 such that

UG + oor + Up—
lim u is finite
n—-+oo n
And let’s consider the operators
D (up) = (u1,ug,us, ...
vo : (un)—up
. Uy + ..o + Up_1
Voo : (Up)r— lim ———MM—
n—-4o0o n

A sequence (a,,) € F is generated by

f=(an)

The equation R — DR = f is Ry — Rk41 = ag, thus
n—1
RofRn:Zakzsn
k=0

By taking the sum of the equations

Ro - R1 = S1
RO — R2 = S92
RO - Rn = Sn

we get
R1++Rn S1+ ...+ 8,
Ry — =
n n

Thus R = (R,,) € E if and only if 2+=£5 has a finite limit when n — +oo.

The condition v (R) = 0 is equivalent to lim,, 4 w = 0, this gives
Ro= lim S1+ ...+ 8,
n—-—+o0o n

S1t...+sn ) has
n

Thus the series ) ., a, is Cesaro-summable if the sequence (
a finite limit when n — 400, and we write

C
Zan:UO(R):RO: lim Sit et Sn

n—-+o0o n
n=0
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2) The Euler summation
Let E be the vector space of complex sequences v = (uy, ), >0 such that

lim —= is finite
n—-+oo 2N

And let’s consider the operators

D : (un) = (un—l-l - uﬂ)
vo : (un) — ug
Voo : (up)+— lim In

n—-+oo 2N

Let f = (fn)n>0, we have for all n > 0
vo(D"f) = Crfu(=1)" "
k=0
We deduce that a complex sequence (ay,) is generated by f if and only if
an = Z Cﬁfk(*l)nik
k=0
and by inversion of this relation we get
fo=2_ @G,
k=0

The equation R — DR = f is
2Ry — Rit1 = fk

this gives
1 1
Ry = 531 + §f0
1 1 1
§R1 = 2*2R2 + ?ﬁ
1 1 1
?RQ = 2*333 + ﬁfz

By taking the sum of these equations we get

1 1 1 1
Ry = §f0 + 27f1 +.t an - 27Rn
We have R € F if and only if the sequence (g,*;

equivalent to say that

) has a finite limit, which is

1 .
Z CREsY fn 1s convergent
n>0
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The condition 1
0= vl =l
gives

. 1 1 1
RO = hm §f0 + ?fl + ...+ an

n—-+oo

In conclusion we see that the series ), - a, is Euler summable if the series

1 n
Z on+1 (Z akC’];)
k=0

k>0

is convergent and in this case we have

g +o0 1 n
D= W(Zak(/’,’i)
n=0 k=0 k=0

3) The Abel summation
Let E be the vector space of analytic functions on | — 1,1[ such that

lim (1 — ) f(z) is finite

T—

Let’s consider the operators

Df(z) = M if % 0 and Df(0) = f'(0)

wlf) = )
veolf) = lim(1—a)f(x)

r—1

Since f € E is analytic on ] — 1,1 we can write

+o00 .
f@) =) ama™ with ay, = 0" f(0)

m=0

m/!
and we have

+oo
Df(x) = Z Q1™
m=0

By induction we get for all n > 0
+oo
D"f(:v) = Z am+nxm
m=0

thus
" f(0)

n!

vo(D"f) = an =
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Let’s consider a complex sequence (a,,) and assume that the series

flx) = Z a,z"

is convergent for x €] — 1,1 and defines a function f € E.

Then 5 £(0
an =TI _ 0

and the sequence (a,,) is generated by f.

The equation R — DR = f is

R(z) - B - RO _ itz 20 (5.14)
R(0) = R'(0) = f(0) (5.15)
By (5.14) this gives
1

R(z)

(R(0) — 2 f(x)) if 2 0

Thus R is analytic on | — 1,1[ and (5.15) is automatically verified. We see
that R € E if and only if lim,_,1 f(z) is finite and the condition v (R) = 0
gives

:1—:10

R(0) = lim f(x)
€Tr—
In conclusion we see that if the series ) ., a,2" is convergent for all

z € [-1,1] and, if lim, 1 32 a,2™ is finite, then f € E and Y, 5 ay is
Abel-summable B

A +oo
Z%an = vo(R) = R(0) = limy ;anx”

Note that in this example we have for f, g in F

D(f.9) = (Df).g+vo(f)Dg
then by induction we get for n > 1

n—1

D"(f.9) = (D"f)-g+ > wo(D*f)D"*g
k=0

Thus the convolution product of the sequences (a,) and (b,) is given by

(axb)p = vo(D"(f.9)) = Uo(an)-Uo(gHz_: vo(D* foo(D"*g) =Y arbu—i
k=0 k=0

that is the usual Cauchy product of sequences.
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Chapter 6

Appendix

6.1 FEuler-MacLaurin and Euler-Boole formulas

6.1.1 A Taylor formula

The classical Taylor formula

m l’k T ()M
f(LL') — Zakf(o)F +A (7t)am+1f(t)dt

m/!

can be generalized if we replace the polynomial %I: by other polynomials (cf.
Viskov, N.Bourbaki).

Definition
If 41 is a linear form on C°(R) such that u(1) = 1, we define the polyno-
mials (P,) by:

P =1
0P, = Puo_1,u(P,)=0forn>1

The generating function Y, Py(2)z"

We have formally

02> Pr(2)2*) =Y Pea(@)2" = 2> Pu(w)2¥)

k>0 k>1 k>0

thus

Z Pp.(2)2" = C(2)e™

k>0

155
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To evaluate C(z) we use the notation pu, for u and by definition of (P,) we
can write

(S Py = S pa(Pul@)F = 1

k>0 k>0

(S P@)F) = p(C(2)e™) = C(2)pa(e™)

k>0

this gives C(z) = —A=. Thus the generating function of the sequence (P,)

Uz(ezz) '
is
> Pu(a)z" = €™ /M, (2)
where the function M), is defined by M, (z) = p(e"?).

Examples
D) u(f) = £(0), Palz) = % s Mu(z) =1, ano P, (z)z" = e**

n>0

The B, (x) are the Bernoulli polynomials and the B,, = B,,(0) the Bernoulli
numbers. With the generating function we verify that By = 1, By = —1/2,
Bony1=0ifn>1, B,(1—2) =(—1)"By(z).

3) u(f) = L(f(0) + f(1)) , Pulw) = Enl)
Z E.(z) , 2e%?

2" =
n! e?+1

n>0

The E,(x) are the Euler polynomials and we set F,, = F,(0).
With the generating function we verify that Ey =1, F; = —1/2 if n > 1,
E,(1—2)=-1)"E,(x).

The Taylor formula
Let f be a function in C*°(R), then we have

f@) = o)+ [ “OPL(x +y - Of(1)dt

and by integration by parts we get for every m > 1
F@) = f)+ D _(Pu(@)d"f(y) — Pe(y)d"f(2))
k=1

+ /m Po(z+y—t)0™ T f(t)dt
y
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Applying p to this function as a function of y gives a general Taylor
formula: for every m >0

£0) = 3 O S PG " Pl 4y — 007 f(1)dt)

k=0

6.1.2 The Euler-MacLaurin formula

We can transform the Taylor formula to get a summation formula. Taking
x =0 we get

£0) = Yy (@ F)PO) =y [ Pl = 00"+ r(0)t)
k=0 0
In the case of pu: f — fol f(t)dt we have

10 = pror - [ ([T B gma poyanyay

|
P k! m/!

Replacing m by 2m and with B; = —1/2 and Bag+1 = 0, we get

10) = [ 50de+ 500 - 10)+ X o

LY Bam(y = 1) qomia
_ /0(0 T 1 (t)dt)dy

The last integral can easily be evaluated by Fubini’s theorem, we get

10) = [ 50de+ 500 = 50+ X o

' Bami1(t) om
+ /07(2m+1)!82 Hf(t)dt

Let j be a positive integer, by replacing f by z — f(j + z) in the last
formula, we have

. A 1. : ~ Bok k1 i+t
= f O+ 56) = 76+ D)+ 3 G0

I bomg1(t) pomat
+ /J UL

where b2m+1(t) = BQm+1(t — [t])
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Summing these relations for j from 1 to n — 1, we get for f € C°°(]0, ool)
the Euler-MacLaurin formula

f)+...+ f(n /f Jdx + = f) + f()
+Z B2k 2k lf

b2m+1() -
+/1 7(2m+1)!82 T f(x)da

6.1.3 The Euler-Boole formula

In the case of the Euler polynomials, the formula
m y
F0) = 3 (0 F)PLO) =y [ Pl = 00"+ F(e)t)
k=0

gives

m 1/ 1\ym
=3 5050+ oyt g [T

Let j be a positive integer, by replacing f by x — f(j + «) in the last
formula we obtain

P+ G

/m COEn ¢ jy oy 1)

m!

Ms
w\»—*

l\')M—‘o

Let’s define

em(t) = (=11 (=1)" By (¢ — [t])

we obtain by summation on j the Euler-Boole summation formula

PO~ F@) 4t () ) = o)
k=0 )

+ _1;71_ S0kt 1)
k=0
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6.2 Ramanujan’s interpolation formula and Carl-
son’s theorem

We give a proof of the following theorem.

Carlson’s theorem. Let f be an analytic function in the half-plane
Re(z) > —d where 0 < d < 1. Let’s assume there exist a >0 and b <7
such that
|£(2)] < ae®?! for every z with Re(z) > —d

Then the condition f(n) =0 forn=0,1,2,..., implies f = 0.

We prove this theorem by the use of an interpolation formula which is
related to Ramanujan’s interpolation formula.
First in Theorem 1 below we get an integral formula for the function

+oo
gize S fm)(=1)"a"
n=0

which is i
1 CT100 T
= — _— — 7ud
9(x) 2im /C_ioo sin(ﬂu)f( uja " du

Then in Theorem 2 we prove the interpolation formula

. 400
()= =2 [T gyt
m 0
Since for the definition of the function g we only need to know the values
f(n), n =10,1,2,...., we see that this interpolation formula determines the
function f in the half-plane Re(z) < —d when we only know the values
£(0), £(1), £(2), ..., thus we have a proof of Carlson’s theorem.

Theorem 1. Let f be an analytic function in the half-plane
Re(z) > —d where 0 < d < 1. Let’s assume there exist a >0 and b <7
such that
|£(2)] < ae®?! for every =z with Re(z) > —d

Then the series 3, < f(n)(=1)"a" is convergent in
D(0,e ") ={z € C,|z| < e}

and defines an analytic function g in D(0,e7?).
This function g has an analytic continuation in Sy = {|Arg(z)| < = — b}
which is defined by

1 c+ioco T
: — —u)z""d
927 o /c,ioo sin(ﬂ'u)f( u)z"du
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Proof
For 0 < o < e~ we have

|[f(n)(=1)"a"| < ae’"a”
Thus the series >, -, f(n)(—1)"z" is normally convergent in D(0, ) and

defines a function g : z — Z::S f(n)(=1)"2" that is analytic in D(0,e™?).

For 0 < z < e~®and 0 < ¢ < d, the function u — f(—u)z™" is analytic
in the half-plane Re(u) < d, and we consider the integral

1 T
2im /., sin(mu)

fl=w)z™"du

where 7y is the path

iN
¢ A
-N-1/2 O c
" -iN
The function u — W’;m)f(—u)x_“ has simple poles at 0, —1, -2, ..., —n, ...
with
)= (=1)" n
es( gty =) = (1" f(n)e

thus we get

N
AL/ T f(—uw)atdu =Y f(n)(~1)"a"
TN n=0

24w sin(mu)
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Lemma 1
When N — +00 we have for 0 < z < e~?

1 ™ 1 [efiee gn
_ _ —ug . . —ug
20T o sin(ﬂu)f( uadu — 2im /C sin(mu) J(zu)adu

—100

By the preceding lemma we get for 0 < z < e~

1 c+iN
lim / i f(=w)z™"du = lim —/ T f—w)z™"du
N ¢

N—+o0 247 sin(mu) N—+oo 207 J._;n sin(mu)
Thus we have for 0 < z < e~ ?

1 c+ioco T

+oo
Y f)(=1)"a" = f(w)z™"du
n=0

T 2im )i sin(mwu)

Lemma 2
For 0 < ¢ < d, the function
c+ioo

s
g =

fl=u)z""du

c—100 Sin(ﬂ'u)

is defined and analytic in Sy = {|Arg(z)| < 7 — b}.

The function

+oo
2 3 f(m)(~1)nen
n=0

is defined and analytic in D(0,e7?) = { |2| < ¢7*} and is equal to g in
the interval [0,e~?]. By analytic continuation we get

1 c+ioco

+oo
Do f) (1) = o
n=0

T f(=u)z""du if z € D(0,e7°) N Sp.

20 Joino sin(mu)

O
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The Mellin inversion : We now show that the formula

ct100 T
g(2) L / f(—u)z""du

~ 2ir ico Sin(mu)

can be inverted to give

™

+oo
f(—2) = / g(2)e* da

sin(mz)

Theorem 2 Let f be an analytic function in the half-plane
Re(z) > —d where 0 < d < 1. Let’s assume there exist a >0 and b < w
such that
|f(2)| < ae*! for every z with Re(z) > —d

For 0 < Re(z) < d we get

™

+oo
fea= [ gle s

sin(7z)

n.n

where g is the analytic continuation of the function z — Z:ioo (n)(—=1)"z
in Sy = {|Arg(z)| < m — b}.
We have in the half-plane Re(z) > —d the interpolation formula
—sin(mz)

+oo
) = 22 /0 o(@)z—dz

™

Proof
We consider 0 < ¢; < ¢2 < d, and z such that ¢; <Re(z) < cs.

a) First we evaluate fol g(z)z*tdw.

‘We have
1 L 1 1 c1+i00 T L

274 — —u)z" *du)x®d

/0 glo)z v /0 (2i7r /Clioo sin(ﬂu)f( uja"du)z v

1 1 +o00 y . )
_ . _ i —-ci—it___ z—
B /0 (27T /_Oo flma it sin(m(cq + it)) dt)e*" dz

Since

‘f(m —it)

z—1

1

eiTrcl e—Trt _ e—iﬂ'cl eﬂ't

T ity
sin(r(eq + it))

with Re(z) —c¢; —1 > —1 we get the integrability for (¢,z) € R x [0, 1].
Thus by Fubini’s theorem we get

< 27Ta6bc.1‘761 xRe(z)flebM

1 C1 +'LOO T

/01 g(x)e*tder = — f(—u)(/o1 T g du

27 Jo, _iso Sin(mu)

1 [atiec g -1

- f(=u)

2im o1 —ico Sin(mu) u—z
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b) Then we evaluate f1+oo g(z)z*tdz.
This is

+oo “+o00 1 co+ioco T
/ g(x)z* tdx = / ( / f(—w)z ™ du)z* tdx
1 1 c

2ir »—ico SiD(7TU)

As in a) we see that for Re(z) —ca—1 < —1 we can apply Fubini’s theorem
to get

400 1 co+i00 T 400
/ g(x)z* ldx = — f(—u)(/ 7T g du
1 1

2T J oy ino Sin(mu)

1 feeticc o 1
f(=u)

du
sin(7u) u—z

2im g —100

Finally we have for ¢; <Re(z) < ¢g

“+o00 Cco+100
1 T 1
z—1
dr = — - d
/0 g(x)x . 20T J ey ioo SID(TW) J(=u) w2
1 ot g 1
- - d
2T Jo _ioo SID(mu) f(=u) u_z"

We then apply Cauchy’s formula with the path

(S) (o8|

to get

+oo T
/ g(x)xz_ldx = f(=2)
0

sin(7z)

By the preceding result we have for —d <Re(z) < 0

—sin(wz) [T
f(Z) = ()/0 Q(I)l‘izfld:r

™

where g is the analytic continuation of the function z — :i% (n)(=1)"z".
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The function

& +o0
Z 75111(772) / g(x)z™* tdx
Q 0

is defined and analytic in the half-plane Re(z) > —d since by the integral
formula for g(z) (z > 0) we can write

1

eiﬂ'cefﬂ't _ ef’iﬂ'eﬂ't

sin(m(c + it))

f(—c—it)z=c% ‘ < 2mae*ezcellt

to get g(x) = O(z™°) for x — 400, for 0 < ¢ < d.

Thus by analytic continuation we get the interpolation formula in the
half-plane Re(z) > —d

—sin(mz)

+oo
flz) = T2 /0 (@)= dz

™

O

Remark: Ramanujan’s interpolation formula

Let’s consider the function f : z +— ﬁ This function is analytic in the
half-plane Re(z) > —1. The function g defined by the analytic continuation
of

+o0 n
e D (1)
n=0

is simply the function z — e~%. Thus by the preceding theorem we get
for 0 <Re(z) < 1

™ 1 _/+oo —x z—ld _1-\()
sin(mz) T(1—2)  J, © 7 T=

With T'(2)['(1 — 2) = Sz We get for 0 <Re(z) < d

“+oo
/0 g(@)a*~Ldz = D(=)T(1 - 2) f(~=2)
Let’s take h(z) = f(2)I'(z + 1). We have

xn

+o00o
gl@) =Y hn)(=1)"—
n=0

n!

and we get Ramanujan’s interpolation formula

+oo
h(—z) = ﬁ/o g(x)z* tdx
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Proofs of the lemmas

Lemma 1
When N — 400 we have for 0 < x < e

1 ™ u 1 et gn
— —u)z~"d — —u)x~“d
20T o sin(wu)f( ujztdu — 24w /c_ioo sin(wu)f( watdu
Proof
a) The integral on the vertical line through —N — % is
N
1 1_ . s
N+ - —it)gN T2~ idt
[N JW A5 =it sin(m(—N — L +it))
since
™ o 2r(—NH
sin(m(—=N — 1 +it)) et +e
we get
N N+1—it N eb(N+3) oblt]
1 2 1 3
/ FON 4 5 = i) it §27rrcN+f/ e
_N 2 sin(m(—=N — 5 +1it)) _N €™t +4e T

Since b < ™ we have

N ebltl +oo eblt]
[N et + e— Tt dt — [m et + e— Tt dt
For 0 < x < e~® we have b+ Log(z) < 0 thus

P(IN+3) 2 N+5 — o(N+3)(b+Log(x)) _,

Thus the integral on the vertical line through —N — % tends to 0 when
N — +4o0.

b) The integral on the horizontal segment from ¢+ iN to —N — % +iN is

¢ ) um
_ Nt
In = _/N  f=t—iN)a™™ N gint — grNg_imt Ot
T2

and we have

A% < g bHN) 2

. . < ae T ——
e—T(Ne’LT(t _ eTl'Ne—lTrt eTl'N _ e—TK'N

‘f(—t —iN)z =W
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thus

27 ¢ _
[In| < aebNieﬁN — / 1 et(b=Lea(®)) gy
-N-1

since 0 < z < e~* we have b — Log(x) > 2b > 0 thus

/C et(bfLog(a:))dt_}/C ot(b—Log(x)) gy

1
-N—-1

BN 2 .
And e”" —x=T—x — 0 since b < 7.

¢) For the integral on the horizontal segment from —N — % —iN toc—iN
the proof is similar to the preceding one.
|

Lemma 2
Let’s take 0 < ¢ < d, the function

c+100 T

f(=u)z""du

g:zt— "
c—100 51n(7ru)

is defined and analytic in S, = {|Arg(z)| < ® — b}.

Proof
For this integral on the vertical line through ¢ we can write

ﬂ.Z—c—zt

sin(m(c + it))

1

e’iﬂ‘cefﬂt _ e*iﬂ'cewt

il < 27raebc|z|—ceb\t|etArg(z)

f(=c—it)

For z in any compact K of S}, we have

1

eb|t\etArg(z)
eiﬂ'cefﬂ't _ efim:eﬂ't

< k()

where ¢ — k(t) is an integrable function independent of z € K since
|Arg(z)] <7 —b with b < b < 7.

The function
T

z = f(—c— it)z_c_”mi

is analytic for all ¢, thus we get the analyticity of the function defined by
the integral.

O
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Chapter 8

Chapter VI of the second
Ramanujan’s Notebook

Ramanujan gives, in the Chapter VI of his second Notebook, the definition
of the constant of a series. We give here an exact copy of this chapter.
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p-59
CHAPTER VI

Let f(1)+ f(2)+ f(3) + f(4) + ..... + f(z) = ¢(x), then

8(a) = e+ [ Fla)de + L7(r) + B () — B (o)t
%fv(x) + %fvn(x) + &

sol. ¢(z) —d(x —1) = f(z) ; apply V 1 *

N.B. By giving any value to x, ¢ can be found.
R.S. is not a terminating series except in some
special cases. Consequently no constant can be
found in 1 f(z) + %f’([b) - %f’”(m) + &c except
in those special cases. If R.S. be a terminating
series, it must be some integral function of

x. In this case there is no possibility of a constant
(according to the ordinary sense) in ¢(x) ; for
o(1) = f(1) + ¢(0) : But ¢(1) = f(1) ... #(0) is always 0O
whether ¢(x) is rational or irrational. .. When
o(z) is a rational integral function of (x) it

must be divisible and hence no constant but

0 can exist. The algebraic constant of a se

-ries is the constant obtained by completing

the remaining part in the above theorem. We can
substitute this constant which is like the cen

-tre of gravity of a body instead of its di-

vergent infinite series.

W LIf f(x+h) — f(z) = he¢' (), then

f(@) = ¢(x) = §¢/(2) + T§h%¢" (x) — Tphio!Y (z) + &ec

If f(z+h) + f(z) = h¢'(z), then

[@) = 2¢/(@) — (22 — 1) 229" () + (21 — 1) B ntelV () — e
Sol. If we write €® for ¢(x), we see that the coeff'® in

R.S. are the same as those in the expansion of

h
and Y

eh—1

respectively.
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E.G. The constant of the series 1 +1+ 1+ &c = —%; for
the sum to x terms =x =c+ [lde+35 .. c=—3
We may also find the constant thus
c=14+24+3+4+&ec
de=448+ &c
C=3c=1-243-4+&c=
o= 1

Bla) + 0T B o (2) cos B = 0

Sol. Let %@/J( n) be the coefft. of f"!(x) then we

=

1 _
(1+1)2 —

see P(0) = 1, ():—1 Y(4) =1, ¥(6) = —1 &c
77Z)( ) 07 ¢(5) = ( )_07 L1¢< ) ; but B, =
So(1) =0. Agam by V 26 cor 2. 2 we hcwe

mn—1)B, =1 when n=1 . B"[fl(") = ”("_Li)B”.wz(il(f)l)
1 ¥(n) 1

=5 when n =1, i.e oD — 2 when n =1 .
L (n) = —cos 7.

3. The sum to a negative number of terms is
the sum with the sign changed, calcula-

ted backwards from the term previous to the
first to the given number of terms with
positive sign instead of negative.

Sol. ¢(x)=f(1)+ f(2)+ ...+ f(n+2x)
—fA+2)—f2+2z)—...— f(n+x)

2(*) V 26 cor 2. TnBpt1 = 1 when n =0

Sol. nSp41 = T

i.e. ™nBy11 =1 when n approaches 0.

m™mBp4+1 =1 when n =10
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change x to —x and put n = x, then we have

¢(=2) = ¢(0) ={f(O) + fF(=1) + f(=2) + ... + [z + D)};

but ¢(0) = 0.
EG 1+2+3+ &cto —5 terms
= —(0—1-2-3—4)=10

4.1. For finding the sum to a fractional num

-ber of terms assume the sum to be true al

-ways and if there is any difficulty in find

-ing ¢(x), take n any integer you choose,

find ¢(n+ x) and then subtract {f(1+ x)+
fC+2)+ fB+x)+...+ f(n+x)} from the result.

i. ¢(h) = o(n) —{f(1+h)+f(2+h)+ ..+ f(n+h)}
+hf(n)+ EL—f '(n) + EL—ZQf”(n) + &c where n
is any integer or infinity.

EGI1 14+5+5+.;

=145+ +3) = (5 + 55 + -+ 75) when n =00
= cotlogen — (133 + 515 + - + ) when n = 0o

where cq is the constant of Z%
h

2. |h= (1+%)(1:%)m(1+%) when n = o0.

_ otk ok nMO+D042).(042)
sol. |h= [n “lnth — (+2)(14+L)..(1+2)

TR 1 2 hy — o
S A4+ 0045 = e m hoars
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iii. o(h) = xf (1) — 240 f(1+ h) + 22 f(2) — 22 (2 + h) + &e

5. Def. A series is said to be corrected when its
constant is subtracted from it.
The differential coefft. of a series is a corrected series.

e He()+o(2 )+ Ao(z)} — (1) + H(2) +
+¢'(z) — c where c is the constant of ¢'(1) + ¢'(2)
+¢'(3) + ... + ¢ (x).

Sol. In the diff'. coefft. of (1) + &(2) + ... + ¢(z)
there can’t be any constant. Therefore it
should be corrected.

N.B. If f(1)+ f(2)+ ...+ f(z) be a convergent
series then its constant is the sum of the series

d(l+3+-+3) 1 1 1
E.G.1. de — (@+1)2 + (x+2)2 + (z+3)? + &e
ol
Sol. dx = 112—2%—...—90%—0
= e + e T &

2. If co be the constant of E%, then
42 = |2(2L - o)

Sol. % = Lx—dlogetz = |z(3% — )

dx T
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3. Jo Eypda =log, |z + xco.
A fox(llg Lol 4 xl?’)dl‘ = ﬁ(lm +2M x14) - 1%

6. /x(\/I+\/§+...+\/5)dx: ;(1ﬁ+2\/§+...+x\/5)

T 1 1
_E(l\_ﬁ + m—i- &C)
6. If f"(x) stands for the n th derivative of f(x)
and c,, be the constant of {f"(1)+ f*(2) + ... + f*(x)}
2 3 4
then ¢(x) = —c1x — CQ% — Cg% — 045[”—4 — &c

Sol. ¢(x) = $(0) + £¢/(0) + £¢"(0) + &
But from VI 5 we have ¢(0) =0, ¢'(0) = —cy, ¢"(0) = —co &c

E.g. 1. log.|v = =Sz + 2% — $32% 4 &c where S,
is the constant of (1x + 57 + 37 + &c).

2. E% = Sox — S3x? + Syx3 — &c where

Sp=1 4 5 + &

N.B. This is very useful in finding ¢(x) for
fractional values of x.

7. If ¢, be the constant of
FEIHTQ)+FC) + o+ F()  then



(1) + .+ (=) then

n

Sol. Let ¥(x) = ¢(%)
(@) —d(z—1) = o(3) — o(57) = f(5)

() & f(E)+ F(EL) + .+ f(2) differ only by
some constant; hence if these be corrected

they must be equal. ¢ (z) contains n terms each
each of which is of the form ¢(y) whose constant
is c. The constant of ¥(z) is nc & the con-

stant of f(2)+ f(2)+ ...+ f(£) is ¢, by our
supposition.

Cor.d. ¢(—1)+ ¢(=2)+ ...+ ¢(—2L) =nc — ¢,
Sol. Put x =0 in the above theorem.

= s {0 = ) @) cos 2
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Sol. Put n = 2, change x to 2z and apply VI 1.

9.i. S(ay + as + az + &c) means that the series is a conver
gent series and its sum to infinity is required

ii. C(a1 + as + as + &c) means that the series is a di-
vergent series and its constant is req®.

iti. G(ay + as + az + &c) means that the series is oscil-
lating or divergent and the value of its genera-

ting function is required.

N.B. Hereafter the series will only be given omit

-ting S,C or G and from the nature of the series

we should infer whether C,S or G is req?; more

over if a series appear to be equal to a finite qua
-ntity we must select S,C" or G from the nature

of the series.

10.i. The value of an oscillating series is only true
when the series is deduced from a reqular series.

For example the series 1 —1+1—1+ &c = % only
when it is deduced from a regular series of

the form ¢(1) — ¢(2) + ¢(3) — &e. Again if

we take an irreqular series a” —b" + " — d”

+&c we get the same series 1 — 1+ 1 — 1+ &c when
r becomes 0 ; yet its value is not % i this case

. a1 — as + az — ag + &c is not equal to the series
(a1 — az) + (as — aq) + (a5 — ag) + &c or to the series
p-66

a; — (ag — az) — (ag — as) — (ag — a7) — &c ; but to the
series a; — (ay — az + ay — &c)

e.g. 1 =243 —4+ &cis not equal to (1 —2)+ (3 —4)
+(5—-6)+&cortol —(2—-3)—(4—5) — &ec

114, ((11 — a9 + asz — &C) + (bl — b2 +b3 — &C)
= (CLl :Ebl) — (CLQ :i:bQ) + (CL3 :l:bg) — &c

Ex.i.shew that (a1 — ag + az — &c) + (by — by + &)
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:a1+(b1—a2)—(bg—a3)+(b3—a4)—&c

Sol. L.S:a1+(b1—bQ+b3—&C)—<a2—a3+&C)
:a1+(b1—a2)—(b2—a3)+&c

2. a1 —as+ a3 — ag + &e = % + 3{(a1 — az) — (a2 — a3) + &c}
3. = 3“%“2#— }l{(al —2as + a3) — (ag — 2a3 + a4) + &c}

4. = —7a1—48a2+a3 + %{(al - 3(12 + 3@3 — (l4) — (CLQ — 3@3 + 3@4

—a5) + (CL3 - 3(14 + 3@5 - (16) - &C}

1. CL1—(12+CL3—CL4+&C

— a1 ai1—ag ai1—2az+tas

=5+ 3 + L5 4+ &c

= xa, — x°ay + x°a3 — v a4 + &c
— xc’?l _ $2a1;a2 + $3a1*2§2+a3 + &c
when x approaches unity.
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12. If 2 lies between ¢t & oy then
a3

az+asz

2
. a
a1 — as + ag — ayq + &c lies between e & a; —

e.g. 1 =2+ 3 —4+ &c lies between % & % and its
values is 5. |0 — [1+4 [2 — |3 + &c lies between
% & % s its value is % very nearly.
But 2 — 2% + 3% — 4}1 + 5% — &c cannot lie

2 & (23)° as 2z is not
2+21 21+3

between 51
3

T

3
. 2 3L .

lying between ;T & % .i.e it cannot

lie between .8892 & 9249 as its value s 1.193

13. ¢1(x) + p2(x) + ¢3(x) + &c can be expanded in
ascending powers of x , say Ay + Ajx + Ayx® + &c
where each of Ay, Ag, &c is a series.

Case I When A, is a convergent series

(1) If Ag+ A1z + Agx® + &c be a rapidly conver
-gent series what is required is got.

(2) But if it is a slowly convergent or an
oscillating series, convergent or divergent (at
least for some values of x )

(a).Change x into a suitable function of y so
that the new series in ascending powers
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of y may be a rapidly conve;“gentgserz’is;

e.q. let 1fg =y, then v — & + & — % + &c
3 5 7

=y—-5+5 - s T+ &c

(b) or convert it into a continued fraction

_2® 2,3 _ 17 .4 _z a _a
e.g. —F + 527 — 550 +&e= e
L o 3:

s mtam—atle= E

T+l
22
z+3— z+5—&c

(c) or transform it into another series by ap-
plying I 8; e.g. £ — % + 5 — B 4 &
; I ! — &e
)

=i T e T G

(d) or take the reciprocal of the series and try to
make it a rapidly convergent series in anyway

Case II When A, is an oscillating (convergent
or divergent) or a pure divergent series

(1) Let C,, be the constant or the value of its
generating function. Then the given series

= U(x) + co + 17 + 22 + 32 + &e where U (x)
can be found in special cases.

(2) But if co+ c1x + cax? + &c be a divergent series
find some function of n (say P,) such that
the value of Py + Pix + Pyx? + &c may be easily
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found and c,, — P, may be rapidly diminish as n
increases. Then the given series =
F(x)+ (co — Py) + (c1 — Pz + (co — Po)2? + &c

egl =g — 5+ 3 —&e=1(1-14+1-&¢)

—L(1-2+3—-&c) =5 — 7 + &c

2. i i s H&e=—5(1+ 1+ 1+ &)

s
—L(12+ 22+ 3% + &) — H(1* 4+ 20 + 3 + &) = U (2)
_{_L _ 1 mcotg(mx)
2x2 T 2z2 2z

3.4 tgt&e=(1+1+1+&c)
—z(logl + log2 + &c = —% — zlogy/2m — &c
=-L +1+a+2%+&e— 1 —zlogy2r — &c
= -1+ 14 (1-.91894)z — &c

=L 4 1+ 8106z — &c

Wi+ afg t g e
=1log2 — 2 + (By)? 20 4 (B2

2[2 4[4
696 _
(Bs)? it + &

Sol. ezﬁ-l + ezf—l—l + 63f+1 +2€4§+1 + &e
=21+ 141+ &) = By 52 (1+2+ 3+ &o)

+B4%(13 + 23 4+ 33 4 &e) — &e.
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x2 2_ —
= U(z) — £ + (Bo)? 225 + (Ba)* 22 + ke

Now it is req? to find V(x)
The given series = 5 — - + =y — &ec
= log2+ terms involving x & higher powers

of x. .. ¥(z) = log,2.

a x x x
1. + e2r—1 + e37—1 + 641 1 + &e

et —1

=C —logx+% (BQ)MT BZZM Bg(fm &ec

Sol. Proceedind as in the previous theorem
we have the series =V(r)+C+ 7
~By*&y — Bl i — &

But we know 5 + =z + g —i— &e
=gt =g t&)—( 23EI—1 + e4z p +&c)
L U(x) — V¥(2z) = log2 ; hence ¥(z) = —log,x

Ex.1.shew that the constant in the series

W14+ W2+ V34 VA .+ Yx

1s —.4969100 1
2. 2i1 - 221“ + 5 —i— &e=3+ Oge nearly
3. T + oy + e Ge = 6.331000
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xr2—1 x4 41 9 61

Adding up all the terms we can get the results.

16. = + 1I§x2 + 1Ijms + &c to n terms

l—azx
2y2 3\3
= ey (o)t @)l L e to nterms
+I A e KRR e (28 LAY 2

1—rz 1—raz?
to n terms.

r __ _arx
sol. — = e + 7.
r2  _ (arz?) 2 9 9
ToanZ = 1—aaz T 77 tartze.
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T;Gg = —(1“ m;x)g + 13 4+ ardxd + a?r3ab.
&c&c&c

Adding up all the terms in the n rows we can get the results.
COT’lr +1 ax2+1 ax3+&c

_ _arz + (arz®)? + (ara?) + &C

L a(rlzc;2(m2 (1,2(7"1x2)a3$3 a3(ra3)?
+1%r + 1—rz + 1—rx? + 1—rx3 + &e
17, o 4 ledhin | fab2n?  (atShn? |
_ 1 mn 1—mna?
a-Tm)1-—n) + (a+0) A—ma)(1—nz) (mnax)

(a + 2b) it mng* )(mnx2)2 (a + 3b) 1—mnaz®

(1—mz?)(1—nzx? (1—ma3)(1—nz3)

et R + (5 + (e +

(1—nz?)?
Cor 1. %+ (ffz)z" + (alH:xQ + &c
= q. }—i—n + (a+ b) 1+nz(n2x) (a + Qb) 1+mc (n2x2>2
3 2 5 6 7 12

+b{(1_n)2 + (1 m)2 + 0z nx2)2 + (1 m3)2 + &C}

2. If A, denotes the no. of factores in n mcludmg
l&nthenA1+A2+A3—|—&C——+ + &c
and hence deduce VI 15 i

:1721



