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Analytic reducibility of resonant cocycles to a normal form

Claire Chavaudret ∗and Laurent Stolovitch †

November 14, 2014

Abstract

We consider systems of quasi periodic linear differential equations associated to a ‘resonant’

frequency vector ω, that is a vector whose coordinates are not linearly independent over Z. We give

sufficient conditions that ensure that a small analytic perturbation of a constant system is analytically

conjugate to a ‘resonant cocycle’. We also apply our results to the non resonant case : we obtain

sufficient conditions for reducibility.

1 Introduction

Let θ = (θ1, . . . , θd) be the coordinates on the torus Td. Let x = (x1, . . . , xn) be coordinates on Rn. Let
ω ∈ Rd and A0 = (ai,j)1≤i,j≤n be a n× n-matrix. Let us consider the following vector field on Td ×Rn,

D := ω
∂

∂θ
+A0x

∂

∂x

Here, the notation ω ∂
∂θ stands for

∑d
i=1 ωi

∂
∂θi

and A0x
∂
∂x stands for the vector field

∑
1≤i,j≤n ai,jxj

∂
∂xi

.
We consider a linear perturbation of D of the form

X := D +R = ω
∂

∂θ
+A(θ)x

∂

∂x
(1)

where A = A0+a(θ), a being an analytic matrix-valued function on Td with zero mean value: â(0) = 0.
This corresponds to the differential equation

θ̇ = ω

ẋ = A(θ)x,

or, in other words, it corresponds to the linear differential equations with quasi periodic coefficients

dx

dt
(t) = A(θ0 + tω)x(t) (2)
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for some initial θ0 ∈ Td. On this vector field, there is a natural action by linear diffeomorphisms over
the torus: if Z : Td → gln(C) is a matrix-valued function with zero mean value, we can consider the
(linear) change of variables Z = (Idn +X(θ))Y over the torus. It conjugates (2) to

dx

dt
(t) = A′(θ0 + tω)x(t). (3)

where A′ is the matrix valued function satisfying to

DX(θ).ω = A(θ)(Idn +X(θ))− (Idn +X(θ))A′(θ). (4)

This can readily be seen by differentiating with respect to t, the quantity

Z(θ0 + tω) = (Idn +X(θ0 + tω))Y (θ0 + tω)

We will denote DX(θ).ω by ∂ωX(θ).
We are interested in the problem of analytic classification with respect to such a group action. A

case of particular interest is the one for which the cocycle A can be transformed to a constant matrix.
In that situation, we say that A is reducible. The regularity class of the transformations used is
important. This reducibility phenomenon is well known for cocycles over the circle (Floquet theory, see
[Arn80][chap. 26]). When the base is a higher dimensional torus, the situation is much more complicated.
The frequencies ω = (ω1, . . . , ωd) are usually assumed to be linearly independent over Z. In that case,
they are also assumed to satisfy a ‘Diophantine’ condition.

Most known results consider the case where the ‘fiber’ has dimension n = 2. In that case, the rotation
number [JM82] of the cocycle can be defined. The rotation number is a very useful quantity since its
arithmetical properties determine whether the cocycle can be reduced or not: in the analytic category,
[Eli92] proved reducibility for Schrödinger cocycles with a large energy or a small potential, under a
Siegel-type Diophantine condition on the frequency vector and on the rotation number; a similar result
was obtained in [CM12] under weaker arithmetical conditions, namely, Brjuno-Rüssmann conditions, on
the frequencies and on the rotation number. Non-perturbative versions of Eliasson’s results were also
obtained: the article [AK06] gives a description of Schrödinger cocycles with a recurrent Diophantine
frequency vector for almost every energy.

In a higher dimensional fiber, reducibility results and reducibility criteria were obtained in [Kri99a,
Kri99b] when the fiber is in a compact Lie group; in particular, reducibility in full measure for a one-
parameter family of cocycles under non-degeneracy conditions and the equivalence between reducibility
and compactness of the iterates. The authors of [HY08] proved a similar result in the non compact
case. Almost reducibility of cocycles in any dimension, that is, the possibility of conjugating them to
a cocycle arbitrarily close to a constant, was also proved in a perturbative framework in [Eli01] and
improved in [Cha13]. However, positive reducibility results still seem to depend on the existence of a
rotation number, or on strong spectral assumptions as in [MS65].

The previously mentioned articles all require Diophantine or Brjuno conditions on the frequency
vector. In [ZW12] and in [AFK11], the case of a liouvillean frequency vector was considered. However,
the results are only stated for a one or two-dimensional frequency vector.

In this article, we shall consider analytic cocycles over a torus Td with a fiber of any dimension

n. We consider them as ‘small’ perturbations of constant cocycles. We consider the general case where
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the frequencies might be linearly dependent over Z, that is there are resonances. We cannot expect
such a general cocycle to be reducible over the torus. We shall give sufficient conditions that ensure
that the cocycle is analytically conjugate to an analytic resonant cocycle, that is a cocycle in which
Fourier modes ei〈k,θ〉, depend only on the resonances relations of the frequencies, that is 〈k, ω〉 = 0. In
particular, a resonant cocycle is constant along resonant trajectories of the torus.

Our first result concerns perturbations of a diagonal matrix with separated spectrum, and can be
viewed as a generalization of [MS65] and [Adr62].

Theorem 1.1. Let A0 be a diagonal matrix with eigenvalues λ1, . . . , λn having distinct real parts and
let C = minj 6=k Reλj −Reλk>0. Assume that ω is very weak with exponent R > 0 (see definition 2.8).
Let r > R and let a be a Cω

r matrix valued function with zero mean value. There exists ε0(r, n, d, ω,C)
such that if |a|r ≤ ε0, then the system whose coefficients are A0 + a can be analytically conjugated to a
system whose coefficient matrix is resonant and diagonal.

Corollary 1.2. Under assumptions of the previous theorem, equation (1) is analytically reducible to a
constant cocycle on each level set ∩i{θ | 〈mi, θ〉 = constanti}.

Corollary 1.3. Under assumptions of the previous theorem and if there is no resonances relations (i.e.
R = {0}), then the cocycle A is analytically reducible.

This result is due to L. Adrianova [Adr62] and to Mitropolskii-Samoilenko ([MS65]) when the fre-
quencies satisfy a Siegel’s type small divisors condition. In our result, we only require a much weaker
condition (even much weaker than Brjuno-Rüssmann condition).

The second main result considers triangular perturbations of a constant system.

Theorem 1.4. Let S be a diagonal matrix which satisfies a second Melnikov condition away from the
resonances (see definition 2.9). Let F be a Cω

r matrix valued function, with upper triangular and nilpotent
values. There exists ε0(n, d, ω, S, r) such that if |F − F̂ (0)|r ≤ ε0, then the system whose coefficients are
given by S + F can be analytically conjugated to a system whose coefficients matrix is resonant, upper
triangular and commuting with S.

As a consequence, we obtain a decomposition into analytic invariant subbundles of the initial cocycles
defined by the unperturbed constant cocycle.

Next we will consider strongly commuting perturbations, i.e perturbations which commute with the
constant part and also such that their various Fourier modes all commute with each other (see definition
5.1).

Theorem 1.5. Assume that the vector ω is very weak with exponent R > 0. Let A0 ∈ gl(n,C). Let
r > R and let F ∈ Cω

r be matrix valued and strongly commuting, and such that all Fourier modes of
F commute with A0. There exists C(ω,A0, r, n, d) such that if |F |r ≤ C, then the system A0 + F is
reducible to a resonant system A∞(θ) which commutes with A0.

Notice that, under this strong algebraic condition on the perturbation, no second Melnikov condi-
tion is needed since most small divisors will be avoided. In the last section, we shall consider similar
statements under assumptions that the cocycles belongs to a Lie sub algebra of matrices.
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We shall also apply our results to a non-resonant situation to obtain sufficient conditions that ensure
analytic reducibility. Our proofs are based on a Newton-KAM scheme whose convergence is due to the
control of the small divisors of the initial unperturbed constant cocycle.

Acknowledgement We would like to thank Nikos Karaliolios who suggested the scheme of this final
proof of theorem 1.1. It happens that, finally, this allowed us to strongly weaken the diophantine condition
used. We would also like to thanks Hakan Eliasson who suggested the very short and elegant proof of
theorem 1.5. We also would like to thank the annonymous referees for helping us providing a better text.

2 Notations and assumptions

Definition 2.1. The vector ω is said to be resonant if there exists m1, . . . ms ∈ Zd linearly independent
over Q such that 〈mi, ω〉 = 0, i = 1, . . . , s, and if 〈k, ω〉 = ωi then k = Ei+

∑s
j=1 ljmj where the lj ’s are

integers and Ei is the ith-unit vector of Zd. We shall denote by R the Z-module generated by the mi’s.
We define an equivalence relation ∼ on Zd by

k1 ∼ k2 ⇔ ∃l ∈ Zs, k1 = k2 + l ·m ⇔ k1 − k2 ∈ R
The equivalence class of an integer vector v will be denoted by 〈v〉.

Remark 2.2. A sum is defined on equivalence classes as follows: 〈u〉+ 〈v〉 = 〈u+v〉; this is well defined
since u ∼ u′, v ∼ v′ ⇒ u+ v ∼ u′ + v′.

Definition 2.3. A function f defined on the torus is said to be resonant if its Fourier series has only
modes which are proportional to the mj’s, i.e. f =

∑
l∈Zs fle

i〈l·m,θ〉, where l ·m stands for l1m1 + · · ·+
lsms. In that case, we shall write fres to notify this fact.

Definition 2.4. Let H〈v〉 be the subspace of functions f defined on the torus whose elements only have
Fourier modes in 〈v〉.

Remark 2.5. For all function f continuous on the torus, there exists a unique decomposition f =
fres + fnr where fres is resonant and fnr does not have any harmonics in the lattice R generated by
the mj ’s. More generally, there is a natural decomposition of the space of continuous functions on the
torus into subspaces H〈v〉: f =

∑
〈v〉∈Zd/∼ f〈v〉. With this notation, fres coincides with f〈0〉. Note that

H〈v〉 · H〈v′〉 ⊂ H〈v+v′〉.

Definition 2.6. For a function f defined on Td (be it matrix-valued or scalar-valued), if the Fourier
modes of f belong to a finite number of equivalence classes, then we shall denote by degF the degree of
f , i.e the smallest integer such that all equivalence classes of Fourier modes of f have a representative
v = (v1, . . . , vd) with length |v1|+ · · ·+|vd| ≤ degF .

When necessary, for a matrix-valued function F , we will denote by Fdiag its diagonal part.
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We will consider the Banach space Cω
r of (matrix valued) functions which are analytic on a neigh-

borhood {|Im θ| ≤ r} of the torus such that

|f |r :=
∑

〈v〉∈Zd/∼
|f〈v〉|r < +∞, |f〈v〉|r := sup

|Im θ|≤r
||f〈v〉(θ)||

where ||.|| denotes the operator norm on Rn or Cn. We notice that this norm is sub-multiplicative,i.e.
|fg|r ≤ |f |r|g|r.

Assumption 2.7. The function A in equation (1) is analytic in a neighborhood of the torus (in fact,
in a complex strip around the real d-dimensional plane) so there exists r > 0 such that A ∈ Cω

r .

Definition 2.8. We shall say that the frequency vector ω is very weak if there exist R > 0,K > 0
such that for all k ∈ Zd with 〈k, ω〉 6= 0, then

|〈k, ω〉| ≥ Ke−R|k|. (5)

If this holds, the number R is simply called the exponent of ω.

This kind of very weak condition also appeared in different context in [Sto97].

Definition 2.9. We shall say that A0 is a Melnikov matrix or satisfies the second Melnikov condition
away from the resonances if there exist a constant κ′ and a strictly increasing differentiable function
g′ : [1,+∞[→ R∗+ satisfying

∫ ∞

1

ln(g′(t))
t2

dt < +∞

such that for all pair (α, β) of eigenvalues of A0, and all m′ ∈ Zd such that i〈m′, ω〉 − α+ β 6= 0, then

|α− β − i〈m′, ω〉| ≥ κ′

g′(|m′|) . (6)

We shall also say that A0 is Melnikov up to order N ∈ N if Equation (6) holds for all m′ with |m′| ≤ N .

Remark 2.10. If A0 is a Melnikov matrix, then in particular ω satisfies a Brjuno-Rüssmann arithmetical
condition away from the resonances, which is weaker than Siegel’s diophantine condition, and was used
for instance in [CM12].

3 Analytic conjugation to a normal form: the separated diagonal case

Let us make an extra assumption:

Assumption 3.1. A0 = diag(λ1, . . . , λm) is diagonal with eigenvalues having distinct real parts.

The main result of this section is the following :
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Theorem 3.2. Assume that ω is very weak with exponent R > 0. Let r > R and let A = A0 + a be a
Cω
r -analytic cocycle (1) where a is a zero-mean valued matrix function. There exists ε0 depending only

on A0, n such that if |a|r ≤ ε0, then there exists a convergent transformation conjugating (1) to a normal
form in a neighborhood of the torus:

NF = ω
∂

∂θ
+Dres(θ)x

∂

∂x
.

where Dres is a resonant diagonal matrix-valued function.

We shall prove Theorem 3.2 in two steps: first, the system can be diagonalized without any arith-
metical assumption on ω; second, such a diagonal system can be conjugated to a resonant one under
the very mild arithmetical assumption (5) on ω (it is much weaker than the Brjuno-Rüssmann condition
contained in the definition 2.9). The precise statements are as follows:

Proposition 3.1. Suppose that A0 has eigenvalues with distinct real parts and that a is a matrix-valued
function, analytic on the torus, with zero mean value. Then there exists ε0 depending only on A0, n such
that if |a|r ≤ ε0, then there exists an analytic transformation conjugating the system whose coefficient
matrix is A0 + a to a diagonal system.

Proposition 3.1 will be proved in the following sections. The second step is much easier:

Proposition 3.2. Let D be a Cω
r -analytic function on the torus whose values are diagonal matrices; if

there exist r′ > 0, C ′ > 0 such that for all k ∈ Zd with 〈k, ω〉 6= 0,

|〈k, ω〉| ≥ C ′e−|k|(r−r′)

then the system with coefficient matrix D can be Cω
r′-conjugated to a resonant diagonal system.

Proof. Consider the system with analytic coefficients given by D, that is,





ẋ1(θ, t) = D1,1(θ + tω)x1(θ, t)
...
ẋn(θ, t) = Dn,n(θ + tω)xn(θ, t)

(7)

Each line can be solved separately and immediately by

xj(θ, t) = exp

(∫ t

0
Dj,j(θ + sω)ds

)
xj(θ, 0)

By setting Dj,j(θ) = Dj,j,res(θ) +Dj,j,nr(θ), one has

xj(θ, t) = exp(tDj,j,res(θ)) exp

(∫ t

0
Dj,j,nr(θ + sω)ds

)
xj(θ, 0).

Indeed, we have

Dj,j,res(θ) =
∑

l∈Zs

Dj,j,le
i〈l·m,θ〉,

where l ·m stands for l1m1 + · · ·+ lsms. Therefore, Dj,j,res(θ + sω) = Dj,j,res(θ). One can explicit
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∫ t

0
Dj,j,nr(θ + sω) =

∑

k∈Zd

D̂j,j,nr(k)
ei〈k,θ+tω〉 − ei〈k,θ〉

i〈k, ω〉

Letting now Dres(θ) = diag(Dj,j,res(θ)) and letting Z be the diagonal-valued function given by

Zj,j(θ) = exp


 ∑

k∈Zd,〈k,ω〉6=0

D̂j,j(k)
ei〈k,θ〉

i〈k, ω〉




gives the desired conjugation

X(θ, t) = Z(θ + tω)etDres(θ)Z(θ)−1

The question therefore reduces to finding an arithmetical condition on ω under which Z is analytic.
Since D is assumed to be analytic, then for every k,

|D̂j,j(k)| ≤ |Dj,j|re−|k|r

thus Z is analytic whenever there exist r′ > 0 and C > 0 such that for all k ∈ Zd, 〈k, ω〉 6= 0,

e−|k|r|〈k, ω〉|−1 ≤ Ce−|k|r′

that is to say,

|〈k, ω〉| ≥ C ′e−|k|(r−r′).

3.1 Cohomological equation and iteration process

The proof of Proposition 3.1 is based on the following:

Proposition 3.3. Let A : Td → gl(n,C) be a diagonal perturbation of A0. Assume inf |Im θ|≤r|ReA(θ)j,j−
ReA(θ)k,k| ≥ δ > 0 for all v ∈ Zd and all j 6= k. Let F : Td → gl(n,C) be a Cω

r -analytic matrix-valued
function. There exists a constant Cn only depending on n such that if

|A−A0|r <
δ

8Cn

then there exists a solution X : Td → gl(n,C) of the equation

∂ωX(θ) = [A(θ),X(θ)] + F (θ)− Fdiag(θ) (8)

where ∂ω stands for the derivative in the direction ω.

Moreover, X is analytic and belongs to Cω
r , with the estimate

|X|r ≤
4Cn|F |r

3δ − 8Cn|A−A0|r
≤ 2Cn

δ
|F |r.
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Proof. Equation (8) is equivalent to

(D +R)(X)(θ) = F (θ)− Fdiag(θ) (9)

where D : X 7→ ∂ωX − [Ares,X] and R : X 7→ −[Anr,X]. One has the bound |RX|r ≤ 2|A−A0|r|X|r.
Concerning D, an equation of the form DX = G − Gdiag is equivalent to its decomposition along the
H〈v〉’s: for all 〈v〉 ∈ Zd/ ∼ such that 〈v, ω〉 6= 0,

i〈v, ω〉X〈v〉(θ) = [Ares(θ),X〈v〉(θ)] +G〈v〉(θ)−G〈v〉,diag(θ). (10)

By decomposing by matrix coefficients, we obtain, if j = k, that (G − Gdiag)〈v〉,j,j = 0 and we can
set X〈v〉(θ)j,j := 0. For j 6= k, and all v, θ,

X〈v〉(θ)j,k =
G〈v〉(θ)j,k

i〈v, ω〉 −A(θ)j,j,res +A(θ)k,k,res
,

If 〈v〉 ∈ Zd/ ∼ is such that 〈v, ω〉 = 0, then for j = k, we select X〈v〉(θ)j,j := 0. For j 6= k, we have

X〈v〉(θ)j,k =
G〈v〉(θ)j,k

−A(θ)j,j,res +A(θ)k,k,res
.

Since for all j 6= k and for all v ∈ Zd , we have

inf
|Im θ|≤r

|A(θ)j,j,res −A(θ)k,k,res − i〈v, ω〉| ≥ inf
|Im θ|≤r

|ReA(θ)j,j,res −ReA(θ)k,k,res|,

since we have

A(θ)j,j,res = A(θ)j,j + (A(θ)j,j,res −A(θ)j,j)

and

sup
|Im θ|≤r

|A(θ)j,j,res −A(θ)j,j| ≤ |A(θ)j,j,res −A(θ)j,j|r ≤ Cn|A0 −A(θ)|r,

then we have

inf
|Im θ|≤r

|A(θ)j,j,res −A(θ)k,k,res − i〈v, ω〉| ≥ δ − Cnδ

4Cn
= δ

3

4

as well as

|X〈v〉 j,k|r = sup
|Im θ|≤r

|X〈v〉 j,k(θ)| ≤
4

3
sup

|Im θ|≤r

|G〈v〉,j,k(θ)|
δ

≤ 4

3
Cn

|G〈v〉|r
δ

.

Therefore, the operator D is invertible and one has the bound |D−1|Cω
r →Cω

r
≤ 4Cn

3δ .

Therefore, if |A−A0|r < δ
8Cn

, then
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|(D +R)−1|r ≤ |D−1|r|(Id+D−1R)−1|r

≤ 4Cn

3δ

∑

j≥0

(
4Cn

3δ
2|A−A0|r

)k

≤ 4Cn

3δ − 8Cn|A−A0|r
≤ 2Cn

δ
,

thus the equation (8) has a solution X satisfying |X|r ≤ 2Cn

δ |F |r. �

Proposition 3.4. [Induction argument]Let A : Td → gl(n,C) be a diagonal analytic perturbation of A0.
Let δ and ε < δ

4Cn
be positive numbers. Let F : Td → gl(n,C) belong to Cω

r with

|F |r ≤ ε (11)

Let Cn be the constant defined in the assumptions of Proposition 3.3. Assume that A satisfies to

inf
|Im θ|≤r

|ReA(θ)j,j −ReA(θ)k,k| ≥ δ (12)

for all v ∈ Zd, and to

|A−A0|r ≤
ε

2
≤ δ

8Cn
. (13)

There exists A′ : Td → gl(n,C) a diagonal Cω
r -analytic perturbation of A0, there exists F ′ : Td → gl(n,C)

which belongs to Cω
r , and there exists Z : Td → GL(n,C) which belongs to Cω

r such that for all θ ∈ Td,

∂ωZ(θ) = (A(θ) + F (θ))Z(θ)− Z(θ)(A′(θ) + F ′(θ))

and

|F ′|r ≤
8Cn

δ
|F |2r

Moreover

|Z − I|r ≤
2Cn

δ
|F |r (14)

and A′ satisfies

inf
|Im θ|≤r

|ReA′(θ)j,j −ReA′(θ)k,k| ≥ δ − 2Cnε (15)

for all v ∈ Zd, as well as

|A′ −A0|r ≤
ε

2
+ ε (16)
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Proof. Let X be the solution of ∂ωX = [A,X] + F − Fdiag given by Proposition 3.3 and let us set
Z := I +X. Then, according to (4), we have

∂ωZ(θ) = (A(θ) + F (θ))Z(θ)− Z(θ)(A′(θ) + F ′(θ)),

where

A′ := A+ Fdiag

F ′ := (I +X)−1FX +
∑

l≥1

(−X)lFdiag .

By definition, A′ is diagonal and the estimate (16) comes directly from (13). According to (12), applying
Proposition 3.3, we obtain

|X|r ≤
2Cn

δ
|F |r ≤

1

2

where Cn only depends on n (which also gives the estimate (14)).
Thus we have

|F ′|r ≤ |(I +X)−1(FX −XFdiag)|r

≤


∑

l≥0

|X|lr


 4Cn

δ
|F |2r (17)

≤ 8Cn

δ
|F |2r . (18)

Moreover, for any scalar f ∈ Cω
r , we have sup|Im θ|≤r |f(θ)| ≤ |f |r. As a consequence, we have, for

|Im θ| ≤ r and for all j 6= k,

|ReA′(θ)j,j −ReA′(θ)k,k| ≥ (|ReA(θ)j,j −ReA(θ)k,k|)− (|Re(F (θ))j,j |+ |Re(F (θ))k,k|)
≥ (|ReA(θ)j,j −ReA(θ)k,k|)− (|(F )j,j |r + |(F )k,k|r)

Hence, we have

inf
|Im θ|≤r

|ReA′(θ)j,j −ReA′(θ)k,k| ≥ δ − 2Cnε

3.2 Proof of Proposition 3.1

We prove this by iterating Proposition 3.4 and constructing a sequence of changes of variables, all Cω
r -

analytic, conjugating the system A0 + a to something which is arbitrarily close to the system given in
the statement.
Let Cn be the constant defined in Proposition 3.3. Let δ = δ0 and ε = ε0 ≤ 1/2 be such that

ε0 ≤ ε
1/2
0 ≤ δ0

8Cn
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and
min
j 6=k

|ReA0,j,j −ReA0,k,k| ≥ δ0.

Let us set εk := ε
(3/2)k

0 as well as

δk := δk−1 − 2Cnεk−1 = δ0 − 2Cn

k−1∑

j=0

εj , k ≥ 1.

Notice that, if ε is small enough, we have δk > 16Cnε0, for all k ≥ 0. Indeed, for k ≥ 1 we have

ε
(3/2)k

0 ≤ εk0 so that ∑

j≥0

εj ≤ ε0 +
ε0

1− ε0
≤ 3ε0.

Therefore, we have, if ε0 is small enough

δk ≥ 2Cn(4ε
1/2
0 − 3ε0) ≥ 16Cnε0.

Assumptions 2.7 and 3.1 make it possible to apply Proposition 3.4 with A = A0 and F = a : if
|a|r ≤ ε0, we obtain a conjugation Z1 to a new vector field D1 +R1 with D1 = ω ∂

∂θ +A1(θ)x
∂
∂x , where

A1(θ) is diagonal with δ1 = δ0 − 2Cnε0-separated spectrum, and R1 is Cω
r -analytic on the torus with

|R1|r ≤ 8
Cn

δ0
|a|2r ≤ ε

3
2
0 = ε1

and

|A1 −A0|r ≤
3

2
ε0 ≤

δ1
2Cn

The change of variable Z1 is itself Cω
r -analytic on the torus, and

ε
1
2
0
4 -close to the identity since

2Cn

δ0
|a|r ≤

ε
1
2
0

4
.

Now suppose that we have a change of variables Zk which conjugates the vector field D + R given by
(1) to Dk + Rk where Dk(θ) = ω ∂

∂θ + Ak(θ)x
∂
∂x and Ak is diagonal with δk-separated spectrum, with

the estimates

|Rk|r ≤ εk,

|Ak −A0|r ≤
k−1∑

j=0

εj < 2ε0 ≤ δk
8Cn

and

|Z̃k − Id|r ≤ 2C

k−1∑

j=0

ε
1/2
j

11



We remark, if ε0 is small enough, then, for all k ≥ 1, we have ε
1/2
k < δk

8Cn
. Indeed, we have

δk
8Cn

≥ 2Cnε0 ≥ ε
(1/2)(3/2)k

0 .

Thus, one can apply again Proposition 3.4 to conjugate Dk + Rk by some change of variable Zk such
that

|Zk − Id|r ≤
2Cn

δk
εk ≤ ε

1
2
k

to a vector field Dk+1 +Rk+1 with analogous properties:

Dk+1(θ) = ω
∂

∂θ
+Ak+1(θ)x

∂

∂x

where Ak+1 is diagonal, with δk+1-separated spectrum,

|Rk+1|r ≤
8Cn

δk
ε2k ≤ εk+1,

|Ak+1 −A0|r ≤ |Ak −A0|r + εk ≤
k∑

j=0

εj ≤
δk+1

8Cn

so that D +R is conjugated to Dk+1 +Rk+1 by Z̃k+1 = ZkZ̃k.

In Cω
r , Rk tends to 0 and {Dk}k is a Cauchy sequence thus it converges to a limit D∞ which is diagonal

and analytic. Since Z̃k is Cω
r -analytic for all k and defines a Cauchy sequence,then it has an analytic

limit Z∞ conjugating D +R to D∞.
�

4 Analytic reduction of an upper triangular perturbation

In this section, we assume that A0 = S +M , where S = diag(λj) is diagonal and M is upper triangular
and commutes with S. This assumption is not restrictive since A0 can be conjugated from the start to
its Jordan normal form. In Section 6, we will see how to preserve real structures while still using the
Jordan normal form.

The main result of this section is :

Theorem 4.1. Let A0 = S +M ∈ gl(n,C) where S = diag(λj) is diagonal, M is nilpotent and upper
triangular and [M,S] = 0. Let F ∈ Cω

r be upper triangular valued. Suppose S is Melnikov (see definition
2.9). There exists ε0(n, d, κ

′, g′, A0, r) such that if |F |r ≤ ε0, then there exists r∞ > 0 and Z∞ ∈ Cω
r∞

and an upper triangular, resonant R∞ ∈ Cω
r∞ such that ∂ωZ∞ = (A0 + F )Z∞ − Z∞R∞.

Remark 4.2. If A0 is not in Jordan normal form, the assumption on F is that it is conjugate to an
upper triangular valued function by the conjugation which takes A0 to its Jordan normal form.

12



4.1 Cohomological equation and iteration process

Definition 4.3. Let l ≤ n and let Fl be the set of n× n-matrices M = (mi,j)1≤i,j≤n such that mi,j = 0
if j < i+ l. We have Fn = {0}.

Let us start with an elementary lemma :

Lemma 4.4. We have [Fl,Fp] ⊂ Fp+l.

Proof. Let M ∈ Fl and N ∈ Fp. Then, we have

[N,M ]i,j :=

n∑

k=1

ni,kmk,j −
n∑

k=1

mi,knk,j =

n∑

k=i+l

ni,kmk,j −
n∑

k=i+p

mi,knk,j.

In the first sum, mk,j = 0 if j < k+p so the sum is zero if j < (i+ l)+p ≤ k+p. By the same argument,
the second sum is zero for j < (i+ p) + l ≤ k + l.

We will now give a lemma (appearing in [Eli01] for the non resonant case) which shows that, up to
a simple analytic change of variables, one can assume that S = diag(λj) satisfies

i〈v, ω〉 − λk + λl = 0 ⇒ i〈v, ω〉 = 0

Lemma 4.5. Let S = diag(λj) be a diagonal matrix and N commuting with S. There exists an analytic
change of variables Φ and a diagonal matrix S̃ commuting with N such that

∂ωΦ(θ) = (S +N)Φ(θ)− Φ(θ)(S̃ +N)

and every pair (λ̃j , λ̃k) of eigenvalues of S̃ satisfies

i〈v, ω〉 − λ̃k + λ̃l = 0 ⇒ i〈v, ω〉 = 0 (19)

Proof. Suppose there exist indices i1, . . . , ir and j1, . . . , js such that λi1 = · · · = λir , λj1 = · · · = λjs and
for some v such that 〈v, ω〉 6= 0, one has λi1 − λj1 − i〈v, ω〉 = 0. Let Φ1(θ) be the diagonal matrix with
diagonal coefficients (Φ1

1(θ), . . . ,Φ
1
n(θ)) such that Φ1

i1
(θ) = · · · = Φ1

ir(θ) = ei〈v,θ〉 and all other diagonal
coefficients are equal to one. Then

∂ωΦ
1(θ) = D · Φ1(θ)

where D is the diagonal matrix with coefficients Di1,i1 = · · · = Dir ,ir = i〈v, ω〉 and all other coefficients
equal to 0. By construction, Φ1 commutes with S +N and so does D, therefore

∂ωΦ
1(θ) = (S +N)Φ1(θ)− Φ1(θ)(S −D +N)

and the coefficients (λ1
j ) of S −D are the same as those of S, except that λi1 , . . . , λir are shifted to

λ1
i1

= λi1 − i〈v, ω〉, . . . , λ1
ir

= λir − i〈v, ω〉, so that λ1
i1

= · · · = λ1
ir

= λ1
j1

= · · · = λ1
js

. Therefore, the
change of variables has merged two groups of identical coefficients into one.

In the new matrix S−D, if another resonance appears, one can perform a similar change of variables
in order two merge the two groups of coefficients which are in resonance with each other. Thus, in a
finite number of steps (at most n− 1), a new diagonal matrix S̃ is obtained, which commutes with N ,
and in which every pair of coefficients are either identical or non-resonant with each other.
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From now on, we will assume that the eigenvalues of S satisfy (19). In the following statement, which
gives the solution of the cohomological equation, recall that TNF stands for a truncation that preserves
the equivalence classes of Fourier modes.

Proposition 4.6. Let S = diag(λj) be a constant Melnikov diagonal matrix. Let R(θ) = S + M(θ)
where M(θ) is resonant, upper triangular. Assume that for all 1 ≤ k, l ≤ n and for all v ∈ Zd,

i〈v, ω〉 − λk + λl = 0 ⇒ i〈v, ω〉 = 0

and

|M |r ≤ 2||A0||+ 2ε0

where ε0 = κ′
2n||A0||n . Then for every N ≥ 1 and if F ∈ Cω

r is upper triangular, there is an upper
triangular X ∈ Cω

r such that

∂ωX = [R,X] + TNFnr (20)

and

|X|r ≤
C ′′(n)(||A0||+ 1)

κ′n+1
Ndg′(N)n+1|F |r

where C ′′(n) only depends on n. Moreover, if TNFnr is upper triangular, then so is X.

Proof. Developing (20) into the subspaces H〈v〉 yields

(L〈v〉 +N (θ))X〈v〉(θ) = TNF〈v〉(θ)

where L〈v〉 : gl(n,C) → gl(n,C),X 7→ i〈v, ω〉X − [S,X] and N (θ) : X 7→ −[M(θ),X]. Since M is upper
triangular, then M ∈ F1. According to the previous lemma, N (Fk) ⊂ Fk+1. Hence, the operator N is
nilpotent.
If i〈v, ω〉 − (λk − λl) 6= 0 for all 1 ≤ k, l ≤ n, then L〈v〉 is invertible and this equation amounts to

(Id+ L−1
〈v〉N (θ))X〈v〉 = L−1

〈v〉T
NF〈v〉(θ) (21)

One has the estimate

||L−1
〈v〉|| ≤

C(n)

minj,k|i〈v, ω〉 + λj − λk|
≤ C(n)g′(|v|)

κ′

Each Fk is left invariant by L〈v〉. Therefore, L−1
〈v〉N (Fk) ⊂ Fk+1. Hence, the restriction to Fk of

L−1
〈v〉N is nilpotent. Hence, if TNF〈v〉(θ) belongs to Fk, so does X〈v〉 and there is a p ≤ n such that

(I + L−1
〈v〉N (θ))−1 =

∑p
l=0(L−1

〈v〉N (θ))l. Therefore,

|X〈v〉|r ≤
n∑

l=0

||L−1
〈v〉||

l+1|N |lr|TNF〈v〉|r

where |N |r = supX∈Cω
r

|NX|r
|X|r (so that |N |r ≤ 2n|M |r: recall that |M |r = supθ|M(θ)| since M is

resonant). Let us set Xres := 0 and X := Xres +
∑

〈v〉/〈v,ω〉6=0 X〈v〉; then X is solution of (20) and

14



|X|r ≤ C(n)
∑

〈v〉

n∑

l=0

(
κ′

g′(|v|) )
−(l+1)|M |lr|TNF〈v〉|r

≤ C ′(n)|M |nr
Ndg′(N)n+1

κ′n+1
|F |r

≤ C ′′(n)(||A0||+ 1)

κ′n+1
Ndg′(N)n+1|F |r

(22)

Proposition 4.7. Let S be a constant Melnikov diagonal matrix. Let R(θ) = S +M(θ) where M(θ) is
resonant, upper triangular. Let ε > 0 and F ∈ Cω

r be upper triangular with |F |r ≤ ε. Let r′ ∈ (0, r) be
defined by

|ln ε|
r − r′

= g′′−1

(
κ′n+1

C ′′(n)(||A0||+ 1)
√
ε

)
(23)

where g′′(x) = xdg′(x)n+1 and C ′′(n) is given by Proposition 4.6. Suppose also that

ε ≤ 1

4C2
N

(r − r′)2d+2 (24)

where CN = Nd + dNd−1 + · · · + d!. Then there exists Z ∈ Cω
r such that

∂ωZ = (R+ F )Z − Z(R′ + F ′)

where F ′ is upper triangular, R′(θ) = S + M ′(θ) with M ′ resonant and upper triangular. We have
|F ′|r′ ≤ ε

3
2 , and |Z − I|r ≤

√
ε.

Proof. Let N be such that 1
2ε

− 1
2 = C′′(n)(||A0||+1)

κ′n+1 Ndg′(N)n+1. By assumption (23) on r′, e−N(r−r′) = ε.
By Proposition 4.6, there exists X ∈ Cω

r such that ∂ωX = [R,X]+TNFnr and |X|r < 1. Let Z = I+X.
Then

∂ωZ = [R,Z] + TNFnr = (R+ F )Z − Z(R+ Z−1FZ − Z−1TNFnr)

(note that Z is invertible since |X|r < 1.) Let R′ = R+ TNFres. Then

R+ Z−1FZ − Z−1TNFnr = R′ + Z−1FZ − Z−1TNFnr − TNFres

Let F ′ = Z−1FZ − Z−1TNFnr − TNFres; thus

F ′ =
∑

l≥0

(−X)lF (I +X)−
∑

l≥0

(−X)lTNFnr − TNFres

= F − TNF +
∑

l≥1

(−X)lF (I +X)−
∑

l≥1

(−X)lTNFnr + FX
(25)

Now
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|F − TNF |r′ ≤
∑

|k|>N

||F̂ (k)||e|k|r′ ≤
∑

|k|>N

|F |re−|k|(r−r′) ≤ CN |F |r
(r − r′)d+1

e−N(r−r′)

(where CN = Nd + dNd−1 + · · ·+ d!), thus

|F ′|r′ ≤
CN |F |r

(r − r′)d+1
e−N(r−r′) + 6|F |r|X|r

≤ CN |F |r
(r − r′)d+1

e−N(r−r′) +
C ′′(n)(||A0||+ 1)

κ′n+1
Ndg′(N)n+1|F |2r

≤ CN |F |rε
(r − r′)d+1

+
1

2
|F |

3
2
r

(26)

(the last inequality holds because of the choice of the parameter N). By the assumption (24), one has

|F ′|r′ ≤ ε
3
2 .

Moreover, if F is upper triangular, then so is X, thus F ′ as well since it is product of upper triangular
matrices. As required, R′(θ) = S + M ′(θ) where M ′(θ) = M(θ) + FN

res(θ) is resonant and upper
triangular.

We need the following (trivial) lemma:

Lemma 4.8. Let g′′(x) = xdg′(x)n+1. If g′′ satisfies:

|ln ε|
g′′−1

(
κ′n+1

C′′(n)(||A0||+1)
√
ε

) ≥ (4C2ε)
1

2d+2 (27)

and if r′ ∈ (0, r) is defined by

|ln ε|
r − r′

= g′′−1

(
κ′n+1

C ′′(n)(||A0||+ 1)
√
ε

)
(28)

then

ε ≤ 1

4C2
(r − r′)2d+2 (29)

The Brjuno-Rüssmann assumption on ω gives a control on the loss of analyticity:

Lemma 4.9. There exists ε0 > 0 which depends only on n, d, r, κ′, g′ such that if, for all k ∈ N,
εk = ε

(3/2)k

0 and rk+1 = rk − |ln εk|
g′′−1

(

κ′n+1

C′′(n)(||A0||+1)
√

εk

) with r0 = r, then (rk) has a positive limit r∞.

Proof. One has

r −
∑

k≥1

(rk − rk+1) = r −
∑

k

|ln εk|
g′′−1

(
κ′n+1

C′′(n)(||A0||+1)
√
εk

)
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and by the change of variables g′′(Y ) = κ′n+1

C′′(n)(||A0||+1)
√
εk

,

r −
∑

k≥1

(rk − rk+1) ≥ r −
∫ ∞

g′′−1
(

κ′n+1

C′′(n)(||A0||+1)
√

ε0

)

C ln g′′(Y )

Y
dY

where C =
2
√
ε0

|ln ε0| . Therefore r∞ > 0 if ε0 is small enough as a function of r, g′′, κ′, n,A0.

4.2 Proof of theorem 4.1

Let us define the following sequences: for all k ∈ N,

εk = ε
( 3
2
)k

0

rk+1 = rk −
|ln εk|

g′′−1
(

κ′n+1

C′′(n)(||A0||+1)
√
εk

)

(by Lemma 4.9 , rk has a positive limit). Let Nk be defined by the relation

1

2
ε
− 1

2
k =

C ′′(n)(||A0||+ 1)

κ′n+1
Nd

k g
′(Nk)

n+1

The assumption (27) of Lemma 4.8 is satisfied, thus one can apply Proposition 4.7. Applying Proposition
4.7 with R is the constant map equal to S + N , one obtains Z ∈ Cω

r1 conjugating R + F to R1 + F1

where

• |F1|r1 ≤ ε1,

• R1 is resonant, R1(θ) = S +M1(θ) where M1(θ) is upper triangular,

• F1 is upper triangular,

• |Z − I|r1 ≤ √
ε1.

Now suppose, by induction, that A0 + F is conjugated by Zk ∈ Cω
rk

to Rk + Fk with the properties

• |Fk|rk ≤ εk,

• Rk(θ) = S +Mk(θ), where Mk is resonant with upper triangular values,

• Fk has upper triangular values,

• |Zk − I|rk ≤ 2
∑k

l=1

√
εl.

Then applying again Proposition 4.7 (by means of Lemma 4.8 ), one has Zk+1 ∈ Cω
rk+1

conjugating
A0 + F to Rk+1 + Fk+1 with

• |Fk+1|rk+1
≤ εk+1,

• Rk+1(θ) = S +Mk+1(θ), where Mk+1 is resonant with upper triangular values,
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• Fk+1 has upper triangular values,

• |Zk+1 − I|rk+1
≤ 2

∑k+1
l=1

√
εl.

Thus, for all k ∈ N, the system A0 + F is conjugated, in Cω
r

2
, to Rk + Fk, where where Rk is resonant,

|Fk| r
2
≤ εk, and |Zk − I|rk ≤ 2.

By Lemma 4.9, rk has a strictly positive limit r∞. Let R∞ be a limit point, in Cω
r∞ , of (Rk)k∈N (thus

R∞ is a resonant map); let (kl) be a sequence such that Rkl tends to R∞, and let Z∞ be a limit point,
in Cω

r∞ , of the subsequence Zkl . Then ∂ωZ∞ = (A0 + F )Z∞ − Z∞R∞.
�

5 Analytic reduction of a strongly commuting perturbation

Definition 5.1. Let F ∈ Cω
r ; F is strongly commuting if for all equivalence classes v, v′ ∈ Zd/ ∼, one

has [F〈v〉, F〈v′〉] = 0.

The aim of this section is to prove the following:

Theorem 5.2. Let F ∈ Cω
r be strongly commuting. Assume that there exists C > 0, 0 < R < r such

that for all k ∈ Zd with 〈k, ω〉 6= 0,

|〈k, ω〉| ≥ Ce−|k|R (30)

Then the system with coefficient matrix F is analytically reducible to a resonant system.

Proof. The solution can be written as

X(t, θ) = exp

(∫ t

0
F (θ + sω)ds

)
X(0, θ)

The strong commutation assumption implies that the solution of the initial system can be directly
computed and written in a reduced form:

X(t, θ) = etFres(θ)
∏

〈v〉∈Zd/∼,〈v,ω〉6=0

exp


eit〈v,ω〉 − 1

i〈v, ω〉
∑

k∈Zd,k∈〈v〉
F̂ke

i〈k,θ〉




= etFres(θ)
∏

〈v〉∈Zd/∼,〈v,ω〉6=0

exp

(
eit〈v,ω〉 − 1

i〈v, ω〉 F〈v〉(θ)

)

= Z(θ + tω)etFres(θ)Z(θ)−1

(31)

where Z(θ) =
∏

〈v,ω〉6=0 exp
(
F〈v〉(θ)
i〈v,ω〉

)
. Thus we seek an arithmetical condition on ω under which Z is

analytic. This will hold if the function

Y (θ) :=
∑

〈v,ω〉6=0

F〈v〉(θ)

i〈v, ω〉
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is itself analytic. Now

Y (θ) =
∑

k∈Zd,〈k,ω〉6=0

F̂ (k)ei〈k,θ〉

i〈k, ω〉

thus Ŷ (k) = F̂ (k)
i〈k,ω〉 if 〈k, ω〉 6= 0. Therefore Y is Cω

r′-analytic if there is C > 0 such that for all k with

〈k, ω〉 6= 0,

||Ŷ (k)|| ≤ Ce−|k|r′

which holds if

|F |re−|k|(r−r′) ≤ C|〈k, ω〉|.
Now this holds if ω satisfies the condition (30) with R ≤ r − r′.

6 Preservation of Lie structures

Assuming that the initial system takes its values in a Lie algebra g among gl(n,R), sl(n,C) or sp(n,R)
(for n even), a slight modification of the proofs will make the reduced system have its values in the same
Lie algebra and the reducing transformation have its values in the corresponding Lie group G.

Firstly, notice that the homological equations (8) and (20) have a solution in the Lie algebra where
the coefficients A,R and F have their values. This was used in [Cha13] (Proposition 2.8) in the non
resonant case and works identically even if the frequency vector ω is resonant, since by construction the
solution is unique (since resonances are removed from the right-hand side of the homological equation).
This comes from the fact that the Lie algebras considered here are defined by an equation of the form
L(F ) = 0, where L is a linear operator on matrices, and such that for all X, whenever A is in the
Lie algebra, either L([A,X]) = 0 (for instance if L is the trace operator) or L([A,X]) = [A,L(X)] (for

instance if L(X) = J(X∗J + JX) where J =

(
0 −I
I 0

)
).

Then one has to define a change of variables which takes its values in the Lie group. The change of
variables defined above was I + X, one would have to take exp(X) instead. Since, at the first order,
I + X and exp(X) coincide, the difference in the estimates will be quadratic, thus the new estimates
will change only by a universal constant and will not prevent the convergence of the KAM scheme.

Also, the structure will be preserved by integration in the proofs of Proposition 3.2 and Theorem 5.2:
integration preserves the zero trace property, commutes with the operator X 7→ X∗J+JX and preserves
the space of integrable real functions.

Therefore, Theorem 3.2 can be restated as follows:

Theorem 6.1. Assume that ω is very weak with exponent R > 0 and that the eigenvalues of A0 have
distinct real parts. Let r > R. Let A = A0 + a be a Cω

r -analytic cocycle (1) with values in g where a is
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a zero-mean valued function satisfying |a|r ≤ ε0(n,A0). Then there exists a convergent transformation
with values in G conjugating (1) to a normal form in a neighborhood of the torus:

NF = ω
∂

∂θ
+Dres(θ)x

∂

∂x
.

where Dres is a resonant diagonal matrix valued function with values in g.

and Theorem 5.2 becomes the following:

Theorem 6.2. Assume that ω is very weak with exponent R. Let r > R. Let A0 ∈ g. Let F ∈ Cω
r be

g-valued, strongly commuting and such that for all v, θ, [A0, F〈v〉(θ)] = 0. There exists C(A0, n) such
that if |F |r ≤ C, then the system A0+F is reducible, by a G-valued transformation, to a resonant system
A∞(θ) which commutes with A0 and has its values in g.

In Section 4, it was assumed that the constant part A0 was in a Jordan normal form and it was said
that this assumption is not restrictive. In order to remain in gl(n,R), however, two more arguments are
needed.

First of all, the Lie structure can slightly affect the way Lemma 4.5 is applied. Indeed, if S +N is
the Jordan normal form of a real matrix, one will have to preserve the pairs of eigenvalues which are
complex conjugate, and therefore it will be necessary to double the period. While doubling the period,
new resonances might appear, namely 〈k, ω〉 with k ∈ 1

2Z
d. However, after doubling the period a finite

number of times (at most n−1 times), all resonances will be deleted. So we will find the transformation
not defined on the original torus but rather on a 2n−1 covering.

While preserving the real structure, this way of eliminating the resonances also produces a transformation
with determinant 1, thus the structure of SL(n,R) is also preserved.

On the other hand, let P be such that A0 = P (S + N)P−1 where S is diagonal and N is nilpotent.
Assume that PRP−1 and PFP−1 are real valued. If X is solution of (20), then PXP−1 is solution of
∂ωPXP−1 = [PRP−1, PXP−1]+PTNFnrP

−1, thus it is real. The change of variables PeXP−1 is thus
also real, and its iteration is real (recall that taking eX instead of I + X does not essentially change
the estimates). The estimates are not changed except by the constant ||P−1|| · ||P || since the change of
basis is unchanged through the iteration. Finally, the system with constant part A0 can be reduced by
a real-valued change of variables, and the reduced system is then automatically real.

Moreover, the trace is invariant by matrix conjugation. Thus, Theorem 4.1 can be restated as follows:

Theorem 6.3. Let g = gl(n,R) or g = sl(n,R). Let A0 = P (S +M)P−1 ∈ g where S = diag(λj) is
diagonal, M is nilpotent and upper triangular, and [M,S] = 0. Let F ∈ Cω

r (T
d, g) be such that P−1FP

is upper triangular valued. Assume that S is Melnikov and that |F |r ≤ ε0(n, d, κ
′, g′, A0, r).Then there

exists an r∞ > 0 and a Z∞ ∈ Cω
r∞(2n−1Td, G) and a resonant R∞ ∈ Cω

r∞(2n−1Td, G), such that P−1RP
has upper triangular values and such that ∂ωZ∞ = (A0 + F )Z∞ − Z∞R∞.
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[MS65] Ju. A. Mitropol′skĭı and A. M. Samŏılenko. On constructing solutions of linear differential
equations with quasiperiodic coefficients by the method of improved convergence. Ukrain.
Mat. Ž., 17(6):42–59, 1965.

[Sto97] L. Stolovitch. Forme normale de champs de vecteurs commutants. C.R. Acad. Sci. Série I,
324,665–668, 1997.

[ZW12] Qi Zhou and Jing Wang. Reducibility results for quasiperiodic cocycles with Liouvillean
frequency. J. Dynam. Differential Equations, 24(1):61–83, 2012.

21


