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Invariant theory provides more efficient tools, such as Molien generating functions

and integrity bases, than basic group theory, that relies on projector techniques for

the construction of symmetry–adapted polynomials in the symmetry coordinates of

a molecular system, because it is based on a finer description of the mathematical

structure of the latter. The present article extends its use to the construction of

polynomial bases which span possibly, non–totally symmetric irreducible represen-

tations of a molecular symmetry group. Electric or magnetic observables can carry

such irreducible representations, a common example is given by the electric dipole

moment surface. The elementary generating functions and their corresponding in-

tegrity bases, where both the initial and the final representations are irreducible, are

the building blocks of the algorithm presented in this article, which is faster than

algorithms based on projection operators only. The generating functions for the full

initial representation of interest are built recursively from the elementary generating

functions. Integrity bases which can be used to generate in the most economical way

symmetry–adapted polynomial bases are constructed alongside in the same fashion.

The method is illustrated in detail on XY4 type of molecules. Explicit integrity bases

for all five possible final irreducible representations of the tetrahedral group have been

calculated and are given in the supplemental material associated with this paper.
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I. INTRODUCTION

The simulation of the rotation–vibration molecular spectrum requires the knowledge of

the potential energy surface (PES) and of the electric dipole moment surface (EDMS) of

the molecule under study. These two functions of internal coordinates do not have a known

analytic expression. This issue is often encountered in quantum chemistry or computational

spectroscopy and a typical solution is to expand these functions on a set of appropriate ana-

lytical functions. The expansion coefficients are then determined by fitting over experimental

or theoretical data. Symmetry helps to simplify the problem1–5 and favors the introduction

of symmetry–adapted coordinates when the function to be expanded transforms according

to an irreducible representation (irrep) of the symmetry group G of the molecule. In partic-

ular, the PES transforms as the totally symmetric (also called trivial) irrep of the group G

while the components of the EDMS may carry a non–trivial representation of the group.

The set of symmetrized internal coordinates spans a representation called the initial,

usually reducible, representation Γinitial. Symmetry–adapted polynomials in these variables

are then considered. The polynomials that transform according to the final irrep Γfinal are

called Γfinal–covariant polynomials.6 An “invariant” polynomial is the distinct case of this

classification when Γfinal is the totally symmetric representation of the group, noted A, A′,

A1, or Ag in character tables.

Projecting on irreps using projection operators is a standard method of group theory to

generate symmetry–adapted polynomials. Marquardt7 and Schwenke8 relied on this tech-

nique to compute symmetry–adapted basis sets and expand the PES of methane. The

projection method for the construction of invariants is applicable to irreps of dimension

higher than one through the introduction of projection operators together with transfer op-

erators, see Hamermesh,9 Bunker,4 Lomont,10 and Taylor.11 The group–theoretical methods

based on projectors are inherently inefficient because they ignore the number of linearly

independent symmetry–adapted polynomials of a given degree k. So, in order to obtain a

complete set, they have to consider all possible starting polynomial “seeds”, usually a basis

set of monomials. The projection of the latters often lead to the null polynomial or to a

useless linear combination of already known symmetry–adapted polynomials. Furthermore,

the dimension of the space of symmetry–adapted polynomials becomes rapidly formidable

even at modest k and the list of polynomials to tabulate becomes unnecessarily gigantic.
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Another technique of construction of symmetry–adapted polynomials is based on the

Clebsch–Gordan coefficients of the group G. A great deal of work has been dedicated in

particular to the cubic group.12–15 The coupling with Clebsch–Gordan coefficients of two

polynomials give a polynomial of higher degree and the set of symmetry–adapted polyno-

mials is built degree by degree. All possible couplings between vector space basis sets of

polynomials of lower degrees must be considered to insure that one gets a complete list.

Compared to the previous approach based on projection operators, the computational effort

is reduced but the tabulated basis sets have the same unnecessarily large sizes.

The drawbacks of the two approaches described above are circumvented by polynomial

ring invariant theory, which in spite of its name encompasses the covariant case and fully

exploits the algebraic structure of Γfinal–covariant polynomials. In particular, the coefficient

ck of the Taylor expansion c0 + c1t+ c2t
2 + c3t

3 + · · · of the Molien generating function16,17

gives the number of linearly independent polynomials of degree k carrying a given symmetry.

The introduction of invariant theory in quantum chemistry can be traced back to the works

of Murrell et al..18,19 Followers include Collins and Parsons,20 Ischtwan and Peyerimhoff.21

Recently, Braams, Bowman and their collaborators introduced permutationally invariant

polynomial bases that satisfy the permutational symmetry with respect to like atoms.22–24

However, these studies were only concerned with the totally symmetric representation in

relation to the expansion of a PES. Braams and Bowman did consider expansions of an

EDMS but they reduced the problem to the totally symmetric case by restricting themselves

to a subgroup of the molecular point group, which is not optimal.

An integrity basis for Γfinal–covariant polynomials involves two finite sets of polynomials.16,25

The first set contains D denominator or primary polynomials fi, 1 ≤ i ≤ D, which are

algebraically independent invariant polynomials.16,26 The second set contains N linearly in-

dependent numerator or secondary polynomials gj , 1 ≤ j ≤ N , which transform as the Γfinal

representation. Any Γfinal–covariant polynomial p admits a unique decomposition in the de-

nominator and numerator polynomials: p = g1×h1 (f1, . . . , fD)+ · · ·+ gN ×hN (f1, . . . , fD).

The hj are polynomials in D variables: any nonnegative integer can be a power of the

denominator polynomials while numerator polynomials only appear linearly. The impor-

tant result is that the integrity basis is a much more compact way to present the set of

Γfinal–covariant polynomials than a list of vector space bases for each degree k. All the

Γfinal–covariant polynomials, up to any order, can be generated from the polynomials be-
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longing to the small integrity basis by a direct algorithm. This circumvents the problems

inherent to projector or Clebsch–Gordan based methods, where gigantic tables necessarily

limited to a given (usually low) degree have to be stored. Applications of integrity bases are

numerous. They have been used to define error–correcting codes in applied mathematics,27

to analyze problems involving crystal symmetry,28,29 constitutive equations in materials with

symmetry,30–32 physical systems of high–energy physics33,34 and molecular physics,16,18,35 the

description of qubits,36,37 . . .

Our previous paper17 considered the complete permutation–rotation–inversion group of

a XY4 molecule. An integrity basis for the invariant polynomials was computed. The

calculation was decomposed into two steps and this decomposition was an important feature

of the method. First, we were dealing with the rotation–inversion group O(3) and in a second

step with the finite permutation group. In contrast, in the present paper we are only dealing

with finite groups. The structure of covariants for the rotation–inversion group is interesting

on its own, since it raises specific problems related to the fact that the modules of covariants

are not necessarily free for reductive continuous groups such as O(2) or O(3).25,38,39 This is

a remarkable difference with respect to the algebraic structure of invariants. The non–free

modules of SO(2) have been discussed in25 and a forthcoming article will be devoted to the

study of covariant modules of the SO(3) group.40

The focus of the present article is on the Γfinal–covariants built from symmetry coordi-

nates for the tetrahedral point group Td, although the techniques employed would work for

any finite group. As a matter of fact, various types of such coordinates have appeared in

the literature for this system that are amenable to our treatment. We can mention curvi-

linear internal displacements (bond lengths and interbond angles),41,42 Cartesian normal

coordinates,41,43–47 symmetrized coordinates based on Morse coordinates on Radau vectors

for stretching modes and cosines of valence bond angles for bending modes,8 haversines of

bond angles,48 cosines of valence bond angles times functions of bond lengths,49 symmetrized

coordinates based on bond lengths, interbond angles and torsion angles,15 or interbond an-

gles and bond lengths times a gaussian exponential factor.50

The purpose of the present article is to show on the explicit exemple of a XY4 molecule

that the techniques of invariant theory that have been used to obtain a polynomial basis set

for totally symmetric quantities can be extended to quantities transforming according to an

arbitrary irrep. This is useful to obtain very efficiently a basis set of F2–symmetry–adapted
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polynomials, in the Td-symmetry group, up to any arbitrary degree, for example. Such a

basis can be used to fit the EDMS of methane. The F1–covariants might be relevant to

fit the magnetic dipole moment surface (MDMS) while the E–covariants might be required

for components of the quadrupole moment surfaces. Various already existing algorithms

could theoretically be used for the same purpose such as those associated to Gröbner basis

computations.51 However, on the one hand, existing methods of computational invariant

theory26,52,53 are usually implemented in available computer codes for invariants only, and

on the other hand, they do not seem to be able to treat high–dimensional problems efficiently

for intrinsic complexity reasons, even in the case of invariants.

The article is organized as follows. In the next section, we recall fundamental results of

invariant theory and illustrate its mathematical concepts with a case example of Ci sym-

metry. Then, we show how the integrity basis of Γfinal–covariant polynomials in the Td

point group can be constructed recursively for XY4 molecules, Γfinal ∈ {A1, A2, E, F1, F2}.
The resulting minimal generating families of symmetry–adapted functions are listed in the

supplemental material.54 In conclusion, we emphasize that our approach is general, as only

minor points are specific to the example chosen as an illustration.

II. SYMMETRY–ADAPTATION TO A FINITE GROUP G

The theoretical framework to describe invariants in polynomial algebras under finite group

actions is well developed, both in mathematics and in chemical physics. Classical refer-

ences on the subject in mathematics are the book by Benson55 and the article of Stanley.56

Schmelzer and Murrell19 have had a pioneering influence as far as the construction of a PES

is concerned. The review of Michel and Zhilinskíı16 gives an overview of the various possible

applications to chemistry and physics.

We rely in the present section on a fundamental result of commutative algebra and

representation theory stating that any invariant or Γfinal–covariant polynomials has a general

decomposition. We refer to Stanley56 for further details and proofs regarding this result and

other properties of finite group actions on polynomial algebras.
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A. Hironaka decomposition

Let P denote the algebra of polynomials in k coordinates, Q1, . . . , Qk, for the field of

complex numbers. This algebra is a direct sum of vector spaces Pn of polynomials of de-

gree n: P =
⊕

n≥0

Pn. We assume that the finite group G acts linearly on the vector space

< Q1, . . . , Qk > spanned by Q1, . . . , Qk. This action extends naturally to P.

Let PΓfinal ⊂ P be the vector subspace of polynomials transforming as the irrep Γfinal and

let
[

Γfinal
]

be the dimension of the irrep Γfinal. This integer equals 1, 2 or 3 for most of the

point groups except for the icosahedral point groups I and Ih where irreps of dimensions 4

and 5 occur. A representation of dimension greater than one is qualified as degenerate. It

is convenient to assume for the forthcoming developments that the representation Γfinal has

a distinguished basis ψΓfinal,1, ..., ψΓfinal,[Γfinal]. A polynomial ϕΓfinal ∈ PΓfinal
is then further

decomposed as a sum over
[

Γfinal
]

polynomials,

ϕΓfinal

=

[Γfinal]
∑

i=1

ϕΓfinal,i, (1)

each term ϕΓfinal,i behaving as the basis function ψΓfinal,i under the action of the group G,

see e.g. equation (3-187) of Hamermesh.9 The symmetry type of the polynomial ϕΓfinal,i is

written Γfinal, i. We deduce, PΓfinal
=

[Γfinal]
⊕

i=1

PΓfinal,i from the decomposition, eq (1), for the

vector space of Γfinal–covariant polynomials.

An important mathematical result is that there exists exactly k algebraically indepen-

dent invariant polynomials {f1, . . . , fk} and a finite number pΓfinal of linearly independent

polynomials of symmetry Γfinal, i:
{

gΓ
final,i

1 , . . . , gΓ
final,i

p
Γfinal

}

, such that

PΓfinal,i =

p
Γfinal
⊕

j=1

C[f1, . . . , fk]g
Γfinal,i
j , i ∈

{

1, 2, . . . ,
[

Γfinal
]}

, (2)

where C[f1, ..., fk] is the algebra spanned by the polynomials {f1, . . . , fk}. The number

pΓfinal depends on the irrep Γfinal but is independent on the index i. We refer to the whole

set {f1, ..., fk; gΓ
final,i

1 , ..., gΓ
final,i

p
Γfinal

} as an integrity basis for the module PΓfinal,i. The fi are

called the denominator or primary polynomials, while the gΓ
final

j are called the numerator

or secondary polynomials. The same set of primary invariants is used for all the irreps.

Such a decomposition as in eq 2 is sometimes referred to as an Hironaka decomposition and
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defines a so–called Cohen–Macaulay module. In the particular case where Γfinal is the trivial

representation (so that Γfinal–covariants are simply invariants), this result shows that PΓfinal
,

the algebra of invariant polynomials, is a Cohen–Macaulay algebra.

The elements of the integrity basis can always be chosen homogeneous, and from now

on, we assume that this homogeneity property always holds. Even with this assumption,

the number of basis polynomials is not determined by the above construction. However,

for a given choice of primary invariants, the number of Γfinal–covariant basis polynomials

and their degrees are fixed and determined by the so–called Molien series.57 The problem of

constructing polynomials of symmetry type Γfinal, i from symmetrized coordinates spanning

the representation Γinitial leads to consider the Molien series, MG
(

Γfinal; Γinitial; t
)

, defined

by:

MG
(

Γfinal; Γinitial; t
)

=
∑

n≥0

dimPΓfinal,i
n tn, (3)

where PΓfinal,i
n = PΓfinal,i ∩ Pn is the vector space of polynomials of symmetry type Γfinal, i

and of degree n. In other words, the coefficient dimPΓfinal,i
n of the Molien series gives the

number of linearly independent polynomials of symmetry type Γfinal, i and of degree n.

Suppose that {f1, ..., fk; gΓ
final,i

1 , ..., gΓ
final,i

p
Γfinal

} is an integrity basis for PΓfinal,i. Then it can

be shown that the corresponding Molien series can be cast in the following form:

MG
(

Γfinal; Γinitial; t
)

=
tdeg(g

Γfinal,i
1 ) + · · ·+ t

deg(gΓ
final,i

p
Γfinal

)

(1− tdeg(f1)) · · · (1− tdeg(fk))
, (4)

where deg (p) is the degree of the polynomial p (the degrees are not necessarily all distinct in

this expression). The expression of the Molien functionMG
(

Γfinal; Γinitial; t
)

is independent of

the choice of the index i. The right–hand side of eq 4 justifies the alternative denomination

of the fi primary polynomials as denominator polynomials and of the gΓ
final,i

j secondary

polynomials as numerator polynomials. Once the degrees of the denominator invariants

are given and the Molien function calculated, the number of numerator polynomials of each

degree is given by the corresponding coefficient in the polynomialMG
(

Γfinal; Γinitial; t
)

×(1−
tdeg(f1)) · · · (1 − tdeg(fk)). The problem of generating the module PΓfinal,i comes down to the

computation of a complete set of such numerator polynomials given a set of denominator

invariants.
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B. Recursive construction

1. Generating function

We considered in the previous section the action of a finite group G on a polynomial

algebra P over a vector space < Q1, . . . , Qk >. In our applications of invariant theory, the

representation Γinitial spanned by the symmetrized coordinates typically splits into a direct

sum of µ irreps Γinitial
i , 1 ≤ i ≤ µ,

Γinitial =

µ
⊕

i=1

Γinitial
i .

The definition of the Molien series in eq 3 of Section IIA involved only one variable t.

In order to follow the contributions of the different irreps Γinitial
i , we introduce now one

ti variable for each Γinitial
i and write MG

(

Γ; Γinitial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
k ; t1, t2, . . . , tk

)

for

the Molien series associated to Γ–covariants polynomials in the variables contained in the

reducible irrep Γinitial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
k under group G.

Let us note cΓΓα,Γβ
for the multiplicity of the irrep Γ in the direct (or Kronecker) product

Γα × Γβ of the irreps Γα and Γβ. In case of the Td point group, cΓΓα,Γβ
= 0 or 1, see Wilson

et al..1 Decomposing the initial reducible representation Γinitial as

Γinitial =
(

Γinitial
1 ⊕ · · · ⊕ Γinitial

µ−1

)

⊕ Γinitial
µ ,

(note the parentheses), the generating function MG
(

Γ; Γinitial; t1, t2, . . . , tµ
)

can be built by

coupling the generating functions

MG
(

Γα; Γ
initial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
µ−1 ; t1, t2, . . . , tµ−1

)

,

with the generating functions

MG
(

Γβ; Γ
initial
µ ; tµ

)

,

where Γα and Γβ are irreps, (see Equation (46) of Michel and Zhilinskíı16 and Appendix A,)

according to the following equation:

MG
(

Γ; Γinitial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
µ−1 ⊕ Γinitial

µ ; t1, t2, . . . , tµ−1, tµ
)

=
∑

Γα,Γβ

cΓΓα,Γβ
MG

(

Γα; Γ
initial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
µ−1 ; t1, t2, . . . , tµ−1

)

×MG
(

Γβ; Γ
initial
µ ; tµ

)

.(5)
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In eq 5, the double sum on Γα and Γβ runs over all the irreps of the group G. The

Molien functionMG
(

Γα; Γ
initial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
µ−1 ; t1, t2, . . . , tµ−1

)

in the right–hand side

of eq 5 can itself be computed through an equation similar to eq 5 if the representation

Γinitial
1 ⊕ Γinitial

2 ⊕ · · · ⊕ Γinitial
µ−1 is seen as a direct sum of Γinitial

1 ⊕ Γinitial
2 ⊕ · · · ⊕ Γinitial

µ−2 and

Γinitial
µ−1 . These iterations are continued until no more decomposition of the representations

is possible. The left–hand side of eq 5 is then ultimately written as a sum of products

of elementary generating functions MG
(

Γα; Γ
initial
i ; ti

)

where both Γα and Γinitial
i are irreps.

Such elementary generating functions have already appeared in the litterature for a variety

of point groups58, (see also Appendix A). These elementary generating functions are the

building blocks required to compute recursively according to eq 5, the Molien generating

function of the problem under study.

2. Integrity basis

To each generating function of the form, eq 4, correspond integrity bases whose num-

ber and degree of the denominator and numerator polynomials are suggested by such an

expression. Let
⋃

x∈{1,2,···,[Γα]}
{f1, ..., fk; gΓα,x

1 , ..., gΓα,x
pΓα

},

be an integrity basis corresponding to the generating function

MG
(

Γα; Γ
initial
1 ⊕ · · · ⊕ Γinitial

i−1 ; t1, . . . , ti−1

)

, (6)

and let
⋃

y∈{1,2,···,[Γβ]}
{h1, ..., hl; jΓβ ,y

1 , ..., j
Γβ ,y
pΓβ

},

be an integrity basis corresponding to the generating function

MG
(

Γβ; Γ
initial
i ; ti

)

. (7)

The fi and g
Γα,x
j are polynomials in the variables of the representation Γinitial

1 ⊕ · · · ⊕ Γinitial
i−1 ,

while the hi and j
Γβ ,y

j are polynomials in the variables of the representation Γinitial
i .

The set {f1, ..., fk, h1, ..., hl} is the set of denominator or primary invariants for the gen-

erating function

MG
(

Γ; Γinitial
1 ⊕ · · · ⊕ Γinitial

i−1 ⊕ Γinitial
i ; t1, . . . , ti−1, ti

)

. (8)
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The numerator or secondary polynomials of the generating function of eq 8 are generated

by coupling the numerator polynomials gΓα,1
a , . . . , g

Γα,[Γα]
a with the numerator polynomials

j
Γβ ,1

b , . . . , j
Γβ ,[Γβ]

b via the Clebsch–Gordan coefficients of the group G for all (Γα,Γβ) pairs

such that Γ ∈ Γα×Γβ , see Section 5.6 of Hamermesh.9 We write these functions mΓ,κ
Γα,Γβ ,a,b,i

,

where 1 ≤ i ≤ cΓΓα,Γβ
, 1 ≤ a ≤ pΓα

, 1 ≤ b ≤ pΓβ
, and κ ∈ {1, 2, · · · , [Γ]}. The resulting

integrity basis corresponding to eq 8 can be expressed as

{f1, ..., fk, h1, ..., hl;
⋃

Γα,Γβ

{m
Γ,κ

Γα,Γβ,a,b,i
, 1 ≤ a ≤ pΓα

, 1 ≤ b ≤ pΓβ
, 1 ≤ i ≤ c

Γ

Γα,Γβ
, κ ∈ {1, 2, · · · , [Γ]}},

(if Γ /∈ Γα × Γβ, c
Γ
Γα,Γβ

= 0, and the set of mΓ,κ
Γα,Γβ ,a,b,i

’s is empty).

So, the integrity basis is built in a straightforward manner from integrity bases associated

to generating functions eqs (6) and (7), where both initial representations are of smaller

dimensions. Iterating this process constitutes an effective algorithm which only needs the

elementary generating functions of group G for its initialization. The latter functions have

already been tabulated58 for most groups of interest. The algorithm terminates when all

Γinitial
i ’s have been incorporated.

C. Illustration on a case example

The present section gives a straightforward application of the recursive construction in

the simplest non trivial case of the two-element group, which can be taken as the Ci group

used in chemistry for molecular structures with a center of inversion.

1. Group Ci

The group Ci has two elements: the identity operation E leaves unchanged the coordinates

of the particles, x 7→ x, while the inversion operation I changes the sign of the coordinates,

x 7→ −x. The character table of the Ci group is given in Table I and shows that two

one–dimensional irreps A1 and A2 occur in this group.

TABLE I. Character table of the Ci point group.

E I

A1 1 1

A2 1 −1
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2. Elementary generating functions

Applications of group theory often search to construct objects that transforms as a final

irrep Γfinal of a group G from elementary objects that spans an initial, possibly reducible,

representation Γinitial. If these objects are polynomials, we can sort them by their degree

and count the number ck of linearly independent polynomials of degree k that can be built

up. The information on the ck’s is encoded into the so–called Molien series or generating

function:

MG
(

Γfinal; Γinitial; t
)

= c0 + c1t+ c2t
2 + c3t

3 + · · · . (9)

Elementary generating functions are particular generating functions when both the initial

representation Γinitial and the final representation Γfinal are irreps of the group. The group

Ci has two irreps and thus four elementary generating functions have to be considered:

MCi (A1;A1; t), M
Ci (A2;A1; t), M

Ci (A1;A2; t), and M
Ci (A2;A2; t).

3. MCi
(

Γfinal;A1; t
)

The absolute value |x| is a good example of an A1–symmetric (invariant) object as it

does not change sign under neither the identity E nor the inversion I operations. From |x|
can be constructed one invariant of degree 0 (|x|0 = 1), one invariant of degree 1 (|x|1), one
invariant of degree two (|x|2), and more generally, one invariant of degree k (|x|k). However,
no object of symmetry A2 can be constructed from |x|. As a consequence, we can write as

in eq 9 the expressions of the Molien series MCi
(

Γfinal;A1; t
)

:

MCi (A1;A1; t) = 1 + t+ t2 + t3 + t4 + · · · = 1
1−t
,

MCi (A2;A1; t) = 0.
(10)

4. MCi
(

Γfinal;A2; t
)

The monomial x is an example of an A2–symmetric object because it changes sign under

the inversion I operation. The even powers of x will be of A1–symmetry:

x2n 7→ (−x)2n = x2n, (11)

while the odd powers of x will be of A2–symmetry:

x2n+1 7→ (−x)2n+1 = −x2n+1. (12)
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We see that from an A2–symmetric object can be constructed one object of symmetry A1

of any even degree and one object of symmetry A2 of any odd degree. These results are

encoded in the two following Molien series:

MCi (A1;A2; t) = 1 + t2 + t4 + t6 + · · · = 1
1−t2

,

MCi (A2;A2; t) = t + t3 + t5 + t7 + · · · = t
1−t2

.
(13)

5. Integrity bases for the elementary generating functions

An integrity basis consists in two sets of polynomials, the denominator and the numerator

polynomials. A generating function written as in the right–hand side of eq 4 suggests

both the number and the degree of the denominator and numerator polynomials, and is

a very valuable source of information when an integrity basis is built up. When forming

polynomials that transform as the Γfinal irrep from polynomials that belongs to the integrity

basis corresponding toMG
(

Γfinal; Γinitial; t
)

, eq 2 indicates that the denominator polynomials

can be multiplied between them with no restriction at all while the numerator polynomials

only appear linearly. The explicit expressions of the integrity bases for the four elementary

generating functions of the group Ci are given in Table II. For example, the last line of

Table II suggests that we can recover all the polynomials of symmetry A2 built up from x

by multiplying the numerator polynomial x with any power of the denominator polynomial

x2. The final result is a polynomial of the form x2n+1 which has the desired symmetry, see

eq 12.

TABLE II. Integrity bases for the four elementary generating functions of the group Ci.

Generating function Denominator polynomials Numerator polynomials

MCi (A1;A1; t) =
1

1−t
{|x|} {1}

MCi (A2;A1; t) = 0

MCi (A1;A2; t) =
1

1−t2

{

x2
}

{1}

MCi (A2;A2; t) =
t

1−t2

{

x2
}

{x}

12



6. Case example

Let us consider three particles moving on an infinite straight line under the symmetry

group Ci. The position of the three particles are given by xi, 1 ≤ i ≤ 3. The action of the

inversion I changes the coordinates of the three particles: xi 7→ −xi. The three xi variables

can be seen as polynomials of degree one. They are manifestly of symmetry A2, hence the

initial reducible representation is Γinitial = A2 ⊕ A2 ⊕ A2. Polynomials of higher degree can

be built up from the x1, x2 and x3 polynomials and the example is simple enough that the

symmetry of the higher degree polynomials is immediately deduced.

The case example is to construct all the polynomials in x1, x2, and x3 of symmetry A1

or A2 up to a given degree. This is the kind of problem that appear when the potential

energy surface or the electric dipole moment surface are expanded in symmetry–adapted

polynomials. Table III gives a list of the linearly independent polynomials of low degree in

x1, x2, and x3 that can be found by manual inspection.

TABLE III. Linearly independent polynomials of degree k, 0 ≤ k ≤ 5, in variables x1, x2, and x3

transforming according to the irrep Γfinal. The number of such polynomials is noted dimPΓfinal

k .

Γfinal k Polynomials dimPΓfinal

k

A1 0 1 1

A1 2 x21, x1x2, x1x3, x
2
2, x2x3, x

2
3 6

A1 4 x41, x
3
1x2, x

3
1x3, x

2
1x

2
2, x

2
1x2x3, x

2
1x

2
3, x1x

3
2, x1x

2
2x3, x1x2x

2
3,

x1x
3
3, x

4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3

15

A2 1 x1, x2, x3 3

A2 3 x31, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3 10

A2 5 x51, x
4
1x2, x

4
1x3, x

3
1x

2
2, x

3
1x2x3, x

3
1x

2
3, x

2
1x

3
2, x

2
1x

2
2x3, x

2
1x2x

2
3,

x21x
3
3, x1x

4
2, x1x

3
2x3, x1x

2
2x

2
3, x1x2x

3
3, x1x

4
3, x

5
2, x

4
2x3, x

3
2x

2
3,

x22x
3
3, x2x

4
3, x

5
3

21

From the last column of Table III and remembering that the coefficient ck in eq 9 is

the number of linearly independent polynomials of degree k for a given final symmetry, the

generating functions are found to be:

MCi
(

A1; Γ
initial; t

)

= 1 + 6t2 + 15t4 + · · · , (14)

13



for the Γfinal = A1 representation, and

MCi
(

A1; Γ
initial; t

)

= 3t+ 10t3 + 21t5 + · · · , (15)

or the Γfinal = A2 representation.

These generating functions can be directly computed using the Molien’s formula and

Burnside’s generalization to final irrep different from the totally symmetry one.57,59 For a

finite point group G, the Molien function reads:

MG
(

Γfinal; Γinitial; t
)

=
1

|G|
∑

g∈G

χ̄
(

Γfinal; g
)

det (1n×n − tM (Γinitial; g))
, (16)

where |G| is the order of G, χ̄
(

Γfinal; g
)

is the complex conjugate of the character for element

g ∈ G and irrep Γfinal, 1n×n is the n × n identity matrix acting on Γinitial of dimension n,

M
(

Γinitial; g
)

is the n × n matrix representation of g on Γinitial, and det is the determinant

of a matrix.

In our example, the representation matrices of the Γinitial = A2⊕A2⊕A2 are the two 3×3

diagonal matrices: M
(

Γinitial;E
)

= diag (1, 1, 1) and M
(

Γinitial; I
)

= diag (−1,−1,−1). Us-

ing Table I, the representation matrices and Molien’s formula 16, we find the two generating

functions:

MCi
(

A1; Γ
initial; t

)

=
1 + 3t2

(1− t2)3
, (17)

MCi
(

A2; Γ
initial; t

)

=
3t+ t3

(1− t2)3
. (18)

It can be checked that the Taylor series of eqs 17 and 18 around t = 0 correspond to

the expansion whose beginning is given in eqs 14 and 15. The generating function eq 17

suggests that the integrity basis for the invariants built from x1, x2, and x3 consists of three

denominator polynomials of degree two and four numerator polynomials, of which one is

of degree zero and three are of degree two. Eq 18 suggests that the integrity basis for the

polynomials of symmetry A2 consists of three denominator polynomials of degree two and

four numerator polynomials, of which three are of degree one and one is of degree three.

7. Recursive construction of the generating functions

Eqs 17 and 18 were obtained from Molien’s formula 16. However, they can be derived

more efficiently from the recursive construction of section IIB.

14



Let us use eq 5 to compute recursively the generating functions for our case example from

the elementary generating functions of Ci. Noting the direct products A1×A1 = A2×A2 =

A1 and A1 × A2 = A2 ×A1 = A2, only four cΓΓα,Γβ
coefficients do not vanish:

cA1
A1,A1

= cA1
A2,A2

= cA2
A1,A2

= cA2
A2,A1

= 1. (19)

The generating function for the invariant polynomials in x1, x2, and x3 is, according to eqs 5

and 19:

MCi (A1;A2 ⊕A2 ⊕A2; t1, t2, t3)

=MCi (A1;A2 ⊕A2; t1, t2)M
Ci (A1;A2; t3)

+MCi (A2;A2 ⊕A2; t1, t2)M
Ci (A2;A2; t3) .

Each of theMCi (Γα;A2 ⊕ A2; t1, t2) term can again be decomposed using eq 5, and we finally

find a relation where only elementary generating functions appear in the right–hand side:

MCi (A1;A2 ⊕ A2 ⊕ A2; t1, t2, t3)

=MCi (A1;A2; t1)M
Ci (A1;A2; t2)M

Ci (A1;A2; t3)

+MCi (A2;A2; t1)M
Ci (A2;A2; t2)M

Ci (A1;A2; t3)

+MCi (A1;A2; t1)M
Ci (A2;A2; t2)M

Ci (A2;A2; t3)

+MCi (A2;A2; t1)M
Ci (A1;A2; t2)M

Ci (A2;A2; t3) . (20)

The expressions of the elementary generating functions are given in eqs 10 and 13, and

the expression for the invariants reads as:

MCi (A1;A2 ⊕ A2 ⊕ A2; t1, t2, t3) =
1 + t1t2 + t1t3 + t2t3

(1− t21) (1− t22) (1− t23)
. (21)

If the three A2 in the initial reducible representation are not distinguished, we can write

t1 = t2 = t3 = t in eq 21 to recover eq 17. The same method for Γfinal = A2 gives

MCi (A2;A2 ⊕ A2 ⊕ A2; t1, t2, t3) =
t1 + t2 + t3 + t1t2t3

(1− t21) (1− t22) (1− t23)
, (22)

and permits one to recover eq 18.

8. Recursive construction of the integrity bases

Computational algorithms already exist to compute integrity bases26,52,53, but they are

limited to the case where the final representation is totally symmetric. Furthermore, they
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are not very efficient for large dimensions. In contrast, the algorithm of section IIB 2 that

parallels the recursive construction used for the generating functions can be applied to

compute efficiently the corresponding integrity basis. Eq 21 contains more information than

eq 17, because it allows one to track the origin and the multiplicity of the different terms. For

example, the term (1− t21) in the denominator of eq 21 comes from 1
1−t21

or t1
1−t21

. Table II

associates the t1 term in the denominator of these two fractions with the polynomial x1.

As a consequence, x21 belongs to the denominator polynomials of eq 21. The term t1t2 on

the numerator of eq 21 suggests a product of one numerator of degree one in x1 and one

numerator of degree one in x2 and leads to the conclusion that the term x1x2 belongs to the

numerator polynomials of eq 21. The integrity bases for our case example determined with

this method are given in Table IV. Remembering that denominator polynomials can be

multipled between themselves without any restriction but that numerator polynomials only

appear linearly, the lists of invariant and A2–covariant polynomials of degree k in Table III

are straightforwardly computed from the integrity bases in Table IV. The data in Table IV

is enough to compute quickly a basis for the vector space of invariant or A2–covariant

polynomials of any degree. For example, the degree 5, A2–covariant x
2
2x

3
3 = (x22x

2
3) · x3,

is the product of a single numerator A2–covariant, x3, with the product of denominator

invariants x22x
2
3.

TABLE IV. Integrity bases for the two generating functions MCi
(

Γfinal;A2 ⊕A2 ⊕A2; t
)

involved

in the case example.

Γfinal Generating function Denominator polynomials Numerator polynomials

A1
1+t1t2+t1t3+t2t3

(1−t21)(1−t22)(1−t23)

{

x21, x
2
2, x

2
3

}

{1, x1x2, x1x3, x2x3}

A2
t1+t2+t3+t1t2t3

(1−t21)(1−t22)(1−t23)

{

x21, x
2
2, x

2
3

}

{x1, x2, x3, x1x2x3}

III. APPLICATION TO THE CONSTRUCTION OF INTEGRITY BASES

FOR XY4 MOLECULES

Our main goal is to generate in the most economical way integrity bases for representa-

tions of symmetry groups on vector spaces spanned by molecular internal degrees of freedom.

We focus, from now on, on the example of XY4 molecules, but the following method holds
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in general. We consider coordinates for the internal degrees of freedom adapted to the Td

symmetry point group of the molecule, which is isomorphous to the permutation group

S4. For example, they can be the usual Td–adapted coordinates used in many studies

on XY4 molecules,41 denoted by S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, and S4z. S1 trans-

forms as the irrep A1, the pair S2a, S2b transforms as E, while both triplets S3x, S3y, S3z

and S4x, S4y, and S4z transform as F2. So, the representation of Td on the vector space

Γinitial := R < S1, S2a, ..., S4z > generated by S1, S2a, ..., S4z over the field of real numbers

(to which we restrict ourselves from now on, in view of the applications) splits into a direct

sum of irreps:

Γinitial = R < S1 > ⊕R < S2a, S2b > ⊕R < S3x, S3y, S3z > ⊕R < S4x, S4y, S4z >,

= Γinitial
1 ⊕ Γinitial

2 ⊕ Γinitial
3 ⊕ Γinitial

4 . (23)

An extra coordinate S5 has to be added to map bi–univoquely the whole nuclear configu-

ration manifold, if the coordinates are O(3)–invariant (such as linear combinations of bond

distances and bond angles, and no dihedral angle).17,60 In this case, polynomials involved in

the computation of the PES, the DMS and other physically relevant quantities have to be

expressed as P = P0+P1S5+P2S
2
5 +P3S

3
5 , where the Pi are polynomials in the coordinates

S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z.

However, since S5 can be chosen to carry the A1 representation, this extra–coordinate can

be handled independently of the computation of Γfinal–covariants. The same holds true for

S1. This allows us to reduce the problem to the study of PΓfinal
, where P is the polynomial

algebra generated by S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z. Note however, that the tabulated

integrity bases provided as supplemental material, Appendices A and B, as well as eq 36

correspond to the full 9–dimensional representation Γinitial.

The octahedral group O and the group Td both belong to the category of cubic point

groups and share similar properties. Integrity bases related to the Molien generating

functions M
(

Γfinal; Γinitial
i ; t

)

, where Γinitial
i and Γfinal are irreps, are known for O, see

ref58 and Appendix A. The denominator and numerator polynomials of these integrity

bases are the building blocks of the construction of the integrity basis for the initial 8–

dimensional reducible representation, Γinitial
0 := R < S2a, S2b > ⊕R < S3x, S3y, S3z > ⊕R <

S4x, S4y, S4z >= Γinitial
2 ⊕ Γinitial

3 ⊕ Γinitial
4 of the tetrahedral group Td.
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A. Denominator polynomials of the integrity bases

Denominator polynomials of the integrity basis of a reducible representation is just the

union of the denominator polynomials of its irreducible subrepresentations. The form of the

8 denominator polynomials f2, ..., f9 (the shift in the indexing is motivated by the convention

f1 := S1) for Γ
initial
0 is familiar.17 They consist in two denominator polynomials of the module

of Td–invariant polynomials in S2a, S2b, R[S2a, S2b]
Td, three denominator polynomials of

R[S3x, S3y, S3z]
Td and of three denominator polynomials of R[S4x, S4y, S4z]

Td. We list them

below by degrees of increasing order:

1. Degree 2:

f2 :=
S2
2a + S2

2b√
2

(24)

f3 :=
S2
3x + S2

3y + S2
3z√

3
(25)

f4 :=
S2
4x + S2

4y + S2
4z√

3
(26)

2. Degree 3:

f5 :=
−S3

2a + 3S2
2bS2a

2
(27)

f6 := S3xS3yS3z (28)

f7 := S4xS4yS4z (29)

3. Degree 4:

f8 :=
S4
3x + S4

3y + S4
3z√

3
(30)

f9 :=
S4
4x + S4

4y + S4
4z√

3
. (31)

B. Numerator polynomials of the integrity bases

The Molien series for the action of Td on Γinitial
0 can be directly computed using Burn-

side’s generalization59 of the Molien’s results.57 However, as suggested by the case example

with Ci symmetry, it is computationally more efficient to use eq 5 to recursively construct

the Molien generating functions and the integrity bases. Setting G = Td, a non–zero cΓΓα,Γβ
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coefficient in the sum of eq 5 relates at each step of the recursive algorithm to a pos-

sible non–zero numerator Γf–covariant in the integrity basis of the generating function

MTd

(

Γfinal; Γinitial
1 ⊕ Γinitial

2 ⊕ Γinitial
3 ⊕ Γinitial

4 ; t1, t2, t3, t4
)

. The corresponding polynomial is

built by coupling previously obtained polynomials with Clebsch–Gordan coefficients of the

group Td.
12

As an example, let us compute MTd (E;F2 ⊕ F2; t3, t4). The product table of the irreps

of the group Td is given in Table V. We can construct objects that transform according

to any of the five irreps from objects that carry the F2 irrep. As a consequence, the five

MTd (Γα;F2; t), with Γα an irrep, are non–zero. Table V indicates that the direct product

Γα×Γβ contains the E representation if and only if the pair (Γα,Γβ) belongs to the following

set:

{(A1, E) , (E,A1) , (A2, E) , (E,A2) , (E,E) , (F1, F1) , (F1, F2) , (F2, F1) , (F2, F2)} . (32)

TABLE V. Product table of the irreps of the group Td.

A1 A2 E F1 F2

A1 A1 A2 E F1 F2

A2 A2 A1 E F2 F1

E E E A1 ⊕A2 ⊕ E F1 ⊕ F2 F1 ⊕ F2

F1 F1 F2 F1 ⊕ F2 A1 ⊕E ⊕ F1 ⊕ F2 A2 ⊕ E ⊕ F1 ⊕ F2

F2 F2 F1 F1 ⊕ F2 A2 ⊕E ⊕ F1 ⊕ F2 A1 ⊕ E ⊕ F1 ⊕ F2

According to eq 5, each of the nine pairs (Γα,Γβ) of eq 32 contributes to a term in the

expansion

MTd (E;F2 ⊕ F2; t3, t4) =
∑

Γα,Γβ

cEΓα,Γβ
MTd (Γα;F2; t3)M

Td (Γβ;F2; t4) . (33)

The expressions of the elementary generating functions MTd (Γ;F2; t) are given in ref58 and

Appendix A. As an example, the pair (F2, F1) of eq 32 will give the following contribution

in eq 33:

cEF2,F1
MTd (F2;F2; t3)M

Td (F1;F2; t4) =
(t3 + t23 + t33) (t

3
4 + t44 + t54)

(1− t23) (1− t33) (1− t43) (1− t24) (1− t34) (1− t44)
.

(34)
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The interpretation of the right–hand side of eq 34 in terms of integrity basis suggests that the

pair (F2, F1) of eq 32 will contribute to 6 denominators and 2×9 = 18 numerator polynomials

to the integrity basis of MTd (E;F2 ⊕ F2; t3, t4). The 6 denominator polynomials are simply

the union of the set of the denominator invariants associated to the MTd (F2;F2; t3) and

MTd (F1;F2; t4) elementary generating functions. Each product tn3
3 t

n4
4 in the numerator of

eq 34 corresponds to a numerator polynomial of symmetry E, i obtained by coupling via the

Clebsch–Gordan coefficients of the Td group the numerator polynomial of symmetry F2, j,

degree n3 that belongs to the integrity basis of MTd (F2;F2; t3) with the numerator poly-

nomial of symmetry F1, k, degree n4 that belongs to the integrity basis of MTd (F1;F2; t4).

The expansion of the product (t3 + t23 + t33) (t
3
4 + t44 + t54) contains 9 terms and each term

contributes to two polynomials, one of symmetry type E, a and the other of symmetry type

E, b, hence the 2× 9 = 18 numerator polynomials.

This recursive algorithm has the advantage that only the integrity bases for initial irreps,

see Appendix A, and the Clebsch–Gordan coefficients of the group Td are required. In

practice we couple first the two symmetrized F2 coordinates S3x, S3y, S3z and S4x, S4y, S4z.

We then couple the results with the coordinates S2a and S2b. The fully coupled generating

function for the F2 final irrep reads:

MTd
(

F2; Γ
initial
0 ; t

)

=
N

(

F2; Γ
initial
0 ; t

)

(1− t2)3(1− t3)3(1− t4)2
, (35)

with

N
(

F2; Γ
initial
0 ; t

)

= 2t + 5t2 + 12t3 + 23t4 + 41t5 + 60t6 + 71t7 + 71t8

+60t9 + 45t10 + 27t11 + 12t12 + 3t13. (36)

Finally, to deal with the coordinate S1, it suffices to note that

MTd
(

F2; Γ
initial; t

)

=
MTd

(

F2; Γ
initial
0 ; t

)

(1− t)
. (37)

The Molien series numerator coefficients for all irreps are given in Table VI.

As far as the F2 representation is concerned, Table VI tells that there are 432 numerator

polynomials of symmetry type F2, z:
{

gF2,z
1 , ..., gF2,z

432

}

of which 2 are of degree one, 5 of

degree two, 12 of degree three, and so on. We finally obtain that an arbitrary polynomial of
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TABLE VI. Numbers nΓfinal

k of Γfinal–covariant numerator polynomials of degree k and dimensions

dimPΓfinal,i
k , 1 ≤ i ≤

[

Γfinal
]

, of the vector spaces PΓfinal,i
k of covariant polynomials of type Γfinal, i

and of degree k, Γfinal ∈ {A1, A2, E, F1, F2}. The total number
∑15

k=0 n
Γfinal

k of Γfinal–covariant

numerator polynomials is equal to
[

Γfinal
]

× Πjdj/|G|, where
[

Γfinal
]

is the dimension of the irrep

Γfinal, |G| = 24 is the order of the group Td, and Πjdj = 3456 is the product of the degrees of the

nine denominator polynomials. This result is a generalized version of proposition 2.3.6 of ref26. It

suffices to multiply the left–hand side of Eq. (2.3.4) by the complex conjugate of the character of

π and to notice that this equals to
[

Γfinal
]

for π = Id, see also Proposition 4.9 of ref56.

Γfinal: A1 A2 E F1 F2

Degree k nA1
k dimPA1

k nA2
k dimPA2

k nE
k dimPE,i

k nF1
k dimPF1,i

k nF2
k dimPF2,i

k

0 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 2 2

2 1 5 0 0 4 5 3 3 5 7

3 5 13 4 4 6 14 12 15 12 25

4 9 33 8 12 16 45 27 51 23 69

5 12 72 15 39 28 111 45 141 41 177

6 18 162 26 101 39 257 60 342 60 400

7 21 319 24 226 50 545 71 752 71 848

8 24 620 21 470 50 1090 71 1528 71 1672

9 26 1132 18 918 39 2040 60 2920 60 3140

10 15 1998 12 1680 28 3678 41 5298 45 5610

11 8 3384 9 2946 16 6330 23 9210 27 9654

12 4 5587 5 4973 6 10545 12 15418 12 16022

13 0 8912 1 8098 4 17010 5 24998 3 25822

14 0 13912 0 12818 1 26730 2 39388 0 40472

15 0 21185 1 19771 0 40935 0 60536 0 61960

n > 15 0 0 0 0 0 0

Total 144 ∞ 144 ∞ 288 ∞ 432 ∞ 432 ∞

symmetry type F2, m, m ∈ {x, y, z} in the algebra spanned by the S1, . . . , S4z coordinates

21



will identify with a unique linear combination of monomials:

f j1
1 f

j2
2 ...f

j9
9 g

F2,m
k (j1, . . . j9) ∈ N

9, 1 ≤ k ≤ 432. (38)

The lists of numerator polynomials for all irreps are provided as supplemental material.54

They have been derived in a few seconds of CPU time on a laptop by using the MAPLE

computer algebra system.61 The knowledge of the polynomials in our integrity bases is

sufficient to generate all the polynomials up to any degree, only multiplications between

denominator polynomials and one numerator polynomial are necessary. The recipe is given

in Appendix B. The gain with respect to classical methods of group theory already shows

up at degree 4: we only need the 9 basic invariants and the 16 A1–covariants (i.e. secondary

invariants) up to degree 4, to generate all 33 linearly independent invariants of degree 4

for representation Γinitial, see Table VI and compare with ref7 where only a 6–dimensional

representation is considered (the S3x, S3y, S3z coordinates are left out). In fact, an integrity

basis of 6 basic invariants and 3 secondary invariants can generate 11 linearly independent

A1–invariants of degree 4, which will span the same vector space as those tabulated in

the last table of ref7. Similar remarks apply to the covariants. The gain becomes rapidly

more spectacular as the degree increases. PES of order 10 have already been calculated for

methane.15,45 There are 1998 linearly independent invariants of degree 10 for representation

Γinitial. They can be generated with only the 9 basic invariants and 132 secondary invariants.

Similarly, EDMS for methane of order 6 have already appeared in the literature.50,62 The 9

basic invariants and 143 F2, z-covariant numerator polynomials of degree less or equal to 6

(see Table VI) are enough to generate the 400 linearly independent polynomials required to

span the vector space of F2, z-covariant polynomials of sixth degree.

IV. CONCLUSION

Our recursive method for constructing invariants and covariants blends ideas from the

theory of invariants and from techniques used in applications of group theory to physics and

chemistry. We have determined for the first time integrity bases of the Γfinal–covariants of

the group Td acting on the 9 (or possibly 10) symmetrized internal coordinates of a XY4

molecule. They are composed of nine algebraically independent denominator polynomials

and a finite number of Γfinal–covariant numerator polynomials given in the supplemental

material.54
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We have taken advantage of symmetry–adapted internal coordinates spanning the re-

ducible representation A1 ⊕E ⊕ F2 ⊕ F2 of Td, (and used in many studies of methane PES

or EDMS as recalled in introduction), to construct an integrity basis for each final repre-

sentation Γfinal. Integrity basis sets are first determined for each single, possibly degenerate,

irrep of the group. These integrity bases are coupled successively in a second step by using

the Clebsch–Gordan coefficients of the group Td.

This strategy to derive the Γfinal–covariants is general since the Γfinal–covariant polyno-

mials admit a Hironaka decomposition56 for any finite group G. Any “internal coordinate

system” (coordinates for internal degrees of freedom) (qi)i, or internal displacement coordi-

nates (qi − q0i )i, with respect to a molecular reference configuration (q0i )i totally invariant

under G, can be symmetrized to obtain symmetry-adapted coordinates. Polynomials in the

latter coordinates can in turn be used to represent PES and other functions of nuclear ge-

ometries. This is straightforward when such a function is independent of the orientational

coordinates (e.g. Euler angles) of the moving axes, like the PES, or the EDMS in the body-

frame when using O(3)-invariant coordinates: the moving–frame–dependent part being then

all included in the direction–cosines which relate the EDM in the body-frame to the EDM in

the laboratory-frame. However, for pentatomic and beyond the use of O(3)-invariant coordi-

nates necessarily implies auxiliary coordinates (such as S5 in the case treated here) to cover

the full configuration space63 and one may wish to employ moving-frame-dependent symme-

try coordinates instead. Then, our approach can be useful to obtain covariant bases of the

permutation-invariant group, however, the total symmetry group acting on the 3N − 3 (ori-

entational + shape) coordinates is only a semi-direct product of the permutation-inversion

group by SO(3) which makes the exploitation of symmetry for the EDMS in the laboratory-

frame more involved. The problem of body-frame definition and singularities64 is out of the

scope of the present paper.

So, in many cases of chemical interest, our approach makes available for the study of global

PES and other functions of nuclear geometric configurations the recent tools of ring and

invariant theory such as Cohen–Macaulay–type properties and the effective computational

tools of modern commutative algebra,51 which go far beyond the classical Molien series

approach in quantum chemistry.

Last but not least, our method based on integrity bases is more efficient than classical

methods of group theory based on the construction degree by degree of the symmetry–
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adapted terms to be included in the potential energy surface or the electric dipole moment

surface. All the required polynomials up to any order can be generated by simple multi-

plications between polynomials in the integrity bases of this paper in a direct manner as

illustrated in Appendix B.
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Appendix A: Generating functions and corresponding integrity bases for

irreducible representations of Td

The Td point group has five irreps: A1, A2, E, F1 and F2. The irrep E is doubly

degenerate, while the F1 and F2 irreps are triply degenerate. The procedure detailed in

section II is based on the knowledge of the generating functions MTd
(

Γfinal; Γinitial; t
)

, where

Γinitial and Γfinal are irreps of the group Td. The coefficient cn in the Taylor expansion

c0 + c1t + c2t
2 + · · · of the generating function gives the number of linearly independent

Γfinal–covariant polynomials of degree n that can be constructed from the objects in the

initial Γinitial representation.

Each generating functionMTd

(

Γfinal; Γinitial; t
)

is the ratio of a numeratorN
(

Γfinal; Γinitial; t
)

over a denominator D
(

Γinitial; t
)

:

MTd
(

Γfinal; Γinitial; t
)

=
N

(

Γfinal; Γinitial; t
)

D (Γinitial; t)
=

N
∑

k=1

tνk

D
∏

k=1

(1− tδk)

, (A1)

with νk ∈ N and δk ∈ N\ {0}. The polynomial associated to a
(

1− tδk
)

term in the

denominator is an invariant called a denominator polynomial of degree δk and is noted

I(δk)
(

Γinitial
)

. The polynomial associated to a tνk term in the numerator is a Γfinal–covariant

called a numerator polynomial of degree νk and is noted E(νk)
(

Γfinal; Γinitial
)

(when Γfinal is

degenerate, E(νk)
(

Γfinal; Γinitial
)

will be a vector gathering all the Γfinal, i–covariant numerator
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polynomials of degree νk for i ∈ {1, . . . ,
[

Γfinal
]

}). According to the expression, eq A1, D

denominator polynomials and N numerator polynomials are associated to the generating

function, MTd
(

Γfinal; Γinitial; t
)

.

We will closely follow the article of Patera, Sharp and Winternitz58 for the notation for

denominator and numerator polynomials, using α, β, γ symbols for a chosen basis of each

irrep. However, their table for octahedral tensors contains two errors for the degree eight

E(8) (Γ4; Γ4) and degree seven E(7) (Γ5; Γ4) numerator polynomials. With the definitions of

polynomials given in ref58, the following relation hold:

E(8) (Γ4; Γ4)i = I(2) (Γ4)E
(6) (Γ4; Γ4)i

−1

2
I(2) (Γ4)

2E(4) (Γ4; Γ4)i

+
1

2
I(4) (Γ4)E

(4) (Γ4; Γ4)i , (A2)

where the index i stands either for x, y or z. The relation eq A2 indicates that the polynomial

of degree eight E(8) (Γ4; Γ4) has a decomposition in terms of polynomials that are elements

of the integrity basis associated to MTd (Γ4; Γ4; t). As a consequence, E(8) (Γ4; Γ4) does not

enter the integrity basis.

The same is true for E(7) (Γ5; Γ4) and the integrity basis associated toMTd (Γ5; Γ4; t) due

to following relation:

E(7) (Γ5; Γ4)i = I(2) (Γ4)E
(5) (Γ5; Γ4)i

−1

2
I(2) (Γ4)

2E(3) (Γ5; Γ4)i

+
1

2
I(4) (Γ4)E

(3) (Γ5; Γ4)i . (A3)

A complete list of tables of both denominator and numerator polynomials for all the

initial Γinitial and final Γfinal irreps is given in the next sections.

1. Γinitial = A1 irreducible representation

The denominator is D (A1; t) = 1 − t. The corresponding denominator polynomial of

degree one is I(1) (A1) = α. The only non–zero numerator polynomial is N (A1;A1; t) = 1.
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2. Γinitial = A2 irreducible representation

The denominator is D (A2; t) = 1 − t2. The corresponding denominator polynomial of

degree two is I(2) (A2) = α2. Two numerator polynomials are non–zero: N (A1;A2; t) = 1

and N (A2;A2; t) = t. The A2–covariant numerator polynomial of degree one is

E(1) (A2;A2) = α.

3. Γinitial = E irreducible representation

The denominator is D (E; t) = (1− t2) (1− t3). The denominator polynomial of de-

gree two is I(2) (E) = α2+β2
√
2

and the denominator polynomial of degree three is I(3) (E) =

−α3+3αβ2

2
. Three numerator polynomials are non–zero: N (A1;E; t) = 1, N (A2;E; t) = t3,

and N (E;E; t) = t+ t2. The A2–covariant numerator polynomial of degree three is

E(3) (A2;E) =
−3α2β + β3

2
,

and the two E–covariant numerator polynomials of degree one and two are

E(1) (E;E) =





α

β



 ,

E(2) (E;E) =
1√
2





−α2 + β2

2αβ



 .

4. Γinitial = F1 irreducible representation

The denominator is D (F1; t) = (1− t2) (1− t4) (1− t6). The denominator polynomial of

degree two is I(2) (F1) =
α2+β2+γ2

√
3

, the denominator polynomial of degree four is I(4) (F1) =

α4+β4+γ4
√
3

and the denominator polynomial of degree six is I(6) (F1) =
α6+β6+γ6

√
3

. The numera-

tor polynomials areN (A1;F1; t) = 1+t9, N (A2;F1; t) = t3+t6, N (E;F1; t) = t2+t4+t5+t7,

N (F1;F1; t) = t + t3 + t4 + t5 + t6 + t8, and N (F2;F1; t) = t2 + t3 + t4 + t5 + t6 + t7. The

invariant numerator polynomial of degree nine is

E(9) (A1;F1) =
1√
6
αβγ

(

α2 − β2
) (

β2 − γ2
) (

γ2 − α2
)

,
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the two A2–covariant numerator polynomials of degree three and six are

E(3) (A2;F1) = αβγ,

E(6) (A2;F1) =
1√
6

(

α2 − β2
)

,
(

β2 − γ2
) (

γ2 − α2
)

,

the four E–covariant numerator polynomials of degree two, four, five, and seven are:

E(2) (E;F1) =
1√
6





α2 + β2 − 2γ2

√
3 (−α2 + β2)



 ,

E(4) (E;F1) =
1√
6





α4 + β4 − 2γ4

√
3 (−α4 + β4)



 ,

E(5) (E;F1) =
1√
6
αβγ





√
3 (α2 − β2)

α2 + β2 − 2γ2



 ,

E(7) (E;F1) =
1√
6
αβγ





√
3 (α4 − β4)

α4 + β4 − 2γ4



 ,

the six F1–covariant numerator polynomials of degree one, three, four, five, six, and eight

are

E(1) (F1;F1) =











α

β

γ











,

E(3) (F1;F1) =











α3

β3

γ3











,

E(4) (F1;F1) =
1√
2











(β2 − γ2) βγ

(γ2 − α2) γα

(α2 − β2)αβ











,

E(5) (F1;F1) =











α5

β5

γ5











,

E(6) (F1;F1) =
1√
2











(β4 − γ4) βγ

(γ4 − α4) γα

(α4 − β4)αβ











,
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E(8) (F1;F1) =
1√
2
αβγ











(β4 − γ4)α

(γ4 − α4) β

(α4 − β4) γ











,

the six F2–covariant numerator polynomials of degree two, three, four, five, six, and seven

are

E(2) (F2;F1) =











βγ

γα

αβ











E(3) (F2;F1) =
1√
2











(β2 − γ2)α

(γ2 − α2) β

(α2 − β2) γ











,

E(4) (F2;F1) = αβγ











α

β

γ











,

E(5) (F2;F1) =
1√
2











(β4 − γ4)α

(γ4 − α4) β

(α4 − β4) γ











,

E(6) (F2;F1) = αβγ











α3

β3

γ3











,

E(7) (F2;F1) =
1√
2
αβγ











(β2 − γ2) βγ

(γ2 − α2)αγ

(α2 − β2)αβ











.

5. Γinitial = F2 irreducible representation

The denominator is D (F2; t) = (1− t2) (1− t3) (1− t4). The denominator polynomial of

degree two is I(2) (F2) =
α2+β2+γ2

√
3

, the denominator polynomial of degree three is I(3) (F2) =

αβγ and the denominator polynomial of degree four is I(4) (F2) =
α4+β4+γ4

√
3

. The numerator

polynomials are N (A1;F2; t) = 1, N (A2;F2; t) = t6, N (E;F2; t) = t2 + t4, N (F1;F2; t) =
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t3+ t4+ t5, and N (F2;F2; t) = t+ t2+ t3. The A2–covariant numerator polynomial of degree

six is

E(6) (A2;F2) =
1√
6

(

α2 − β2
) (

β2 − γ2
) (

γ2 − α2
)

,

the two E–covariant numerator polynomials of degree two and four are

E(2) (E;F2) =
1√
6





α2 + β2 − 2γ2

√
3 (−α2 + β2)



 ,

E(4) (E;F2) =
1√
6





α4 + β4 − 2γ4

√
3 (−α4 + β4)



 ,

the four F1–covariant numerator polynomials of degree three, four and five are

E(3) (F1;F2) =
1√
2











(β2 − γ2)α

(γ2 − α2)β

(α2 − β2) γ











,

E(4) (F1;F2) =
1√
2











(β2 − γ2) βγ

(γ2 − α2) γα

(α2 − β2)αβ











,

E(5) (F1;F2) =
1√
2











(β2 − γ2)α3

(γ2 − α2)β3

(α2 − β2) γ3











,

the three F2–covariant numerator polynomials of degree one, two, and three are

E(1) (F2;F2) =











α

β

γ











,

E(2) (F2;F2) =











βγ

γα

αβ











,

E(3) (F2;F2) =











α3

β3

γ3











.
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Appendix B: Application of the integrity base for F2–covariant polynomials:

Representation of the electric dipole moment surface of a tetrahedral XY4

molecule

1. Introduction

Appendix B gives an application of the integrity basis for F2–covariant polynomials of

tetrahedral XY4 molecules. The integrity basis determined in this paper contains the de-

nominator polynomials fi, 1 ≤ i ≤ 9, listed in the main text and the auxiliary numerators

published in the file symmetries A1 A2 E F1 F2.txt available as supplemental material.54

This example can be transposed to any other final irrep Γfinal.

The electric dipole moment surface of a tetrahedral XY4 molecule can be built as a linear

combination of F2–covariant polynomials of total degree less than dmax in the coordinates

that span the representation, Γinitial, of eq 23. The integer dmax is the order of the expan-

sion. The generating function for the number of F2–covariant polynomials built from this

representation reads (see eqs 35 to 37):

2t+ 5t2 + 12t3 + 23t4 + 41t5 + 60t6 + 71t7 + 71t8 + 60t9 + 45t10 + 27t11 + 12t12 + 3t13

(1− t) (1− t2)3 (1− t3)3 (1− t4)2
,

whose Taylor expansion up to order four is given by:

2t+ 7t2 + 25t3 + 69t4 + · · · . (B1)

The coefficients in eq B1 mean that there are 2 (respectively 7, 25, and 69) linearly in-

dependent F2, α–covariant polynomials of degree one (respectively two, three, and four),

α ∈ {x, y, z}. We now detail the construction of these 103 F2, x polynomials. The F2, y and

F2, z polynomials may be built using the same procedure.

The expansion of the F2, x-EDMS up to order four is a linear combination of 103 F2, x–

polynomials:

µF2,x (S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z)

=

103
∑

i=1

cF2,x
i × pF2,x

i (S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z) . (B2)

The coefficients cF2,x
i of eq B2 are to be determined by fitting the expression to either

experimental or ab initio data. We know that the 103, F2, x–polynomials, pF2,x
i , can be
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written as a product of denominator polynomials powered to any positive integer value, and

a single numerator polynomial. So, the polynomials that enter the expansion of the F2, x

component of the EDMS can all be taken of the form:

ϕF2,x
k,l × fn1

1 fn2
2 · · · fn9

9 , (B3)

where the (ϕF2,x
k,l )

1≤l≤n
F2
k

denotes the numerator polynomials of degree k, (we change the

notation with respect to the main text to include explicitly the degree k). Their numbers,

nF2
k , are given in the column labelled F2 of Table VI. Sets of linearly independent pF2,x

i are

listed below by degrees. We recall that f1 is a polynomial of degree one, f2, f3, and f4 are

three polynomials of degree two, f5, f6, and f7 are three polynomials of degree three, and

f8, f9 are two polynomials of degree four.

2. Degree one

The 2 F2, x linearly independent polynomials of total degree one compatible with eq B3

are pF2,x
1 = ϕF2,x

1,1 and pF2,x
2 = ϕF2,x

1,2 .

3. Degree two

The 7 F2, x linearly independent polynomials of total degree two compatible with eq B3

are:

pF2,x
3 = ϕF2,x

2,1 , pF2,x
4 = ϕF2,x

2,2 , pF2,x
5 = ϕF2,x

2,3 , pF2,x
6 = ϕF2,x

2,4 , p
F2,x
7 = ϕF2,x

2,5 ,

pF2,x
8 = ϕF2,x

1,1 f1, p
F2,x
9 = ϕF2,x

1,2 f1.

4. Degree three

The 25 F2, x linearly independent polynomials of total degree three compatible with eq B3

are:

pF2,x
10 = ϕF2,x

3,1 , pF2,x
11 = ϕF2,x

3,2 , pF2,x
12 = ϕF2,x

3,3 , pF2,x
13 = ϕF2,x

3,4 , pF2,x
14 = ϕF2,x

3,5 ,

pF2,x
15 = ϕF2,x

3,6 , pF2,x
16 = ϕF2,x

3,7 , pF2,x
17 = ϕF2,x

3,8 , pF2,x
18 = ϕF2,x

3,9 , pF2,x
19 = ϕF2,x

3,10 ,

pF2,x
20 = ϕF2,x

3,11 , pF2,x
21 = ϕF2,x

3,12 , pF2,x
22 = ϕF2,x

2,1 f1, p
F2,x
23 = ϕF2,x

2,2 f1, p
F2,x
24 = ϕF2,x

2,3 f1,

pF2,x
25 = ϕF2,x

2,4 f1, p
F2,x
26 = ϕF2,x

2,5 f1, p
F2,x
27 = ϕF2,x

1,1 f 2
1 , p

F2,x
28 = ϕF2,x

1,2 f 2
1 , p

F2,x
29 = ϕF2,x

1,1 f2,

pF2,x
30 = ϕF2,x

1,2 f2, p
F2,x
31 = ϕF2,x

1,1 f3, p
F2,x
32 = ϕF2,x

1,2 f3, p
F2,x
33 = ϕF2,x

1,1 f4, p
F2,x
34 = ϕF2,x

1,2 f4.
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5. Degree four

The 69 F2, x linearly independent polynomials of total degree four compatible with eq B3

are:

pF2,x
35 = ϕF2,x

4,1 , pF2,x
36 = ϕF2,x

4,2 , pF2,x
37 = ϕF2,x

4,3 , pF2,x
38 = ϕF2,x

4,4 , pF2,x
39 = ϕF2,x

4,5 ,

pF2,x
40 = ϕF2,x

4,6 , pF2,x
41 = ϕF2,x

4,7 , pF2,x
42 = ϕF2,x

4,8 , pF2,x
43 = ϕF2,x

4,9 , pF2,x
44 = ϕF2,x

4,10 ,

pF2,x
45 = ϕF2,x

4,11 , pF2,x
46 = ϕF2,x

4,12 , pF2,x
47 = ϕF2,x

4,13 , pF2,x
48 = ϕF2,x

4,14 , pF2,x
49 = ϕF2,x

4,15 ,

pF2,x
50 = ϕF2,x

4,16 , pF2,x
51 = ϕF2,x

4,17 , pF2,x
52 = ϕF2,x

4,18 , pF2,x
53 = ϕF2,x

4,19 , pF2,x
54 = ϕF2,x

4,20 ,

pF2,x
55 = ϕF2,x

4,21 , pF2,x
56 = ϕF2,x

4,22 , pF2,x
57 = ϕF2,x

4,23 , pF2,x
58 = ϕF2,x

2,1 f2, pF2,x
59 = ϕF2,x

2,2 f2,

pF2,x
60 = ϕF2,x

2,3 f2, pF2,x
61 = ϕF2,x

2,4 f2, pF2,x
62 = ϕF2,x

2,5 f2, pF2,x
63 = ϕF2,x

2,1 f3, pF2,x
64 = ϕF2,x

2,2 f3,

pF2,x
65 = ϕF2,x

2,3 f3, pF2,x
66 = ϕF2,x

2,4 f3, pF2,x
67 = ϕF2,x

2,5 f3, pF2,x
68 = ϕF2,x

2,1 f5, pF2,x
69 = ϕF2,x

2,2 f5,

pF2,x
70 = ϕF2,x

2,3 f5, pF2,x
71 = ϕF2,x

2,4 f5, pF2,x
72 = ϕF2,x

2,5 f5, pF2,x
73 = ϕF2,x

1,1 f5, pF2,x
74 = ϕF2,x

1,2 f5,

pF2,x
75 = ϕF2,x

1,1 f6, pF2,x
76 = ϕF2,x

1,2 f6, pF2,x
77 = ϕF2,x

1,1 f7, pF2,x
78 = ϕF2,x

1,2 f7, pF2,x
79 = ϕF2,x

1,1 f1f2,

pF2,x
80 = ϕF2,x

1,2 f1f2, pF2,x
81 = ϕF2,x

1,1 f1f3, pF2,x
82 = ϕF2,x

1,2 f1f3, pF2,x
83 = ϕF2,x

1,1 f1f4, pF2,x
84 = ϕF2,x

1,2 f1f4,

pF2,x
85 = ϕF2,x

3,1 f1, pF2,x
86 = ϕF2,x

3,2 f1, pF2,x
87 = ϕF2,x

3,3 f1, pF2,x
88 = ϕF2,x

3,4 f1, pF2,x
89 = ϕF2,x

3,5 f1,

pF2,x
90 = ϕF2,x

3,6 f1, pF2,x
91 = ϕF2,x

3,7 f1, pF2,x
92 = ϕF2,x

3,8 f1, pF2,x
93 = ϕF2,x

3,9 f1, pF2,x
94 = ϕF2,x

3,10 f1,

pF2,x
95 = ϕF2,x

3,11 f1, pF2,x
96 = ϕF2,x

3,12 f1, pF2,x
97 = ϕF2,x

2,1 f2
1 , pF2,x

98 = ϕF2,x
2,2 f2

1 , pF2,x
99 = ϕF2,x

2,3 f2
1 ,

pF2,x
100 = ϕF2,x

2,4 f2
1 , pF2,x

101 = ϕF2,x
2,5 f2

1 , pF2,x
102 = ϕF2,x

1,1 f3
1 , pF2,x

103 = ϕF2,x
1,2 f3

1 .
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41D. L. Gray and A. G. Robiette, Mol. Phys. 37, 1901 (1979).

42T. J. Lee, J. M. L. Martin, and P. R. Taylor, J. Chem. Phys. 102, 254 (1995).

43J. Duncan and I. Mills, Spectrochim. Acta 20, 523 (1964).

44C. Oyanagi, K. Yagi, T. Taketsugu, and K. Hirao, J. Chem. Phys. 124, 064311 (2006).
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