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Abstract

Techniques of invariant theory such as Molien generating functions and integrity bases are

more efficient mathematical tools than those of basic group theory based on projectors for the

construction of symmetry–adapted polynomials in the symmetrized coordinates of a molecular

system. The present article extends our previous work to the construction of polynomial bases

that span a non–totally symmetric irreducible representation. Electric or magnetic observables

can carry such irreducible representations, a common example is given by the electric dipole

moment surface. The elementary generating functions and their corresponding integrity bases,

where both the initial and the final representations are irreducible, are the building blocks of
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the fast algorithm presented in this article. The generating functions for the full initial repre-

sentation of interest are built recursively from the elementary generating functions. Integrity

bases which can be used to generate in the most economical way symmetry–adapted polyno-

mial bases, are constructed alongside in the same fashion. The method is illustrated in detail

on XY4 type of molecules. Explicit integrity bases for all five possible final irreducible rep-

resentations of the tetrahedral group have been calculated and are given in the Supporting

Information to this paper.

1 Introduction

The simulation of the rotation–vibration molecular spectrum requires the knowledge of the po-

tential energy surface (PES) and of the electric dipole moment surface (EDMS) of the molecule

under study. These two functions of internal coordinates do not have a known analytic expression.

This issue is often encountered in quantum chemistry or computational spectroscopy and a typical

solution is to expand these functions on a set of appropriate analytical functions. The expansion

coefficients are then determined empirically or by fitting over experimental or theoretical data.

Symmetry helps to simplify the problem1–5 and favors the introduction of symmetry–adapted co-

ordinates when the function to be expanded transforms according to an irreducible representation

(irrep) of the symmetry group G of the molecule. In particular, the PES transforms as the totally

symmetric (also called trivial) irrep of the group G while the components of the EDMS may carry

a non–trivial representation of the group.

The set of symmetrized internal coordinates spans a representation called the initial, usually

reducible, representation Γinitial. Symmetry–adapted polynomials in these variables are then con-

sidered. The polynomials that transform according to the final irrep Γfinal are called Γfinal–covariant

polynomials.6 An invariant polynomial is the distinct case of this classification when Γfinal is the

totally symmetric representation of the group, noted A, A′, A1, or Ag in character tables.

Projecting on irreps using projection operators is a standard method of group theory to generate

symmetry–adapted polynomials. Marquardt7 and Schwenke8 relied on this technique to compute
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symmetry–adapted basis sets and expand the PES of methane. The projection method for the con-

struction of invariants is applicable to irreps of dimension higher than one through the introduction

of projection operators together with transfer operators, see Hamermesh,9 Bunker,4 Lomont,10

and Taylor.11 The group–theoretical methods based on projector operators are inherently ineffi-

cient because they ignore the number of linearly independent symmetry–adapted polynomials of

a given degree k. So, in order to obtain a complete set, they have to consider all possible starting

polynomial “seeds”, usually a basis set of monomials. The projection of the latters often lead to

the null polynomial or to a useless linear combination of already known symmetry–adapted poly-

nomials. Furthermore, the dimension of the space of symmetry–adapted polynomials becomes

rapidly formidable even at modest k and the list of polynomials to tabulate becomes unnecessarily

gigantic.

Another technique of construction of symmetry–adapted polynomials is based on the Clebsch–

Gordan coefficients of the group G. A great deal of work has been dedicated in particular to

the cubic group.12–15 The coupling with Clebsch–Gordan coefficients of two polynomials give

a polynomial of higher degree and the set of symmetry–adapted polynomials is built degree by

degree. All possible couplings between vector space basis sets of polynomials of lower degrees

must be considered to insure that one gets a complete list. Compared to the previous approach

based on projection operators, the computational effort is reduced but the tabulated basis sets have

the same unnecessarily large sizes.

The drawbacks of the two approaches described above are circumvented by polynomial ring

invariant theory, which in spite of its name encompasses the covariant case and fully exploits the

algebraic structure of Γfinal–covariant polynomials. In particular, the coefficient ck of the Taylor

expansion c0 + c1t + c2t2 + c3t3 + · · · of the Molien generating function16,17 gives the number

of linearly independent polynomials of degree k carrying a given symmetry. The introduction

of invariant theory in quantum chemistry can be traced back to the works of Murrell et al..18,19

Followers include Collins and Parsons,20 Ischtwan and Peyerimhoff,21 and, more recently, Huang,

Braams and Bowman.22,23 However, these studies were only concerned with the totally symmetric
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representation in relation to the expansion of a PES. Braams and Bowman did consider expansions

of an EDMS but they reduced the problem to the totally symmetric case by restricting themselves

to a subgroup of the molecular point group, which is not optimal.

An integrity basis for Γfinal–covariant polynomials involves two finite sets of polynomials.16,24

The first set contains D denominator or primary polynomials fi, 1≤ i≤D, which are algebraically

independent invariant polynomials.16,25 The second set contains N linearly independent numera-

tor or secondary polynomials g j, 1 ≤ j ≤ N, which transform as the Γfinal representation. Any

Γfinal–covariant polynomial p admits a unique decomposition in the denominator and numerator

polynomials: p = g1× h1 ( f1, . . . , fD)+ · · ·+ gN × hN ( f1, . . . , fD). The h j are polynomials in D

variables: any nonnegative integer can be a power of the denominator polynomials while numer-

ator polynomials only appear linearly. The important result is that the integrity basis is a much

more compact way to present the set of Γfinal–covariant polynomials than a list of vector space

bases for each degree k. All the Γfinal–covariant polynomials, up to any order, can be generated

from the polynomials belonging to the small integrity basis by a direct algorithm. This circum-

vents the problems inherent to projector or Clebsch–Gordan based methods, where gigantic tables

necessarily limited to a given (usually low) degree have to be stored. Applications of integrity

bases are numerous. They have been used to define error–correcting codes in applied mathe-

matics,26 to analyze problems involving crystal symmetry,27,28 constitutive equations in materials

with symmetry,29–31 physical systems of high–energy physics32,33 and molecular physics,16,18,34

the description of qubits,35,36 . . .

Our previous paper17 considered the complete permutation–rotation–inversion group of a XY4

molecule. An integrity basis for the invariant polynomials was computed. The calculation was

decomposed into two steps and this decomposition was an important feature of the method. First,

we were dealing with the rotation–inversion group O(3) and in a second step with the finite permu-

tation group. The structure of covariants for the rotation–inversion group is interesting on its own,

since it raises specific problems related to the fact that the modules of covariants are not necessarily

free for reductive continuous groups such as O(2) or O(3).24,37,38 This is a remarkable difference
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with respect to the algebraic structure of invariants. The non–free modules of SO(2) have been

discussed in24 and a forthcoming article will be devoted to the study of covariant modules of the

SO(3) group.39

The focus of the present article is on the Γfinal–covariants built from symmetrized coordi-

nates in the tetrahedral Td point group. As a matter of fact, various types of such coordinates

have appeared in the literature for this system that are amenable to our treatment. We can men-

tion curvilinear internal displacements (bond lengths and interbond angles),40,41 Cartesian normal

coordinates,40,42–46 symmetrized coordinates based on Morse coordinates on Radau vectors for

stretching modes and cosines of valence bond angles for bending modes,8 haversines of bond an-

gles,47 cosines of valence bond angles times functions of bond lengths,48 symmetrized coordinates

based on bond lengths, interbond angles and torsion angles,15 or interbond angles and bond lengths

times a gaussian exponential factor.49

The purpose of the present article is to show on the explicit exemple of a XY4 molecule that the

techniques of invariant theory that were used to obtain a polynomial basis set for totally symmetric

quantities17 are straightforwardly extended to quantities transforming according to an arbitrary

irrep Γfinal of the symmetry group Td . This is useful to obtain very efficiently a basis set of F2–

symmetry–adapted polynomials up to any arbitrary degree for example. Such a basis can be used to

fit the EDMS of methane. The F1–covariants might be relevant to fit the magnetic dipole moment

surface (MDMS) while the E–covariants might be required for the components of the quadrupole

moment surfaces. Various already existing algorithms could theoretically be used for the same

purpose such as those associated to Gröbner basis computations.50 However, on the one hand,

existing methods of computational invariant theory25,51,52 are usually implemented in available

computer codes for invariants only, and on the other hand, they do not seem to be able to treat high–

dimensional problems efficiently for intrinsic complexity reasons, even in the case of invariants.

The article is organized as follows. In the next section, we recall fundamental results of in-

variant theory and illustrate its mathematical concepts with a toy problem of Ci symmetry. Then,

we show how the integrity basis of Γfinal–covariant polynomials in the Td point group can be con-
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structed recursively for XY4 molecules, Γfinal ∈ {A1,A2,E,F1,F2}. The resulting minimal gener-

ating families of symmetry–adapted functions are listed in the Supporting Information. In conclu-

sion, we emphasize that our approach is general, as only minor points are specific to the example

chosen as an illustration.

2 Symmetry–adaptation to a finite group G

The theoretical framework to describe invariants in polynomial algebras under finite group actions

is well developed, both in mathematics and in chemical physics. Classical references on the subject

in mathematics are the books by Benson53 and Stanley.54 Schmelzer and Murrell19 have had a

pioneering influence as far as the construction of a PES is concerned. The review of Michel and

Zhilinskií55 gives an overview of the various possible applications to chemistry and physics.

We rely in the present section on a fundamental result of commutative algebra and representa-

tion theory stating that any invariant or Γfinal–covariant polynomials has a general decomposition.

We refer to Stanley54 for further details and proofs regarding this result and other properties of

finite group actions on polynomial algebras.

2.1 Hironaka decomposition

Let P denote the algebra of polynomials in k coordinates, Q1, . . . ,Qk, for the field of complex

numbers. This algebra is a direct sum of vector spaces Pn of polynomials of degree n: P =⊕
n≥0

Pn. We assume that the finite group G acts linearly on the vector space <Q1, . . . ,Qk > spanned

by Q1, . . . ,Qk. This action extends naturally to P .

Let PΓfinal ⊂P be the vector subspace of polynomials transforming as the irrep Γfinal and let[
Γfinal] be the dimension of the irrep Γfinal. This integer equals 1, 2 or 3 for most of the point

groups except for the icosahedral point groups I and Ih where irreps of dimensions 4 and 5 occur.

A representation of dimension greater than one is qualified as degenerate. It is convenient to

assume for the forthcoming developments that the representation Γfinal has a distinguished basis
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ψΓfinal,1, ...,ψΓfinal,[Γfinal]. A polynomial ϕΓfinal ∈PΓfinal
is then further decomposed as a sum over[

Γfinal] polynomials,

ϕ
Γfinal

=
[Γfinal]

∑
i=1

ϕ
Γfinal,i, (1)

each term ϕΓfinal,i behaving as the basis function ψΓfinal,i under the action of the group G, see e.g.

chapter 3 of Hamermesh.55 The symmetry type of the polynomial ϕΓfinal,i is written Γfinal, i. We

deduce, PΓfinal
=

[Γfinal]⊕
i=1

PΓfinal,i from the decomposition, eq (1), for the vector space of Γfinal–

covariant polynomials.

An important mathematical result is that there exists exactly k algebraically independent in-

variant polynomials { f1, . . . , fk} and a finite number pΓfinal of linearly independent polynomials of

symmetry Γfinal, i:
{

gΓfinal,i
1 , . . . ,gΓfinal,i

p
Γfinal

}
, such that

PΓfinal,i =

p
Γfinal⊕
j=1

C[ f1, . . . , fk]g
Γfinal,i
j , i ∈

{
1,2, . . . ,

[
Γ

final
]}

, (2)

where C[ f1, ..., fk] is the algebra spanned by the polynomials { f1, . . . , fk}. The number pΓfinal de-

pends on the irrep Γfinal but is independent on the index i. We refer to the whole set { f1, ..., fk;gΓfinal,i
1 , ...,gΓfinal,i

p
Γfinal }

as an integrity basis for the module PΓfinal,i. The fi are called the numerator or primary polynomi-

als, while the gΓfinal

j are called the denominator or secondary polynomials. The same set of primary

invariants is used for all the irreps. Such a decomposition as in eq 2 is sometimes referred to as an

Hironaka decomposition and defines a so–called Cohen–Macaulay module. In the particular case

where Γfinal is the trivial representation (so that Γfinal–covariants are simply invariants), this result

shows that PΓfinal
, the algebra of invariant polynomials, is a Cohen–Macaulay algebra.

The elements of the integrity basis can always be choosen homogeneous, and from now on,

we assume that this homogeneity property always holds. Even with this assumption, the number

of basis polynomials is not determined by the above construction. However, for a given choice

of primary invariants, the number of Γfinal–covariant basis polynomials and their degrees are fixed

and determined by the so–called Molien series.56 The problem of constructing polynomials of
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symmetry type Γfinal, i from symmetrized coordinates spanning the representation Γinitial leads to

consider the Molien series, MG (Γfinal;Γinitial; t
)
, defined by:

MG
(

Γ
final;Γ

initial; t
)
= ∑

n≥0
dimPΓfinal,i

n tn, (3)

where PΓfinal,i
n = PΓfinal,i ∩Pn is the vector space of polynomials of symmetry type Γfinal, i and

of degree n. In other words, the coefficient dimPΓfinal,i
n of the Molien series gives the number of

linearly independent polynomials of symmetry type Γfinal, i and of degree n.

Suppose that { f1, ..., fk;gΓfinal,i
1 , ...,gΓfinal,i

p
Γfinal } is an integrity basis for PΓfinal,i. Then it can be

shown that the corresponding Molien series can be cast in the following form:

MG
(

Γ
final;Γ

initial; t
)
=

tdeg(gΓfinal,i
1 )+ · · ·+ tdeg(gΓfinal,i

p
Γfinal )

(1− tdeg( f1)) · · ·(1− tdeg( fk))
, (4)

where deg(p) is the degree of the polynomial p (the degrees are not necessarily all distinct in

this expression). The expression of the Molien function MG (Γfinal;Γinitial; t
)

is independent of

the choice of the index i. The right–hand side of eq 4 justifies the alternative denomination of

the fi primary polynomials as denominator polynomials and of the gΓfinal,i
j secondary polynomials

as numerator polynomials. Once the degrees of the denominator invariants are given and the

Molien function calculated, the number of numerator polynomials of each degree is given by the

corresponding coefficient in the polynomial MG (Γfinal;Γinitial; t
)
× (1− tdeg( f1)) · · ·(1− tdeg( fk)).

The problem of generating the module PΓfinal,i comes down to the computation of a complete set

of such numerator polynomials given a set of denominator invariants.

2.2 Recursive construction

2.2.1 Generating function

We considered in the previous section the action of a finite group G on a polynomial algebra P

over a vector space < Q1, . . . ,Qk >. In our applications of invariant theory, the representation
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Γinitial spanned by the symmetrized coordinates typically splits into a direct sum of µ irreps Γinitial
i ,

1≤ i≤ µ ,

Γ
initial =

µ⊕
i=1

Γ
initial
i .

The definition of the Molien series in eq 3 of Section 2.1 involved only one variable t. In order

to follow the contributions of the different irreps Γinitial
i , we introduce now one ti variable for each

Γinitial
i and write MG (Γ;Γinitial

1 ⊕Γinitial
2 ⊕·· ·⊕Γinitial

k ; t1, t2, . . . , tk
)

for the Molien series associated

to Γ–covariants polynomials in the variables contained in the reducible irrep Γinitial
1 ⊕Γinitial

2 ⊕·· ·⊕

Γinitial
k under group G.

Let us note cΓ
Γα ,Γβ

for the multiplicity of the irrep Γ in the direct (or Kronecker) product Γα×Γβ

of the irreps Γα and Γβ . In case of the Td point group, cΓ
Γα ,Γβ

= 0 or 1, see Wilson et al..1

Decomposing the initial reducible representation Γinitial as

Γ
initial =

(
Γ

initial
1 ⊕·· ·⊕Γ

initial
µ−1

)
⊕Γ

initial
µ ,

(note the parentheses), the generating function MG (Γ;Γinitial; t1, t2, . . . , tµ
)

can be built by coupling

the generating functions

MG
(

Γα ;Γ
initial
1 ⊕Γ

initial
2 ⊕·· ·⊕Γ

initial
µ−1 ; t1, t2, . . . , tµ−1

)
,

with the generating functions

MG
(

Γβ ;Γ
initial
µ ; tµ

)
,

where Γα and Γβ are irreps, (see Equation (46) of Michel and Zhilinskií16 and Appendix A,)

according to the following equation:

MG
(

Γ;Γ
initial
1 ⊕Γ

initial
2 ⊕·· ·⊕Γ

initial
µ−1 ⊕Γ

initial
µ ; t1, t2, . . . , tµ−1, tµ

)
=

∑
Γα ,Γβ

cΓ
Γα ,Γβ

MG
(

Γα ;Γinitial
1 ⊕Γinitial

2 ⊕·· ·⊕Γinitial
µ−1 ; t1, t2, . . . , tµ−1

)
×MG

(
Γβ ;Γinitial

µ ; tµ
)
. (5)
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In eq 5, the double sum on Γα and Γβ runs over all the irreps of the group G. The Molien function

MG
(

Γα ;Γinitial
1 ⊕Γinitial

2 ⊕·· ·⊕Γinitial
µ−1 ; t1, t2, . . . , tµ−1

)
in the right–hand side of eq 5 can itself be

computed through an equation similar to eq 5 if the representation Γinitial
1 ⊕Γinitial

2 ⊕·· ·⊕Γinitial
µ−1 is

seen as a direct sum of Γinitial
1 ⊕Γinitial

2 ⊕·· ·⊕Γinitial
µ−2 and Γinitial

µ−1 . These iterations are continued until

no more decomposition of the representations is possible. The left–hand side of eq 5 is then ulti-

mately written as a sum of products of elementary generating functions MG (Γα ;Γinitial
i ; ti

)
where

both Γα and Γinitial
i are irreps. Such elementary generating functions have already appeared in the

litterature for a variety of point groups,57 (see also Appendix A). These elementary generating

functions are the building blocks required to compute recursively according to eq 5, the Molien

generating function of the problem under study.

2.2.2 Integrity basis

To each generating function of the form, eq 4, correspond integrity bases whose number and degree

of the denominator and numerator polynomials are suggested by such an expression. Let

⋃
x∈{1,2,···,[Γα ]}

{ f1, ..., fk;gΓα ,x
1 , ...,gΓα ,x

pΓα
},

be an integrity basis corresponding to the generating function

MG
(

Γα ;Γ
initial
1 ⊕·· ·⊕Γ

initial
i−1 ; t1, . . . , ti−1

)
, (6)

and let ⋃
y∈{1,2,···,[Γβ ]}

{h1, ...,hl; j
Γβ ,y
1 , ..., j

Γβ ,y
pΓ

β
},

be an integrity basis corresponding to the generating function

MG
(

Γβ ;Γ
initial
i ; ti

)
. (7)
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The fi and gΓα ,x
j are polynomials in the variables of the representation Γinitial

1 ⊕·· ·⊕Γinitial
i−1 , while

the hi and j
Γβ ,y
j are polynomials in the variables of the representation Γinitial

i .

The set { f1, ..., fk,h1, ...,hl} is the set of denominator or primary invariants for the generating

function

MG
(

Γ;Γ
initial
1 ⊕·· ·⊕Γ

initial
i−1 ⊕Γ

initial
i ; t1, . . . , ti−1, ti

)
. (8)

The numerator or secondary polynomials of the generating function of eq 8 are generated by
coupling the numerator polynomials gΓα ,1

a , . . . , gΓα ,[Γα ]
a with the numerator polynomials j

Γβ ,1
b ,

. . . , j
Γβ ,[Γβ ]

b via the Clebsch–Gordan coefficients of the group G for all
(
Γα ,Γβ

)
pairs such that

Γ ∈ Γα × Γβ , see Hamermesh.58 We write these functions mΓ,κ
Γα ,Γβ ,a,b,i

, where 1 ≤ i ≤ cΓ
Γα ,Γβ

,
1 ≤ a ≤ pΓα

, 1 ≤ b ≤ pΓβ
, and κ ∈ {1,2, · · · , [Γ]}. The resulting integrity basis corresponding

to eq 8 can be expressed as

{ f1 , ..., fk ,h1, ...,hl ;
⋃

Γα ,Γ
β

{mΓ,κ
Γα ,Γ

β
,a,b,i ,1≤ a≤ pΓα

,1≤ b≤ pΓ
β
,1≤ i≤ cΓ

Γα ,Γ
β
,κ ∈ {1,2, · · · , [Γ]}},

(if Γ /∈ Γα ×Γβ , cΓ
Γα ,Γβ

= 0, and the set of mΓ,κ
Γα ,Γβ ,a,b,i

’s is empty).

So, the integrity basis is built in a straightforward manner from integrity bases associated to

generating functions eqs (6) and (7), where both initial representations are of smaller dimensions.

Iterating this process constitutes an effective algorithm which only needs the elementary generating

functions of group G for its initialization. The latter functions have already been tabulated57 for

most groups of interest. The algorithm terminates when all Γinitial
i ’s have been incorporated.

2.3 Illustration on a toy problem

The present section gives a straightforward application of the recursive construction in the simplest

non trivial case of the two-element group, which can be taken as the Ci group used in chemistry

for molecular structures with a center of inversion.

2.3.1 Group Ci

The group Ci has two elements: the identity operation E leaves unchanged the coordinates of the

particles, x 7→ x, while the inversion operation I changes the sign of the coordinates, x 7→ −x. The
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character table of the Ci group is given in Table 1 and shows that two one–dimensional irreps A1

and A2 occur in this group.

Table 1: Character table of the Ci point group.

E I
A1 1 1
A2 1 −1

2.3.2 Elementary generating functions

Applications of group theory often search to construct objects that transforms as a final irrep Γfinal

of a group G from elementary objects that spans an initial, possibly reducible, representation Γinitial.

If these objects are polynomials, we can sort them by their degree and count the number ck of

linearly independent polynomials of degree k that can be built up. The information on the ck’s is

encoded into the so–called Molien series or generating function:

MG
(

Γ
final;Γ

initial; t
)
= c0 + c1t + c2t2 + c3t3 + · · · . (9)

Elementary generating functions are particular generating functions when both the initial rep-

resentation Γinitial and the final representation Γfinal are irreps of the group. The group Ci has

two irreps and thus four elementary generating functions have to be considered: MCi (A1;A1; t),

MCi (A2;A1; t), MCi (A1;A2; t), and MCi (A2;A2; t).

2.3.3 MCi
(
Γfinal;A1; t

)
The absolute value |x| is a good example of an A1–symmetric (invariant) object as it does not

change sign under neither the identity E nor the inversion I operations. From |x| can be constructed

one invariant of degree 0 (|x|0 = 1), one invariant of degree 1 (|x|1), one invariant of degree two

(|x|2), and more generally, one invariant of degree k (|x|k). However, no object of symmetry A2 can

be constructed from |x|. As a consequence, we can write as in eq 9 the expressions of the Molien
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series MCi
(
Γfinal;A1; t

)
:

MCi (A1;A1; t) = 1+ t + t2 + t3 + t4 + · · · = 1
1−t ,

MCi (A2;A1; t) = 0.
(10)

2.3.4 MCi
(
Γfinal;A2; t

)
The monomial x is an example of an A2–symmetric object because it changes sign under the inver-

sion I operation. The even powers of x will be of A1–symmetry:

x2n 7→ (−x)2n = x2n, (11)

while the odd powers of x will be of A2–symmetry:

x2n+1 7→ (−x)2n+1 =−x2n+1. (12)

We see that from an A2–symmetric object can be constructed one object of symmetry A1 of any

even degree and one object of symmetry A2 of any odd degree. These results are encoded in the

two following Molien series:

MCi (A1;A2; t) = 1+ t2 + t4 + t6 + · · · = 1
1−t2 ,

MCi (A2;A2; t) = t + t3 + t5 + t7 + · · · = t
1−t2 .

(13)

2.3.5 Integrity bases for the elementary generating functions

An integrity basis consists in two sets of polynomials, the denominator and the numerator polyno-

mials. A generating function written as in the right–hand side of eq 4 suggests both the number and

the degree of the denominator and numerator polynomials, and is a very valuable source of infor-

mation when an integrity basis is built up. When forming polynomials that transform as the Γfinal

irrep from polynomials that belongs to the integrity basis corresponding to MG (Γfinal;Γinitial; t
)
,

eq 2 indicates that the denominator polynomials can be multiplied between them with no restric-
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tion at all while the numerator polynomials only appear linearly. The explicit expressions of the

integrity bases for the four elementary generating functions of the group Ci are given in Table 2.

For example, the last line of Table 2 suggests that we can recover all the polynomials of symmetry

A2 built up from x by multiplying the numerator polynomial x with any power of the denominator

polynomial x2. The final result is a polynomial of the form x2n+1 which has the desired symmetry,

see eq 12.

Table 2: Integrity bases for the four elementary generating functions of the group Ci.

Generating function Denominator polynomials Numerator polynomials
MCi (A1;A1; t) = 1

1−t {|x|} {1}
MCi (A2;A1; t) = 0
MCi (A1;A2; t) = 1

1−t2

{
x2} {1}

MCi (A2;A2; t) = t
1−t2

{
x2} {x}

2.3.6 Toy problem

Let us consider three particles moving on an infinite straight line under the symmetry group Ci.

The position of the three particles are given by xi, 1≤ i≤ 3. The action of the inversion I changes

the coordinates of the three particles: xi 7→ −xi. The three xi variables can be seen as polynomials

of degree one. They are manifestly of symmetry A2, hence the initial reducible representation

is Γinitial = A2⊕A2⊕A2. Polynomials of higher degree can be built up from the x1, x2 and x3

polynomials and the example is simple enough that the symmetry of the higher degree polynomials

is immediately deduced.

The toy problem is to construct all the polynomials in x1, x2, and x3 of symmetry A1 or A2 up

to a given degree. This is the kind of problem that appear when the potential energy surface or the

electric dipole moment surface are expanded in symmetry–adapted polynomials. Table 3 gives a

list of the linearly independent polynomials of low degree in x1, x2, and x3 that can be found by

manual inspection.

From the last column of Table 3 and remembering that the coefficient ck in eq 9 is the number of

14



Table 3: Linearly independent polynomials of degree k, 0 ≤ k ≤ 5, in variables x1, x2, and x3

transforming according to the irrep Γfinal. The number of such polynomials is noted dimPΓfinal

k .

Γfinal k Polynomials dimPΓfinal

k
A1 0 1 1
A1 2 x2

1, x1x2, x1x3, x2
2, x2x3, x2

3 6
A1 4 x4

1, x3
1x2, x3

1x3, x2
1x2

2, x2
1x2x3, x2

1x2
3, x1x3

2, x1x2
2x3, x1x2x2

3, x1x3
3,

x4
2, x3

2x3, x2
2x2

3, x2x3
3, x4

3

15

A2 1 x1, x2, x3 3
A2 3 x3

1, x2
1x2, x2

1x3, x1x2
2, x1x2x3, x1x2

3, x3
2, x2

2x3, x2x2
3, x3

3 10
A2 5 x5

1, x4
1x2, x4

1x3, x3
1x2

2, x3
1x2x3, x3

1x2
3, x2

1x3
2, x2

1x2
2x3, x2

1x2x2
3, x2

1x3
3,

x1x4
2, x1x3

2x3, x1x2
2x2

3, x1x2x3
3, x1x4

3, x5
2, x4

2x3, x3
2x2

3, x2
2x3

3, x2x4
3,

x5
3

21

linearly independent polynomials of degree k for a given final symmetry, the generating functions

are found to be:

MCi
(

A1;Γ
initial; t

)
= 1+6t2 +15t4 + · · · , (14)

for the Γfinal = A1 representation, and

MCi
(

A1;Γ
initial; t

)
= 3t +10t3 +21t5 + · · · , (15)

or the Γfinal = A2 representation.

These generating functions can be directly computed using the Molien’s formula and Burn-

side’s generalization to final irrep different from the totally symmetry one.56,59 For a finite point

group G, the Molien function reads:

MG
(

Γ
final;Γ

initial; t
)
=

1
|G| ∑g∈G

χ̄
(
Γfinal;g

)
det(1n×n− tM (Γinitial;g))

, (16)

where |G| is the order of G, χ̄
(
Γfinal;g

)
is the complex conjugate of the character for element g∈G

and irrep Γfinal, 1n×n is the n× n identity matrix acting on Γinitial of dimension n, M
(
Γinitial;g

)
is

the n×n matrix representation of g on Γinitial, and det is the determinant of a matrix.

In our example, the representation matrices of the Γinitial = A2⊕A2⊕A2 are the two 3×3 diag-
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onal matrices: M
(
Γinitial;E

)
= diag(1,1,1) and M

(
Γinitial; I

)
= diag(−1,−1,−1). Using Table 1,

the representation matrices and Molien’s formula 16, we find the two generating functions:

MCi
(

A1;Γ
initial; t

)
=

1+3t2

(1− t2)
3 , (17)

MCi
(

A2;Γ
initial; t

)
=

3t + t3

(1− t2)
3 . (18)

It can be checked that the Taylor series of eqs 17 and 18 around t = 0 correspond to the expansion

whose beginning is given in eqs 14 and 15. The generating function eq 17 suggests that the integrity

basis for the invariants built from x1, x2, and x3 consists of three denominator polynomials of

degree two and four numerator polynomials, of which one is of degree zero and three are of degree

two. Eq 18 suggests that the integrity basis for the polynomials of symmetry A2 consists of three

denominator polynomials of degree two and four numerator polynomials, of which three are of

degree one and one is of degree three.

2.3.7 Recursive construction of the generating functions

Eqs 17 and 18 were obtained from Molien’s formula 16. However, they can be derived more

efficiently from the recursive construction of section 2.2.

Let us use eq 5 to compute recursively the generating functions for our toy problem from the

elementary generating functions of Ci. Noting the direct products A1×A1 = A2×A2 = A1 and

A1×A2 = A2×A1 = A2, only four cΓ
Γα ,Γβ

coefficients do not vanish:

cA1
A1,A1

= cA1
A2,A2

= cA2
A1,A2

= cA2
A2,A1

= 1. (19)

The generating function for the invariant polynomials in x1, x2, and x3 is, according to eqs 5 and

19:

MCi (A1;A2⊕A2⊕A2; t1, t2, t3)
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= MCi (A1;A2⊕A2; t1, t2)MCi (A1;A2; t3)

+MCi (A2;A2⊕A2; t1, t2)MCi (A2;A2; t3) .

Each of the MCi (Γα ;A2⊕A2; t1, t2) term can again be decomposed using eq 5, and we finally find

a relation where only elementary generating functions appear in the right–hand side:

MCi (A1;A2⊕A2⊕A2; t1, t2, t3)

= MCi (A1;A2; t1)MCi (A1;A2; t2)MCi (A1;A2; t3)

+MCi (A2;A2; t1)MCi (A2;A2; t2)MCi (A1;A2; t3)

+MCi (A1;A2; t1)MCi (A2;A2; t2)MCi (A2;A2; t3)

+MCi (A2;A2; t1)MCi (A1;A2; t2)MCi (A2;A2; t3) . (20)

The expressions of the elementary generating functions are given in eqs 10 and 13, and the

expression for the invariants reads as:

MCi (A1;A2⊕A2⊕A2; t1, t2, t3) =
1+ t1t2 + t1t3 + t2t3(

1− t2
1
)(

1− t2
2
)(

1− t2
3
) . (21)

If the three A2 in the initial reducible representation are not distinguished, we can write t1 = t2 =

t3 = t in eq 21 to recover eq 17. The same method for Γfinal = A2 gives

MCi (A2;A2⊕A2⊕A2; t1, t2, t3) =
t1 + t2 + t3 + t1t2t3(

1− t2
1
)(

1− t2
2
)(

1− t2
3
) , (22)

and permits one to recover eq 18.

2.3.8 Recursive construction of the integrity bases

Computational algorithms already exist to compute integrity bases,25,51,52 but they are limited to

the case where the final representation is totally symmetric. Furthermore, they are not very efficient

for large dimensions. In contrast, the algorithm of section 2.2.2 that parallels the recursive con-
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struction used for the generating functions can be applied to compute efficiently the corresponding

integrity basis. Eq 21 contains more information than eq 17, because it allows one to track the ori-

gin and the multiplicity of the different terms. For example, the term
(
1− t2

1
)

in the denominator

of eq 21 comes from 1
1−t2

1
or t1

1−t2
1
. Table 2 associates the t1 term in the denominator of these two

fractions with the polynomial x1. As a consequence, x2
1 belongs to the denominator polynomials of

eq 21. The term t1t2 on the numerator of eq 21 suggests a product of one numerator of degree one

in x1 and one numerator of degree one in x2 and leads to the conclusion that the term x1x2 belongs

to the numerator polynomials of eq 21. The integrity bases for our toy problem determined with

this method are given in Table 4. Remembering that denominator polynomials can be multipled

between themselves without any restriction but that numerator polynomials only appear linearly,

the lists of invariant and A2–covariant polynomials of degree k in Table 3 are straightforwardly

computed from the integrity bases in Table 4. The data in Table 4 is enough to compute quickly

a basis for the vector space of invariant or A2–covariant polynomials of any degree. For example,

the degree 5, A2–covariant x2
2x3

3 = (x2
2x2

3) · x3, that is to say, it is the product of a single numerator

A2–covariant, x3, with the product of denominator invariants x2
2x2

3.

Table 4: Integrity bases for the two generating functions MCi
(
Γfinal;A2⊕A2⊕A2; t

)
involved in

the toy problem.

Γfinal Generating function Denominator polynomials Numerator polynomials
A1

1+t1t2+t1t3+t2t3
(1−t2

1)(1−t2
2)(1−t2

3)

{
x2

1,x
2
2,x

2
3
}

{1,x1x2,x1x3,x2x3}
A2

t1+t2+t3+t1t2t3
(1−t2

1)(1−t2
2)(1−t2

3)

{
x2

1,x
2
2,x

2
3
}

{x1,x2,x3,x1x2x3}

3 Application to the construction of integrity bases for XY4

molecules

Our main goal is to generate in the most economical way integrity bases for representations of

symmetry groups on vector spaces spanned by molecular internal degrees of freedom. We focus,
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from now on, on the example of XY4 molecules, but the following method holds in general. We

consider coordinates for the internal degrees of freedom adapted to the Td symmetry point group

of the molecule, which is isomorphous to the permutation group S4. For example, they can be

the usual Td–adapted coordinates used in many studies on XY4 molecules,40 denoted by S1, S2a,

S2b, S3x, S3y, S3z, S4x, S4y, and S4z. S1 transforms as the irrep A1, the pair S2a, S2b transforms as

E, while both triplets S3x, S3y, S3z and S4x, S4y, and S4z transform as F2. So, the representation of

Td on the vector space Γinitial := R< S1,S2a, ...,S4z > generated by S1,S2a, ...,S4z over the field of

real numbers (to which we restrict ourselves from now on, in view of the applications) splits into a

direct sum of irreps:

Γ
initial = R< S1 >⊕R< S2a,S2b >⊕R< S3x,S3y,S3z >⊕R< S4x,S4y,S4z >,

= Γ
initial
1 ⊕Γ

initial
2 ⊕Γ

initial
3 ⊕Γ

initial
4 . (23)

An extra coordinate S5 has to be added to map bi–univoquely the whole nuclear configuration

manifold, if the coordinates are O(3)–invariant (such as linear combinations of bond distances and

bond angles, and no dihedral angle).17 In this case, polynomials involved in the computation of

the PES, the DMS and other physically relevant quantities have to be expressed as P = P0+P1S5+

P2S2
5 +P3S3

5, where the Pi are polynomials in the coordinates S1,S2a,S2b,S3x,S3y,S3z,S4x,S4y,S4z.

However, since S5 can be chosen to carry the A1 representation, this extra–coordinate can

be handled independently of the computation of Γfinal–covariants. The same remark applies to S1:

general Γfinal–covariants can be expressed as P0R0+P1R1S5+P2R2S2
5+P3R3S3

5, where the Ri are ar-

bitrary polynomials in S1 and the Pi are Γfinal–covariant polynomials of S2a,S2b,S3x,S3y,S3z,S4x,S4y,S4z.

This allows us to reduce the problem to the study of PΓfinal
, where P is the polynomial algebra

generated by S2a,S2b,S3x,S3y,S3z,S4x,S4y,S4z. Note however, that the tabulated integrity bases

provided as Supporting Information, Appendices A and B, as well as eq 36 correspond to the full

9–dimensional representation Γinitial.

The octahedral group O and the group Td both belong to the category of cubic point groups and
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share similar properties. Integrity bases related to the Molien generating functions M
(
Γfinal;Γinitial

i ; t
)
,

where Γinitial
i and Γfinal are irreps, are known for O, see ref57 and Appendix A. The denominator

and numerator polynomials of these integrity bases are the building blocks of the construction of

the integrity basis for the initial 8–dimensional reducible representation, Γinitial
0 := R < S2a,S2b >

⊕R< S3x,S3y,S3z >⊕R< S4x,S4y,S4z >= Γinitial
2 ⊕Γinitial

3 ⊕Γinitial
4 of the tetrahedral group Td .

3.1 Denominator polynomials of the integrity bases

Denominator polynomials of the integrity basis of a reducible representation is just the union of

the denominator polynomials of its irreducible subrepresentations. The form of the 8 denominator

polynomials f2, ..., f9 (the shift in the indexing is motivated by the convention f1 := S1) for Γinitial
0

is familiar.17 They consist in two denominator polynomials of the module of Td–invariant poly-

nomials in S2a,S2b, R[S2a,S2b]
Td , three denominator polynomials of R[S3x,S3y,S3z]

Td and of three

denominator polynomials of R[S4x,S4y,S4z]
Td . We list them below by degrees of increasing order:

1. Degree 2:

f2 :=
S2

2a +S2
2b√

2
(24)

f3 :=
S2

3x +S2
3y +S2

3z√
3

(25)

f4 :=
S2

4x +S2
4y +S2

4z√
3

(26)

2. Degree 3:

f5 :=
−S3

2a +3S2
2bS2a

2
(27)

f6 := S3xS3yS3z (28)

f7 := S4xS4yS4z (29)

3. Degree 4:

f8 :=
S4

3x +S4
3y +S4

3z√
3

(30)
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f9 :=
S4

4x +S4
4y +S4

4z√
3

. (31)

3.2 Numerator polynomials of the integrity bases

The Molien series for the action of Td on Γinitial
0 can be directly computed using Burnside’s general-

ization59 of the Molien’s results.56 However, as the example of the toy problem with Ci symmetry

suggests, it is computationally more efficient to use eq 5 to recursively construct the Molien gener-

ating functions and the integrity bases. Setting G = Td , a non–zero cΓ
Γα ,Γβ

coefficient in the sum of

eq 5 relates at each step of the recursive algorithm to a possible non–zero numerator Γ f –covariant

in the integrity basis of the generating function MTd
(
Γfinal;Γinitial

1 ⊕Γinitial
2 ⊕Γinitial

3 ⊕Γinitial
4 ; t1, t2, t3, t4

)
.

The corresponding polynomial is built by coupling previously obtained polynomials with Clebsch–

Gordan coefficients of the group Td .

As an example, let us compute MTd (E;F2⊕F2; t3, t4). The product table of the irreps of the

group Td is given in Table 5. We can construct objects that transform according to any of the five

irreps from objects that carry the F2 irrep. As a consequence, the five MTd (Γα ;F2; t), with Γα an

irrep, are non–zero. Table 5 indicates that the direct product Γα×Γβ contains the E representation

if and only if the pair
(
Γα ,Γβ

)
belongs to the following set:

{(A1,E) , (E,A1) , (A2,E) , (E,A2) , (E,E) , (F1,F1) , (F1,F2) , (F2,F1) , (F2,F2)} . (32)

Table 5: Product table of the irreps of the group Td .

A1 A2 E F1 F2
A1 A1 A2 E F1 F2
A2 A2 A1 E F2 F1
E E E A1⊕A2⊕E F1⊕F2 F1⊕F2
F1 F1 F2 F1⊕F2 A1⊕E⊕F1⊕F2 A2⊕E⊕F1⊕F2
F2 F2 F1 F1⊕F2 A2⊕E⊕F1⊕F2 A1⊕E⊕F1⊕F2

According to eq 5, each of the nine pairs
(
Γα ,Γβ

)
of eq 32 contributes to a term in the expan-
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sion

MTd (E;F2⊕F2; t3, t4) = ∑
Γα ,Γβ

cE
Γα ,Γβ

MTd (Γα ;F2; t3)MTd
(
Γβ ;F2; t4

)
. (33)

The expressions of the elementary generating functions MTd (Γ;F2; t) are given in ref57 and Ap-

pendix A. As an example, the pair (F2,F1) of eq 32 will give the following contribution in eq 33:

cE
F2,F1

MTd (F2;F2; t3)MTd (F1;F2; t4) =

(
t3 + t2

3 + t3
3
)(

t3
4 + t4

4 + t5
4
)(

1− t2
3
)(

1− t3
3
)(

1− t4
3
)(

1− t2
4
)(

1− t3
4
)(

1− t4
4
) . (34)

The interpretation of the right–hand side of eq 34 in terms of integrity basis suggests that the

pair (F2,F1) of eq 32 will contribute to 6 denominators and 2× 9 = 18 numerator polynomials

to the integrity basis of MTd (E;F2⊕F2; t3, t4). The 6 denominator polynomials are simply the

union of the set of the denominator invariants associated to the MTd (F2;F2; t3) and MTd (F1;F2; t4)

elementary generating functions. Each product tn3
3 tn4

4 in the numerator of eq 34 corresponds to a

numerator polynomial of symmetry E, i obtained by coupling via the Clebsch–Gordan coefficients

of the Td group the numerator polynomial of symmetry F2, j, degree n3 that belongs to the integrity

basis of MTd (F2;F2; t3) with the numerator polynomial of symmetry F1,k, degree n4 that belongs

to the integrity basis of MTd (F1;F2; t4). The expansion of the product
(
t3 + t2

3 + t3
3
)(

t3
4 + t4

4 + t5
4
)

contains 9 terms and each term contributes to two polynomials, one of symmetry type E,a and the

other of symmetry type E,b, hence the 2×9 = 18 numerator polynomials.

This recursive algorithm has the advantage that only the integrity bases for initial irreps, see

Appendix A, and the Clebsch–Gordan coefficients of the group Td are required. In practice we

couple first the two symmetrized F2 coordinates S3x, S3y, S3z and S4x, S4y, S4z. We then couple

the results with the coordinates S2a and S2b. The fully coupled generating function for the F2 final

irrep reads:

MTd
(

F2;Γ
initial
0 ; t

)
=

N
(
F2;Γinitial

0 ; t
)

(1− t2)3(1− t3)3(1− t4)2 , (35)
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with

N
(

F2;Γ
initial
0 ; t

)
= 2t +5t2 +12t3 +23t4 +41t5 +60t6 +71t7 +71t8

+60t9 +45t10 +27t11 +12t12 +3t13. (36)

Finally, to deal with the coordinate S1, it suffices to note that

MTd
(

F2;Γ
initial; t

)
=

MTd
(
F2;Γinitial

0 ; t
)

(1− t)
. (37)

The Molien series numerator coefficients for all irreps are given in Table 6.

As far as the F2 representation is concerned, Table 6 tells that there are 432 numerator polyno-

mials of symmetry type F2,z:
{

gF2,z
1 , ...,gF2,z

432

}
of which 2 are of degree one, 5 of degree two, 12

of degree three, and so on. We finally obtain that an arbitrary polynomial of symmetry type F2,m,

m ∈ {x,y,z} in the algebra spanned by the S1, . . . ,S4z coordinates will identify with a unique linear

combination of monomials:

f j1
1 f j2

2 ... f j9
9 gF2,m

k ( j1, . . . j9) ∈ N9, 1≤ k ≤ 432. (38)

The lists of numerator polynomials for all irreps are provided as Supporting Information.60

They have been derived in a few seconds of CPU time on a laptop by using the MAPLE computer

algebra system.61 The knowledge of the polynomials in our integrity bases is sufficient to generate

all the polynomials up to any degree, only multiplications between denominator polynomials and

one numerator polynomial are necessary. The recipe is given in Appendix B. The gain with

respect to classical methods of group theory already shows up at degree 4: we only need the 9

basic invariants and the 16 A1–covariants (i.e. secondary invariants) up to degree 4, to generate all

33 linearly independent invariants of degree 4 for representation Γinitial, see Table 6 and compare

with ref7 where only a 6–dimensional representation is considered (the S3x,S3y,S3z coordinates are
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Table 6: Numbers nΓfinal

k of Γfinal–covariant numerator polynomials of degree k and dimensions

dimPΓfinal,i
k , 1≤ i≤

[
Γfinal], of the vector spaces PΓfinal,i

k of covariant polynomials of type Γfinal, i
and of degree k, Γfinal ∈ {A1,A2,E,F1,F2}. The total number ∑

15
k=0 nΓfinal

k of Γfinal–covariant nu-
merator polynomials is equal to

[
Γfinal]×Π jd j/|G|, where

[
Γfinal] is the dimension of the irrep

Γfinal, |G|= 24 is the order of the group Td , and Π jd j = 3456 is the product of the degrees of the
nine denominator polynomials. This result is a generalized version of proposition 2.3.6 of ref.25 It
suffices to multiply the left–hand side of Eq. (2.3.4) by the complex conjugate of the character of
π and to notice that this equals to

[
Γfinal] for π = Id, see also Proposition 4.9 of ref.54

Γfinal: A1 A2 E F1 F2

Degree k nA1
k dimPA1

k nA2
k dimPA2

k nE
k dimPE,i

k nF1
k dimPF1,i

k nF2
k dimPF2,i

k
0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0 0 2 2
2 1 5 0 0 4 5 3 3 5 7
3 5 13 4 4 6 14 12 15 12 25
4 9 33 8 12 16 45 27 51 23 69
5 12 72 15 39 28 111 45 141 41 177
6 18 162 26 101 39 257 60 342 60 400
7 21 319 24 226 50 545 71 752 71 848
8 24 620 21 470 50 1090 71 1528 71 1672
9 26 1132 18 918 39 2040 60 2920 60 3140

10 15 1998 12 1680 28 3678 41 5298 45 5610
11 8 3384 9 2946 16 6330 23 9210 27 9654
12 4 5587 5 4973 6 10545 12 15418 12 16022
13 0 8912 1 8098 4 17010 5 24998 3 25822
14 0 13912 0 12818 1 26730 2 39388 0 40472
15 0 21185 1 19771 0 40935 0 60536 0 61960

n > 15 0 0 0 0 0 0
Total 144 ∞ 144 ∞ 288 ∞ 432 ∞ 432 ∞

left out). In fact, an integrity basis of 6 basic invariants and 3 secondary invariants can generate

11 linearly independent A1–invariants of degree 4, which will span the same vector space as those

tabulated in the last table of ref.7 Similar remarks apply to the covariants. The gain becomes

rapidly more spectacular as the degree increases. PES of order 10 have already been calculated

for methane.15,44 There are 1998 linearly independent invariants of degree 10 for representation

Γinitial. They can be generated with only the 9 basic invariants and 132 secondary invariants.

Similarly, EDMS for methane of order 6 have already appeared in the literature.49,62 The 9 basic

invariants and 143 F2,z-covariant numerator polynomials of degree less or equal to 6 (see Table 6)
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are enough to generate the 400 linearly independent polynomials required to span the vector space

of F2,z-covariant polynomials of sixth degree.

4 Conclusion

Our recursive method for constructing invariants and covariants blends ideas from the theory of

invariants and from techniques used in applications of group theory to physics and chemistry. We

have determined for the first time integrity bases of the Γfinal–covariants of the group Td acting

on the 9 (or possibly 10) symmetrized internal coordinates of a XY4 molecule. They are com-

posed of nine algebraically independent denominator polynomials and a finite number of Γfinal–

covariant numerator polynomials given in the Supporting Information.60 We have taken advantage

of symmetry–adapted internal coordinates spanning the reducible representation A1⊕E⊕F2⊕F2

of Td to construct an integrity basis for each final representation Γfinal. Integrity basis sets are

first determined for each single, possibly degenerate, irrep of the group. These integrity bases are

coupled successively in a second step by using the Clebsch–Gordan coefficients of the group Td .

This strategy to derive the Γfinal–covariants is general since the Γfinal–covariant polynomials admit

a Hironaka decomposition54 for any finite group G. In fact, our approach makes available for

the study of global PES and other functions of nuclear geometric configurations the recent tools

of ring and invariant theory such as Cohen–Macaulay–type properties and the effective compu-

tational tools of modern commutative algebra,50 which go far beyond the classical Molien series

approach in quantum chemistry. Finally, our method based on integrity bases is more efficient than

classical methods of group theory based on the construction degree by degree of the symmetry–

adapted terms to be included in the potential energy surface or the electric dipole moment surface.

All the required polynomials up to any order can be generated by simple multiplications between

polynomials in the integrity bases of this paper in a direct manner as illustrated in Appendix B.
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A Generating functions and corresponding integrity bases for

irreducible representations of Td

The Td point group has five irreps: A1, A2, E, F1 and F2. The irrep E is doubly degenerate, while

the F1 and F2 irreps are triply degenerate. The procedure detailed in section 2 is based on the

knowledge of the generating functions MTd
(
Γfinal;Γinitial; t

)
, where Γinitial and Γfinal are irreps of

the group Td . The coefficient cn in the Taylor expansion c0 + c1t + c2t2 + · · · of the generating

function gives the number of linearly independent Γfinal–covariant polynomials of degree n that

can be constructed from the objects in the initial Γinitial representation.

Each generating function MTd
(
Γfinal;Γinitial; t

)
is the ratio of a numerator N

(
Γfinal;Γinitial; t

)
over a denominator D

(
Γinitial; t

)
:

MTd
(

Γ
final;Γ

initial; t
)
=

N
(
Γfinal;Γinitial; t

)
D (Γinitial; t)

=

N
∑

k=1
tνk

D
∏

k=1

(
1− tδk

) , (39)
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with νk ∈ N and δk ∈ N\{0}. The polynomial associated to a
(

1− tδk

)
term in the denomina-

tor is an invariant called a denominator polynomial of degree δk and is noted I(δk)
(
Γinitial). The

polynomial associated to a tνk term in the numerator is a Γfinal–covariant called a numerator polyno-

mial of degree νk and is noted E(νk)
(
Γfinal;Γinitial) (when Γfinal is degenerate, E(νk)

(
Γfinal;Γinitial)

will be a vector gathering all the Γfinal, i–covariant numerator polynomials of degree νk for i ∈

{1, . . . ,
[
Γfinal]}). According to the expression, eq 39, D denominator polynomials and N numera-

tor polynomials are associated to the generating function, MTd
(
Γfinal;Γinitial; t

)
.

We will closely follow the article of Patera, Sharp and Winternitz57 for the notation for denomi-

nator and numerator polynomials, using α,β ,γ symbols for a chosen basis of each irrep. However,

their table for octahedral tensors contains two errors for the degree eight E(8) (Γ4;Γ4) and degree

seven E(7) (Γ5;Γ4) numerator polynomials. With the definitions of polynomials given in ref,57 the

following relation hold:

E(8) (Γ4;Γ4)i = I(2) (Γ4)E(6) (Γ4;Γ4)i

−1
2

I(2) (Γ4)
2 E(4) (Γ4;Γ4)i

+
1
2

I(4) (Γ4)E(4) (Γ4;Γ4)i , (40)

where the index i stands either for x, y or z. The relation eq 40 indicates that the polynomial of

degree eight E(8) (Γ4;Γ4) has a decomposition in terms of polynomials that are elements of the

integrity basis associated to MTd (Γ4;Γ4; t). As a consequence, E(8) (Γ4;Γ4) does not enter the

integrity basis.

The same is true for E(7) (Γ5;Γ4) and the integrity basis associated to MTd (Γ5;Γ4; t) due to

following relation:

E(7) (Γ5;Γ4)i = I(2) (Γ4)E(5) (Γ5;Γ4)i

−1
2

I(2) (Γ4)
2 E(3) (Γ5;Γ4)i
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+
1
2

I(4) (Γ4)E(3) (Γ5;Γ4)i . (41)

A complete list of tables of both denominator and numerator polynomials for all the initial

Γinitial and final Γfinal irreps is given in the next sections.

A.1 Γinitial = A1 irreducible representation

The denominator is D (A1; t) = 1− t. The corresponding denominator polynomial of degree one is

I(1) (A1) = α . The only non–zero numerator polynomial is N (A1;A1; t) = 1.

A.2 Γinitial = A2 irreducible representation

The denominator is D (A2; t)= 1−t2. The corresponding denominator polynomial of degree two is

I(2) (A2) = α2. Two numerator polynomials are non–zero: N (A1;A2; t) = 1 and N (A2;A2; t) = t.

The A2–covariant numerator polynomial of degree one is

E(1) (A2;A2) = α.

A.3 Γinitial = E irreducible representation

The denominator is D (E; t) =
(
1− t2)(1− t3). The denominator polynomial of degree two is

I(2) (E) = α2+β 2
√

2
and the denominator polynomial of degree three is I(3) (E) = −α3+3αβ 2

2 . Three

numerator polynomials are non–zero: N (A1;E; t) = 1, N (A2;E; t) = t3, and N (E;E; t) = t+t2.

The A2–covariant numerator polynomial of degree three is

E(3) (A2;E) =
−3α2β +β 3

2
,
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and the two E–covariant numerator polynomials of degree one and two are

E(1) (E;E) =

 α

β

 ,

E(2) (E;E) =
1√
2

 −α2 +β 2

2αβ

 .

A.4 Γinitial = F1 irreducible representation

The denominator is D (F1; t) =
(
1− t2)(1− t4)(1− t6). The denominator polynomial of degree

two is I(2) (F1) =
α2+β 2+γ2
√

3
, the denominator polynomial of degree four is I(4) (F1) =

α4+β 4+γ4
√

3

and the denominator polynomial of degree six is I(6) (F1) =
α6+β 6+γ6
√

3
. The numerator polynomials

are N (A1;F1; t) = 1+ t9, N (A2;F1; t) = t3 + t6, N (E;F1; t) = t2 + t4 + t5 + t7, N (F1;F1; t) =

t + t3 + t4 + t5 + t6 + t8, and N (F2;F1; t) = t2 + t3 + t4 + t5 + t6 + t7. The invariant numerator

polynomial of degree nine is

E(9) (A1;F1) =
1√
6

αβγ
(
α

2−β
2)(

β
2− γ

2)(
γ

2−α
2) ,

the two A2–covariant numerator polynomials of degree three and six are

E(3) (A2;F1) = αβγ,

E(6) (A2;F1) =
1√
6

(
α

2−β
2) ,(β 2− γ

2)(
γ

2−α
2) ,

the four E–covariant numerator polynomials of degree two, four, five, and seven are:

E(2) (E;F1) =
1√
6

 α2 +β 2−2γ2

√
3
(
−α2 +β 2)

 ,
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E(4) (E;F1) =
1√
6

 α4 +β 4−2γ4

√
3
(
−α4 +β 4)

 ,

E(5) (E;F1) =
1√
6

αβγ

 √3
(
α2−β 2)

α2 +β 2−2γ2

 ,

E(7) (E;F1) =
1√
6

αβγ

 √3
(
α4−β 4)

α4 +β 4−2γ4

 ,

the six F1–covariant numerator polynomials of degree one, three, four, five, six, and eight are

E(1) (F1;F1) =


α

β

γ

 ,

E(3) (F1;F1) =


α3

β 3

γ3

 ,

E(4) (F1;F1) =
1√
2


(
β 2− γ2)βγ(
γ2−α2)γα(
α2−β 2)αβ

 ,

E(5) (F1;F1) =


α5

β 5

γ5

 ,

E(6) (F1;F1) =
1√
2


(
β 4− γ4)βγ(
γ4−α4)γα(
α4−β 4)αβ

 ,
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E(8) (F1;F1) =
1√
2

αβγ


(
β 4− γ4)α(
γ4−α4)β(
α4−β 4)γ

 ,

the six F2–covariant numerator polynomials of degree two, three, four, five, six, and seven are

E(2) (F2;F1) =


βγ

γα

αβ



E(3) (F2;F1) =
1√
2


(
β 2− γ2)α(
γ2−α2)β(
α2−β 2)γ

 ,

E(4) (F2;F1) = αβγ


α

β

γ

 ,

E(5) (F2;F1) =
1√
2


(
β 4− γ4)α(
γ4−α4)β(
α4−β 4)γ

 ,

E(6) (F2;F1) = αβγ


α3

β 3

γ3

 ,

E(7) (F2;F1) =
1√
2

αβγ


(
β 2− γ2)βγ(
γ2−α2)αγ(
α2−β 2)αβ

 .
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A.5 Γinitial = F2 irreducible representation

The denominator is D (F2; t) =
(
1− t2)(1− t3)(1− t4). The denominator polynomial of degree

two is I(2) (F2) =
α2+β 2+γ2
√

3
, the denominator polynomial of degree three is I(3) (F2) = αβγ and

the denominator polynomial of degree four is I(4) (F2) =
α4+β 4+γ4
√

3
. The numerator polynomials

are N (A1;F2; t) = 1, N (A2;F2; t) = t6, N (E;F2; t) = t2 + t4, N (F1;F2; t) = t3 + t4 + t5, and

N (F2;F2; t) = t + t2 + t3. The A2–covariant numerator polynomial of degree six is

E(6) (A2;F2) =
1√
6

(
α

2−β
2)(

β
2− γ

2)(
γ

2−α
2) ,

the two E–covariant numerator polynomials of degree two and four are

E(2) (E;F2) =
1√
6

 α2 +β 2−2γ2

√
3
(
−α2 +β 2)

 ,

E(4) (E;F2) =
1√
6

 α4 +β 4−2γ4

√
3
(
−α4 +β 4)

 ,

the four F1–covariant numerator polynomials of degree three, four and five are

E(3) (F1;F2) =
1√
2


(
β 2− γ2)α(
γ2−α2)β(
α2−β 2)γ

 ,

E(4) (F1;F2) =
1√
2


(
β 2− γ2)βγ(
γ2−α2)γα(
α2−β 2)αβ

 ,

E(5) (F1;F2) =
1√
2


(
β 2− γ2)α3(
γ2−α2)β 3(
α2−β 2)γ3

 ,
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the three F2–covariant numerator polynomials of degree one, two, and three are

E(1) (F2;F2) =


α

β

γ

 ,

E(2) (F2;F2) =


βγ

γα

αβ

 ,

E(3) (F2;F2) =


α3

β 3

γ3

 .

B Application of the integrity base for F2–covariant polynomi-

als: Representation of the electric dipole moment surface of

a tetrahedral XY4 molecule

B.1 Introduction

Appendix B gives an application of the integrity basis for F2–covariant polynomials of tetrahe-

dral XY4 molecules. The integrity basis determined in this paper contains the denominator poly-

nomials fi, 1 ≤ i ≤ 9, listed in the main text and the auxiliary numerators published in the file

symmetries_A1_A2_E_F1_F2.txt available as Supporting Information.60 This example

can be transposed to any other final irrep Γfinal.

The electric dipole moment surface of a tetrahedral XY4 molecule can be built as a linear

combination of F2–covariant polynomials of total degree less than dmax in the coordinates that

span the representation, Γinitial, of eq 23. The integer dmax is the order of the expansion. The

generating function for the number of F2–covariant polynomials built from this representation

33



reads (see eqs 35 to 37):

2t +5t2 +12t3 +23t4 +41t5 +60t6 +71t7 +71t8 +60t9 +45t10 +27t11 +12t12 +3t13

(1− t)(1− t2)
3
(1− t3)

3
(1− t4)

2 ,

whose Taylor expansion up to order four is given by:

2t +7t2 +25t3 +69t4 + · · · . (42)

The coefficients in eq 42 mean that there are 2 (respectively 7, 25, and 69) linearly independent

F2,α–covariant polynomials of degree one (respectively two, three, and four), α ∈ {x,y,z}. We

now detail the construction of these 103 F2,x polynomials. The F2,y and F2,z polynomials may be

built using the same procedure.

The expansion of the F2,x-EDMS up to order four is a linear combination of 103 F2,x–polynomials:

µF2,x
(
S1,S2a,S2b,S3x,S3y,S3z,S4x,S4y,S4z

)
=

103

∑
i=1

cF2,x
i × pF2,x

i
(
S1,S2a,S2b,S3x,S3y,S3z,S4x,S4y,S4z

)
. (43)

The coefficients cF2,x
i of eq 43 are to be determined by fitting the expression to either experimental

or ab initio data. We know that the 103, F2,x–polynomials, pF2,x
i , can be written as a product of de-

nominator polynomials powered to any positive integer value, and a single numerator polynomial.

So, the polynomials that enter the expansion of the F2,x component of the EDMS can all be taken

of the form:

ϕ
F2,x
k,l × f n1

1 f n2
2 · · · f

n9
9 , (44)

where the (ϕF2,x
k,l )

1≤l≤nF2
k

denotes the numerator polynomials of degree k, (we change the notation

with respect to the main text to include explicitly the degree k). Their numbers, nF2
k , are given in

the column labelled F2 of Table 6. Sets of linearly independent pF2,x
i are listed below by degrees.

We recall that f1 is a polynomial of degree one, f2, f3, and f4 are three polynomials of degree two,
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f5, f6, and f7 are three polynomials of degree three, and f8, f9 are two polynomials of degree four.

B.2 Degree one

The 2 F2,x linearly independent polynomials of total degree one compatible with eq 44 are pF2,x
1 =

ϕ
F2,x
1,1 and pF2,x

2 = ϕ
F2,x
1,2 .

B.3 Degree two

The 7 F2,x linearly independent polynomials of total degree two compatible with eq 44 are:

pF2,x
3 = ϕ

F2,x
2,1 , pF2,x

4 = ϕ
F2,x
2,2 , pF2,x

5 = ϕ
F2,x
2,3 , pF2,x

6 = ϕ
F2,x
2,4 , pF2,x

7 = ϕ
F2,x
2,5 ,

pF2,x
8 = ϕ

F2,x
1,1 f1, pF2,x

9 = ϕ
F2,x
1,2 f1.

B.4 Degree three

The 25 F2,x linearly independent polynomials of total degree three compatible with eq 44 are:

pF2,x
10 = ϕ

F2,x
3,1 , pF2,x

11 = ϕ
F2,x
3,2 , pF2,x

12 = ϕ
F2,x
3,3 , pF2,x

13 = ϕ
F2,x
3,4 , pF2,x

14 = ϕ
F2,x
3,5 ,

pF2,x
15 = ϕ

F2,x
3,6 , pF2,x

16 = ϕ
F2,x
3,7 , pF2,x

17 = ϕ
F2,x
3,8 , pF2,x

18 = ϕ
F2,x
3,9 , pF2,x

19 = ϕ
F2,x
3,10,

pF2,x
20 = ϕ

F2,x
3,11, pF2,x

21 = ϕ
F2,x
3,12, pF2,x

22 = ϕ
F2,x
2,1 f1, pF2,x

23 = ϕ
F2,x
2,2 f1, pF2,x

24 = ϕ
F2,x
2,3 f1,

pF2,x
25 = ϕ

F2,x
2,4 f1, pF2,x

26 = ϕ
F2,x
2,5 f1, pF2,x

27 = ϕ
F2,x
1,1 f 2

1 , pF2,x
28 = ϕ

F2,x
1,2 f 2

1 , pF2,x
29 = ϕ

F2,x
1,1 f2,

pF2,x
30 = ϕ

F2,x
1,2 f2, pF2,x

31 = ϕ
F2,x
1,1 f3, pF2,x

32 = ϕ
F2,x
1,2 f3, pF2,x

33 = ϕ
F2,x
1,1 f4, pF2,x

34 = ϕ
F2,x
1,2 f4.
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B.5 Degree four

The 69 F2,x linearly independent polynomials of total degree four compatible with eq 44 are:

pF2,x
35 = ϕ

F2,x
4,1 , pF2,x

36 = ϕ
F2,x
4,2 , pF2,x

37 = ϕ
F2,x
4,3 , pF2,x

38 = ϕ
F2,x
4,4 , pF2,x

39 = ϕ
F2,x
4,5 ,

pF2,x
40 = ϕ

F2,x
4,6 , pF2,x

41 = ϕ
F2,x
4,7 , pF2,x

42 = ϕ
F2,x
4,8 , pF2,x

43 = ϕ
F2,x
4,9 , pF2,x

44 = ϕ
F2,x
4,10,

pF2,x
45 = ϕ

F2,x
4,11, pF2,x

46 = ϕ
F2,x
4,12, pF2,x

47 = ϕ
F2,x
4,13, pF2,x

48 = ϕ
F2,x
4,14, pF2,x

49 = ϕ
F2,x
4,15,

pF2,x
50 = ϕ

F2,x
4,16, pF2,x

51 = ϕ
F2,x
4,17, pF2,x

52 = ϕ
F2,x
4,18, pF2,x

53 = ϕ
F2,x
4,19, pF2,x

54 = ϕ
F2,x
4,20,

pF2,x
55 = ϕ

F2,x
4,21, pF2,x

56 = ϕ
F2,x
4,22, pF2,x

57 = ϕ
F2,x
4,23, pF2,x

58 = ϕ
F2,x
2,1 f2, pF2,x

59 = ϕ
F2,x
2,2 f2,

pF2,x
60 = ϕ

F2,x
2,3 f2, pF2,x

61 = ϕ
F2,x
2,4 f2, pF2,x

62 = ϕ
F2,x
2,5 f2, pF2,x

63 = ϕ
F2,x
2,1 f3, pF2,x

64 = ϕ
F2,x
2,2 f3,

pF2,x
65 = ϕ

F2,x
2,3 f3, pF2,x

66 = ϕ
F2,x
2,4 f3, pF2,x

67 = ϕ
F2,x
2,5 f3, pF2,x

68 = ϕ
F2,x
2,1 f5, pF2,x

69 = ϕ
F2,x
2,2 f5,

pF2,x
70 = ϕ

F2,x
2,3 f5, pF2,x

71 = ϕ
F2,x
2,4 f5, pF2,x

72 = ϕ
F2,x
2,5 f5, pF2,x

73 = ϕ
F2,x
1,1 f5, pF2,x

74 = ϕ
F2,x
1,2 f5,

pF2,x
75 = ϕ

F2,x
1,1 f6, pF2,x

76 = ϕ
F2,x
1,2 f6, pF2,x

77 = ϕ
F2,x
1,1 f7, pF2,x

78 = ϕ
F2,x
1,2 f7, pF2,x

79 = ϕ
F2,x
1,1 f1 f2,

pF2,x
80 = ϕ

F2,x
1,2 f1 f2, pF2,x

81 = ϕ
F2,x
1,1 f1 f3, pF2,x

82 = ϕ
F2,x
1,2 f1 f3, pF2,x

83 = ϕ
F2,x
1,1 f1 f4, pF2,x

84 = ϕ
F2,x
1,2 f1 f4,

pF2,x
85 = ϕ

F2,x
3,1 f1, pF2,x

86 = ϕ
F2,x
3,2 f1, pF2,x

87 = ϕ
F2,x
3,3 f1, pF2,x

88 = ϕ
F2,x
3,4 f1, pF2,x

89 = ϕ
F2,x
3,5 f1,

pF2,x
90 = ϕ

F2,x
3,6 f1, pF2,x

91 = ϕ
F2,x
3,7 f1, pF2,x

92 = ϕ
F2,x
3,8 f1, pF2,x

93 = ϕ
F2,x
3,9 f1, pF2,x

94 = ϕ
F2,x
3,10 f1,

pF2,x
95 = ϕ

F2,x
3,11 f1, pF2,x

96 = ϕ
F2,x
3,12 f1, pF2,x

97 = ϕ
F2,x
2,1 f 2

1 , pF2,x
98 = ϕ

F2,x
2,2 f 2

1 , pF2,x
99 = ϕ

F2,x
2,3 f 2

1 ,

pF2,x
100 = ϕ

F2,x
2,4 f 2

1 , pF2,x
101 = ϕ

F2,x
2,5 f 2

1 , pF2,x
102 = ϕ

F2,x
1,1 f 3

1 , pF2,x
103 = ϕ

F2,x
1,2 f 3

1 .
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