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Thin r-neighborhoods of embedded geodesics with

finite length and negative Jacobi operator are

strongly convex∗

Ph. Delanoë
†

Abstract

In a complete Riemannian manifold, an embedded geodesic γ with
finite length and negative Jacobi operator admits an r-neighborhood
Nr(γ) with radius r > 0 small enough such that each couple of points of
Nr(γ) can be joined by a unique geodesic contained in Nr(γ) where it
minimizes length among the piecewise C1 paths joining its end points.

Introduction

Let M be a connected complete Riemannian manifold; let d denote its Rie-
mannian distance function [dC92]. A connected subset S ⊂ M with non

empty interior
◦

S is called strongly convex for a couple of points (p, q) ∈ S×S
if there exists a unique geodesic path t ∈ [0, 1] → γ(t) ∈ M such that:

γ(0) = p, γ(1) = q and γ(t) ∈
◦

S for t ∈ (0, 1), with γ length minimizing
among piecewise C1 paths from p to q in S. The subset S is just called
strongly convex if it is so for each couple (p, q) ∈ S × S.

Definition 0.1 Let S ⊂ M be a strongly convex subset. For each couple
(p, q) ∈ S × S, the length of the geodesic path joining p to q with interior in
◦

S is called the inner distance from p to q in S, denoted by dS(p, q).

It is quite natural to endow a strongly convex subset S ⊂ M with its inner
distance function dS . The latter is nothing but the length metric associated
with the metric space

(
S, d
∣∣
S

)
[Gro99].

Since Whitehead’s landmark paper [Whi32], it has been known that
small enough balls in M are strongly convex. Moreover, if B is such a ball,
its inner distance function dB coincides with the restriction of d to B × B
[KN96, CE08, Aub98, dC92, Kli95]. In the flat torus Rn/Zn, if the radius of
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2 Ph. Delanoë

a ball B belongs to the interval
(

1
4 , 1

2

)
, the reader can check that B remains

strongly convex but dB no longer coincides with d
∣∣
B×B

. Here, we would like
to construct a general family of examples of strongly convex subsets S ⊂ M
such that dS 6≡ d

∣∣
S×S

.
The notion of extended distance function used in [FRV12] is similar in

spirit to that of inner metric; could it guide us toward an example ? Let
us recall its definition. If t ∈ [0, 1] → γ(t) ∈ M is an embedded geodesic
without conjugate points, the map Id × exp : TM → M × M induces a

diffeomorphism Ψγ from a neighborhood U of
(
γ(0), dγ

dt
(0)
)

in TM to a

neighborhood W of
(
γ(0), γ(1)

)
in M ×M . The extended distance function

dγ of [FRV12] is then defined in W by dγ(p, q) = |V |p where Ψγ(p, V ) =
(p, q). It is called so because, if γ contains no cut point, shrinking W if
necessary, it satisfies dγ(p, q) ≡ d(p, q). In this setting, we would like to
know whether a thin enough tube about the geodesic γ must be strongly
convex. Anytime it is, one may identify dγ with the restriction to W of the
inner distance function of the tube; in particular, the function dγ satisfies
in effect the distance axioms.

By a tube about γ is meant a closed subset of M containing γ([0, 1]),
with non empty interior and each point of which admitting a unique nearest
point in γ([0, 1]); moreover, if p 7→ p⊥γ denotes the nearest point map, the

geodesic from p to p⊥γ should meet γ([0, 1]) orthogonally. Finally, the lateral

boundary of the tube is given by the equation d
(
p, p⊥γ

)
= r, where r > 0 is

a small real number called the radius of the tube.
We are thus willing to study the question: under which conditions must

a tube about an embedded geodesic be strongly convex ?
First of all, indeed, we should restrict to geodesics without conjugate

points (at least in their interior) since, by the Morse Index Theorem, they
would not be minimizing otherwise [Mil63]. To proceed further, let us take
examples. In the domain of the unit sphere of R3 given by: 0 6 longitude <
π and −r 6 latitude 6 r with r small, we see that the geodesic joining two
points with equal latitude close enough to r does not stay in that domain.
But if we look at a similar domain about the interior equator of a torus of
revolution in R3 and pick two points as above, the geodesic joining them
does stay in the domain. So, a curvature assumption should be made along
a geodesic before we can expect the strong convexity of a tube about it, and
positive curvature rules out strong convexity.

Eventually, we will show that a tube Tr(γ0) with small enough radius
r about a geodesic γ0 with negative Jacobi operator is essentially strongly
convex. Specifically, we will prove the following result:

Theorem 0.1 Let γ0 : s ∈ [0, ℓ0] → γ0(s) ∈ M be an embedded unit speed
geodesic with negative Jacobi operator. Given ς > 0, there exists ̺ > 0
such that, if r ∈ (0, ̺), the tube Tr(γ0) is strongly convex for each couple
(p, q) ∈ Tr(γ0) × Tr(γ0) of points satisfying, either

∣∣s
(
p⊥γ0

)
− s
(
q⊥γ0

)∣∣ > ς or,
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s
(
p⊥γ0

)
and s

(
q⊥γ0

)
belong to the subinterval [ς, ℓ0− ς]. Furthermore, if M has

dimension 2, the result holds with ς = 0 provided we except the boundary
couples (p, q) lying in the same end (s = 0 or s = ℓ0) of the tube.

In this statement, we allow the geodesic γ0 to contain cut points. For in-
stance, if the image of γ0 is contained in the curve

{
x2 + y2 = 1, z = 0

}

viewed as the interior equator of a torus of revolution in R3, we allow its
length ℓ0 to belong to the interval [0, 2π). In this context, the inner dis-
tance function which we are looking for appears well approximated by the
pseudo-metric defined in the tube by: d̂(p, q) =

∣∣s
(
p⊥γ0

)
− s
(
q⊥γ0

)∣∣, at least

for the couples (p, q) ∈ Tr(γ0) × Tr(γ0) such that d̂(p, q) ≫ r. Accordingly,
our proof will split in two parts; let us provide a rough outline of it.

Case 1: for d̂(p, q) less than a suitable positive constant c independent of
r as r ↓ 0, there exists a unique minimizing geodesic t ∈ [0, 1] → γ(t) ∈ M

from p to q, so we only have to prove the inclusion γ((0, 1)) ⊂

◦

T̂r(γ0). We
do it using a one parameter family of geodesics λ ∈ [0, 1] → cλ interpolating

between c0 given by t ∈ [0, 1] → γ0

(
ts
(
q⊥γ0

)
+(1−t)s

(
p⊥γ0

))
and c1 = γ. For λ

small, we certainly have cλ((0, 1)) ⊂

◦

T̂r(γ0). We must rule out the possibility
that cλ(t) first touches the boundary of Tr(γ0) for some t ∈ (0, 1). If n = 2,
it could happen but on the lateral part of ∂Tr(γ0) because the ends of Tr(γ0)
are totally geodesic. If n > 2, the pinching s

[
(cλ(t))⊥γ0

]
∈ (0, ℓ0) is obtained

relying on the assumption1 d̂(p, q) > ς or s
(
p⊥γ0

)
and s

(
q⊥γ0

)
lie in [ς, ℓ0 − ς].

As for the lateral part of Tr(γ0), the estimate d
(
cλ(t), (cλ(t))⊥γ0

)
< r (unless

p = q) follows from a Maximum Principle for geodesics shown to hold in
Tr(γ0) due to our curvature assumption.

Case 2: d̂(p, q) > c. Here, we must work harder, shrink r > 0 and show
that, if t ∈ [0, 1] → γ(t) ∈ M is a geodesic from p to q ranging in Tr(γ0),
its Jacobi operator should stay, like the one of γ0, negative. Moreover, we
infer from the latter property that γ must be minimizing and unique. We
are thus left with proving the very existence of γ. It will be done by a tricky
connectedness argument, fixing p, letting q vary in the tube and using the
parameter z = d̂(p, q) ∈ [c, ℓ0] itself. The openess part of that argument is
based on the invertibility of d(expp)(γ̇(0)), which holds due to the curvature
property of γ; the closedness part relies on the aforementioned Maximum
Principle.

Can one find a quicker proof ? We did not. With Theorem 0.1 and its
proof at hand, it becomes easy to obtain a full strong convexity result if,
instead of the tube Tr(γ0), we consider the closure of the r-neighborhood of
γ0, that is the subset Nr(γ0) =

{
m ∈ M,d

(
γ0([0, ℓ0]), m

)
6 r
}
. In this way,

we get the main result of the paper, namely:

1ignored elsewhere in the proof
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Corollary 0.1 (main result) Let γ0 : s ∈ [0, ℓ0] → γ0(s) ∈ M be an
embedded unit speed geodesic with negative Jacobi operator. There exists
̺ > 0 such that the subset Nr(γ0) ⊂ M is strongly convex for r ∈ (0, ̺).

The paper is organized as follows: the next two sections are devoted to
preliminary tools for the proof, general properties of thin tubes are recorded
in Section 1 and further ones under our curvature assumption in Section 2;
the proof of Theorem 0.1 itself is given in Section 3, that of Corollary 0.1,
in Section 4.

1 Properties of a thin tube about an embedded

geodesic

Throughout this section, we use the setting of Theorem 0.1 but drop the
assumption made on the Jacobi operator of the geodesic γ0.

1.1 Fermi map, cylinders and Gauss Lemma

Let us recall how the tube Tr(γ0) can be precisely defined [Aub98, Gra04].
The geodesic γ0 extends uniquely as a geodesic embedding of an interval
I = (−ǫ, ℓ0 + ǫ) with ǫ small. We consider the map:

(V, s) ∈ V ⊥
0 × I −→ E0(V, s) = exp⊥

γ0(s)(‖
γ0(V )) ∈ M,

where we have denoted by V ⊥
0 the subspace of Tγ0(0)M orthogonal to the

velocity vector V0 =
dγ0

ds
(0), by ‖γ0(V ) the vector field along γ0 obtained

by parallel transport of the vector V and by exp⊥
γ0(s) the restriction of the

exponential map to ‖γ0(V0)(s)
⊥. The differential of E0 at (0, s) is given by:

(δs, δV ) ∈ V ⊥
0 × R → dE0(0, s)(δV, δs) =

dγ0

ds
(s)δs + ‖γ0(δV )(s) ∈ Tγ0(s)M ;

it is an isomorphism since orthogonality is preserved by parallel transport.
From the inverse function theorem [Lan02] and the compactness of [0, ℓ0]
(or bounded length of γ0), we infer2 the existence of a real R > 0 such that,

setting |V | for the norm of a vector V and B
⊥
(0, R) = {V ∈ V ⊥

0 , |V | 6 R},

the map E0 induces a diffeomorphism from a neighborhood of B
⊥
(0, R) ×

[0, ℓ0] onto a neighborhood of its image. Let us fix such a radius R once

for all. For r 6 R, we denote by Tr(γ0) the image by E0 of B
⊥
(0, r) ×

[0, ℓ0] and call it the tube about γ0 with radius r [Gra04]. We set p 7→
F0(p) =

(
v⊥0 (p), z(p)

)
for the inverse of the mapping E0 and refer to it as

the Fermi map along γ0. We call z(p) the height of the point p relative to

2full details are given in Section 1.4 for a construction encompassing the present one
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γ0 and the subsets Etop
R (γ0) = {p ∈ TR(γ0), z(p) = ℓ0} and Ebot

R (γ0) = {p ∈
TR(γ0), z(p) = 0} respectively for the top and bottom ends of the tube. If

p ∈ TR(γ0), the unit speed geodesic s ∈
[
0,
∣∣v⊥0 (p)

∣∣
]
→ E0

(
s

v⊥0 (p)

|v⊥0 (p)|
, z(p)

)

is the unique minimizing geodesic from γ0 to p; its length rγ0
(p) = |v⊥0 (p)|

is thus equal to d(γ0, p). For short, that geodesic will be denoted by s 7→
[γ0, p](s) ∈ TR(γ0), and the function rγ0

itself, simply by r unless a confusion
may occur. We set Nγ0

(p), or just N(p) if no confusion, for the velocity

vector d[γ0,p]
ds

evaluated at s = d(γ0, p). The unit vector field p 7→ N(p) is
defined in the open subset of the tube TR(γ0) where r(p) > 0, that is, outside
the geodesic γ0; moreover, it is readily seen to satisfy dz(N) = 0, dr(N) = 1
and ∇NN = 0, with ∇ the Levi–Civita connection. If r ∈ (0, R], we set
Cr(γ0) = {p ∈ TR(γ0), r(p) = r} for the cylinder of radius r about γ0,
sometimes called the lateral part of the boundary of the tube Tr(γ0). The
outward unit normal to that cylinder at p ∈ Cr(γ0) is nothing but N(p)
due to the generalized Gauss lemma according to which the gradient of the
function r and the vector field N coincide [Gra04, pp.26–28]. The identity
N = grad r will be central for us. It yields the following identity, recorded
here for later use, valid at each p ∈ TR(γ0) such that r(p) > 0:

(1) ∀(V,W ) ∈ TpM ×TpM, (g− dr2)(V,W ) = (g− dr2)
(
Π⊥

N (V ), Π⊥
N (W )

)
,

where we have set Π⊥
N (V ) = V − g(V,N)N for the orthogonal projection of

TpM onto N(p)⊥; in other words, if we write TM = RN ⊕ N⊥ on {r > 0},
the generalized Gauss lemma implies that the metric g splits into the sum
of dr2 along RN and (g − dr2) along N⊥ .

Finally, i ∈ (0,∞] will stand for the injectivity radius of TR(γ0), that is
for the minimum of the distance from a point p to its cut locus as p varies
in TR(γ0) [dC92, pp.267–273]. For each r ∈ (0, R], the injectivity radius of
Tr(γ0) will thus be at least equal to i. If M is compact, i is finite; but i = ∞
if M is the hyperbolic space, for instance.

1.2 Fermi charts and related notions

Given an orthonormal basis {e1, . . . , en} of Tγ0(0)M with en =
dγ0

ds
(0) (hence-

forth, n stands for the dimension of M), let us assign to each p ∈ TR(γ0)

the n-tuple x = (x̃, xn) ∈ B
n−1

(0, R) × [0, ℓ0], where B
n−1

(0, R) denotes
the closure of the ball of radius R in the Euclidean space Rn−1, given by:

x(p) = (x1, . . . , xn−1, xn) if and only if v⊥0 (p) =
n−1∑

α=1

xαeα and z(p) = xn.

The map x : TR(γ0) → B
n−1

(0, R)× [0, ℓ0] so defined is called a Fermi chart
along the embedded geodesic γ0 (in 1922, while a PhD student at the Scuola

Normale Superiore in Pisa, motivated by the study of the equivalence principle in
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general relativity, Enrico Fermi was the first to consider such local coordinates,

which he used along timelike paths, see [GV82, p.217] and references therein).

We see from this construction that y = (ỹ, yn) is another such chart if and
only if yn = xn and there exists an orthogonal transformation R ∈ O(n− 1)
such that ỹ = Rx̃. The calculations which we will perform in the tube TR(γ0)
will be invariant (or tensorial) with respect to change of Fermi charts. We

will freely use the local Euclidean metric eγ0
=
∑n

i=1

(
dxi
)2

(just denoted

by e, unless confusing) and the affine structure inherited from its (flat) Levi–
Civita connection Dγ0

= D. The latter will be convenient to identify distinct
tangent spaces hence view vectors tangent to TR(γ0) at distinct points as
belonging to the same vector space. We will also view the Christoffel symbols
Γk

ij(x) of our original (global) connection ∇ as the components in the chart
x of the local tensorial difference (∇− D).

In the Fermi chart x, the components of the metric tensor g satisfy:
gij(0, xn) = δij , dgij(0, xn) = 0, so the Christoffel symbols vanish at (0, xn),
meaning that g is osculating to e along γ0. We set ‖.‖ for the norm associated
to the Euclidean metric e and θ0 = min ‖U‖ 6 1 6 Θ0 = max ‖U‖, where U
runs over all unit3 tangent vectors at points of TR(γ0). For each p ∈ TR(γ0),

setting ρ(x) =

√∑n−1

α=1
(xα)2, we have r(p) = ρ(x(p)). The geodesic ray

t ∈ [0, 1] → E0

(
tv⊥0 (p), z(p)

)
∈ M reads t 7→ R(t) = (tx1, . . . , txn−1, xn)

with x = x(p); being constant, its speed is equal to ρ(x), so the unit vector

field N reads: N(p) = ν(x(p)) with ν(x) =
1

ρ(x)

n−1∑

α=1

xα ∂

∂xα
.

If W =
∑n

i=1
W i ∂

∂xi
∈ TpM , we may view W as a constant vector field

in TR(γ0), in other words extend it to TR(γ0) by Dγ0
parallelism, a notion

well defined in any Fermi chart along γ0. Following [Gra04, p.21], let us
call any such vector field a Fermi field (here, with respect to γ0). Given a
point p ∈ TR(γ0) and vector field Z on TR(γ0), we may similarly consider
the Fermi field Z(p), thinking of it as Z frozen at p. Among Fermi fields,
one may distinguish those with Wn = 0 from those writing Z = Zn ∂

∂xn

(sometimes called axial). For later use, we record the brackets identities:

(2) ∀α < n,

[
ν, ρ

∂

∂xα

]
=

∂ρ

∂xα
ν , and

[
ν,

∂

∂xn

]
= 0.

Finally, it will be convenient to consider on TR(γ0) the field of projections
Π0 =

∑n−1
α=1 dxα ⊗ ∂

∂xα , which is the constant (or Fermi) extension of the
orthogonal projection of Tγ0(0)M onto V ⊥

0 .

3here and below, to be understood for the metric g, unless otherwise specified
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1.3 Estimates for geodesics in a thin tube

Beforehand, let us recall a classical result, namely: there exists a contin-
uous function p ∈ M → χ(p) ∈ (0,∞] called the convexity radius, which
is smaller than the injectivity radius, such that, for each ̺ ∈ (0, χ(p)),
the Riemannian ball B(p, ̺) is strongly convex [CE08, pp.103–105] [Kli95,
pp.84–85] [Whi32]. For r > 0 small, we may thus consider the function
r 7→ χγ0

(r) = min
{
χ(p), p ∈ Tr(γ0)

}
, which is non increasing. We set

c = χγ0
(R) and stress that c 6 i. Our first estimate is an upper bound on the

length of the geodesics contained in the tube TR0
(γ0) with R0 = min

(
R,

c

3

)
.

Proposition 1.1 If γ : [0, ℓ] → γ(s) ∈ TR0
(γ0) is a unit speed geodesic4,

its length ℓ is bounded above by L0, with: L0 = ℓ0 + 2R if i = ∞, and
L0 = 2(ℓ0 + c) if c < ∞.

Proof. If i = ∞, the geodesic γ is minimizing and unique in M . But we
can join its endpoints p = γ(0), q = γ(ℓ) by a geodesic path broken twice,
namely, first by going along the geodesic ray from p to γ0(z(p)), next by
going from γ0(z(p) to γ0(z(q) along γ0, then by going along the geodesic
ray from γ0(z(q)) to q. The total length of that broken path must be larger
than ℓ and it is, indeed, at most equal to L0 = ℓ0 + 2R.
If c < ∞, for each ǫ > 0 small enough, the triangle inequality satisfied by
the Riemannian distance on M shows that we can cover the tube TR0

(γ0)
by N open balls of radius r = c − ǫ, successively centered at the points

γ0(0), γ0(r), γ0(2r), . . . , γ0((N − 1)r), γ0(ℓ0), with N =
[ℓ0

c

]
+ 1. Now, the

length of the restriction of the geodesic γ to each ball is bounded above by
2r and, letting ǫ ↓ 0, we obtain ℓ 6 2Nc �

Using a Fermi chart along γ0, setting R1 = 9
10R0, we can readily find a

positive constant c1 such that, for each p ∈ TR1
(γ0), the following estimates

hold at x = x(p):

(3) ‖g − e‖ 6 c1ρ
2(x), ‖∇ − D‖ 6 c1ρ(x).

The purpose of our next proposition is twofold. On the one hand, it
provides a radius under which the geodesics contained in a tube about γ0 and
longer than a given length δ > 0 keep moving axially in a single direction; in
particular, they must be embedded, like γ0. On the other hand, it provides
an estimate describing how C0 close to γ0 a geodesic should be in order to
get C1 close to it.

Proposition 1.2 Fixing δ ∈ (0, L0), let r1 > 0 be given by:

r2
1

(
c1Θ

2
0 +

1

θ2
0

(4

δ
+ c1L0Θ

2
0

)2
)

= 1 .

4Throughout the paper, ℓ denotes the length of γ which may vary; it should be written
ℓ(γ), of course, but we will stick to the short notation ℓ instead.
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For each r ∈
(
0,min

(
R1, r1

))
and each unit speed geodesic s ∈ [0, ℓ] →

γ(s) ∈ Tr(γ0) with length ℓ > δ, the axial component dγn

ds
of the velocity

cannot vanish. Moreover, the following estimate holds:

∥∥∥∥ε
dγ

ds
−

∂

∂xn

∥∥∥∥ 6

(4

ℓ
+ c1ℓΘ

2
0

)
ργ +

(
c1Θ

2
0 +

1

θ2
0

(4

ℓ
+ c1ℓΘ

2
0

)2
)

ρ2
γ ,

where ργ stands for max
σ∈[0,ℓ]

ρ
(
γ(σ)

)
and ε = ±1, for the sign of dγn

ds
.

Proof. Before proving the first assertion we require an estimate, namely,
letting s ∈ [0, ℓ] → γ(s) ∈ TR1

(γ0) be a unit speed geodesic, we have:

(4) ∀s ∈ [0, ℓ],
∥∥∥Π0

dγ

ds
(s)
∥∥∥ 6

(4

ℓ
+ c1ℓΘ

2
0

)
ργ .

Indeed, if s ∈
[
0, ℓ

2

]
, we write: ∀α ∈ {1, . . . , n − 1},

(ℓ − s)
dγα

ds
(s) = γα(ℓ) − γα(s) −

∫ ℓ

s

∫ S

s

d2γα

dσ2
(σ) dσ dS;

while if s ∈
[

ℓ
2 , ℓ
]
, we write instead:

s
dγα

ds
(s) = γα(s) − γα(0) −

∫ s

0

∫ S

s

d2γα

dσ2
(σ) dσ dS.

In either case, transforming the last term of the right-hand side by means
of the geodesic equation, recalling (3) and using the triangle and Schwarz
inequalities, we readily infer (4). Writing:

∣∣∣
dγn

ds

∣∣∣ =
∥∥∥
dγ

ds

∥∥∥

√√√√√√1 −

∥∥∥Π0
dγ
ds

∥∥∥
2

∥∥∥dγ
ds

∥∥∥
2 and

∥∥∥
dγ

ds

∥∥∥ =

√
1 − (g − e)

(dγ

ds
,
dγ

ds

)
,

the latter to be combined with (3), we get
∣∣∣dγn

ds

∣∣∣ > 1− c1ρ
2
γΘ2

0 −
1

θ2
0

∥∥∥Π0
dγ
ds

∥∥∥
2

hence, using (4), we obtain the important lower bound:

(5) ∀s ∈ [0, ℓ],
∣∣∣
dγn

ds
(s)
∣∣∣ > 1 −

(
c1Θ

2
0 +

1

θ2
0

(4

ℓ
+ c1ℓΘ

2
0

)2
)

ρ2
γ .

Recalling Proposition 1.1, and the assumption ℓ > δ, it shows that
dγn

ds
cannot vanish provided the radius r of the tube in which the geodesic ranges

satisfies: r2

(
c1Θ

2
0 + 1

θ2

0

(
4
δ

+ c1L0Θ
2
0

)2
)

< 1, or else r ∈
(
0,min

(
R1, r1

))
,

as we assumed. The first part of Proposition 1.2 is thus proved.
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Moreover, letting now ε stand for the sign of dγn

ds
, we have

∣∣∣dγn

ds
(s)
∣∣∣ ≡ εdγn

ds
,

so we readily get from (5) and the obvious inequality
∣∣∣dγn

ds

∣∣∣ 6

∥∥∥dγ
ds

∥∥∥, the

pinching:

−
1

2
c1Θ

2
0ρ

2
γ 6 1 − ε

dγn

ds
6

(
c1Θ

2
0 +

1

θ2
0

(4

ℓ
+ c1ℓΘ

2
0

)2
)

ρ2
γ .

Combined with (4), it yields the estimate claimed in the second part of

Proposition 1.2, since
∥∥∥εdγ

ds
(s) − ∂

∂xn

∥∥∥ 6

∥∥∥Π0
dγ
ds

(s)
∥∥∥+

∣∣∣εdγn

ds
(s) − 1

∣∣∣ �

Setting UM for the unit tangent bundle and Ends(TM) for the bundle
of symmetric5 endomorphisms of TM , let us consider the map:

(p, U) ∈ UM → J(p, U) = Rp(., U)U ∈ Ends(TM),

where Rp stands for the Riemann curvature tensor at the point p ∈ M . It
satisfies g

(
V, J(p, U)W

)
≡ Sp(V,U, W, U) where Sp stands for the sectional

(or covariant Riemann) curvature tensor of the metric g at the point p;
it is thus, indeed, symmetric. We denote by κ1(p, U) 6 · · · 6 κn−1(p, U)
the eigenvalues (each repeated with its multiplicity) of the nontrivial part of
J(p, U), namely of its restriction to U⊥. For each α ∈ {1, . . . , n−1}, the map
(p, U) ∈ UM → κα(p, U) ∈ R is C1

loc [Kat95, pp.122–123], hence uniformly
Lipschitz for p ∈ TR0

(γ0). So there exists a constant k0 such that, for
each couple (p, U), (p′, U ′)) ∈ UM2 with max

(
rγ0

(p), rγ0
(p′)
)

6 R0 and each
α ∈ {1, . . . , n − 1}, the following uniform estimate holds:

(6)
∣∣κα(p, U) − κα(p′, U ′)

∣∣ 6 k0

(
d(p, p′) + ‖U − U ′‖

)
.

For each unit speed geodesic σ ∈ [0, ℓ] → γ(σ) ∈ M , we set s 7→ Jγ(s) for

the pull back to [0, ℓ] of the map J by the section t 7→
(
γ(s), dγ

dσ
(s)
)
∈ UM

and call Jγ(s) the Jacobi operator along the geodesic γ at s. We further
set κ1

γ(s) 6 · · · 6 κn−1
γ (s) for the eigenvalues of the restriction of Jγ(s) to

dγ
dσ

(s)⊥ and call them the Jacobi curvatures along γ at s.

Corollary 1.1 Given δ and r as in Proposition 1.2, set:

k = k0

(
1 +

4

δ
+ c1L0Θ

2
0 +

(
c1Θ

2
0 +

1

θ2
0

(4

δ
+ c1L0Θ

2
0

)2
)

r

)
.

For each unit speed geodesic σ ∈ [0, ℓ] → γ(σ) ∈ Tr(γ0) with length ℓ > δ
and each s ∈ [0, ℓ], the following estimate holds:

(7) ∀α ∈ {1, . . . , n − 1},
∣∣∣κα

γ (s) − κα
0

(
γn(s)

)∣∣∣ 6 k ργ ,

where κ1
0 6 · · · 6 κn−1

0 stands for the Jacobi curvatures along γ0.

5here, ’unit’ and ’symmetric’ refer to the Riemannian metric g, of course
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Proof. Indeed, fixing γ as stated, we may apply Proposition 1.2 to it. It
yields an estimate on

∥∥ dγ
dσ

(s)− ∂
∂xn

∥∥ which, combined with the estimate (6)

read at: (p, U) =
(
γ(s), dγ

dσ
(s)
)

and (p′, U ′) =
(
γ0

(
γn(s)

)
, ∂

∂xn

)
, yields the

desired result �

Corollary 1.1 shows in particular that, if the Jacobi operator along γ0

stays definite, it must stay so (with the same signature) along geodesics
longer than a given length and contained in a tube about γ0 of small enough
radius.

1.4 Family of Fermi maps near γ0

For each unit speed geodesic s ∈ [0, ℓ] → γ(s) ∈ TR1
(γ0), let Iγ0

(γ) ⊂ [0, ℓ0]
denote the axial image interval γn

(
[0, ℓ]

)
and T (γ0, γ), the shortest piece

of tube about γ0 containing γ, equal to
{
m ∈ Tργ (γ0), xn(m) ∈ Iγ0

(γ)
}
.

If such a geodesic γ is an embedding, when is it possible to construct a
Fermi map along it such that a point m ∈ T (γ0, γ) may stay outside the
corresponding tube about γ if and only if its height zγ(m) relative to γ
satisfies either zγ(m) < 0 or zγ(m) > ℓ ? When such a possibility occurs,
we call (γ0, γ)-exceptional the latter points and (γ0, γ)-accessible all other
points of T (γ0, γ). Sticking to the notations of Proposition 1.2, we will prove
the following

Proposition 1.3 For each δ ∈ (0, ℓ0), there exists r2 ∈
(
0,min

(
R1, r1

))

such that, for each unit speed geodesic γ longer than δ and contained in
Tr2

(γ0), a Fermi map can be constructed along γ with corresponding tube
about γ containing the whole of T (γ0, γ) but its (γ0, γ)-exceptional points.

We call family of Fermi maps near γ0 the map which assigns, to each
unit speed geodesic γ as stated and each (γ0, γ)-accessible point m ∈ Tr2

(γ0),
the image of m by the Fermi map along γ.

Proof. The idea is to use a suitable implicit function theorem argument
along γ0. Since it is absent from the literature, we will present it carefully.
Let us fix δ ∈ (0, ℓ0) and a unit speed geodesic σ ∈ [0, ℓ∗] → γ∗(σ) ∈ Tr2

(γ0),
with ℓ∗ > δ and r2 ∈

(
0,min

(
R1, r1

))
to be chosen later. From Proposition

1.2, we know that γ∗ is an embedding. We can thus construct a tube T̺(γ
∗)

about γ∗, for some radius ̺ > 0, as done for γ0 in Section 1.1. We want
ργ∗ 6 r2 small enough compared to ̺ such that the tube T̺(γ

∗) contains
T (γ0, γ

∗) but its exceptional points. Can we choose the radius r2 such that
this property holds for every such geodesic γ∗ ?

First, we observe that the required property holds for γ∗ if and only if
it holds for the reversed geodesic γ∗

rev, given by: σ ∈ [0, ℓ∗] → γ∗
rev(σ) =

γ∗(ℓ∗ − σ). Therefore, applying Proposition 1.2 to γ∗, we may assume with

no loss of generality that
dγ∗n

dσ
is positive.
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Next, we note that the geodesic γ∗ is given by its Cauchy data (p∗, u∗) =(
γ∗(0), dγ∗

dσ
(0)
)
∈ UM and its length ℓ∗ ∈ [δ, L0], while the generic point m∗

of the tube T̺(γ
∗) is determined by its Fermi map image Fγ∗(m∗), namely

by its height σ∗ = zγ∗(m∗) ∈ [0, ℓ∗] and by the vector V ∗ = v⊥γ∗(m∗) ∈ (u∗)⊥

such that
∣∣V ∗
∣∣ 6 ̺ and Eγ∗(V ∗, σ∗) = m∗. Here, we have denoted by Eγ∗ :

(u∗)⊥ × (−ǫ, ℓ∗ + ǫ) → M (resp. by v⊥γ∗) the analogue for γ∗ of the map E0

(resp. of the component v⊥0 ) defined for γ0 at the beginning of Section 1.1.
The resulting point (p∗, u∗, V ∗), amalgam of the Cauchy data of γ∗ with

the Fermi component V ∗ = v⊥γ∗(m∗) ∈ (u∗)⊥ of m∗, lies in the vector bundle
ker Tπ → UM , kernel of the tangent map to the natural projection π :
UM → M . Sticking to the Fermi chart x along γ0, we use it to build a chart
of ker Tπ near (p∗, u∗, V ∗) by assigning to each neighboring point (p, u, V )
the (3n − 2)-tuple

(
x1, . . . , xn, u1

0, . . . , u
n−1
0 , V 1

0 , . . . , V n−1
0

)
with xi = xi(p)

and uα
0 , V α

0 defined as follows. Firstly, for each tangent vector W ∈ TpM ,
let W 0 ∈ Tp⊥

0

M , with p⊥0 = p⊥γ0
≡ γ0

(
xn(p)

)
, denote its (backward) parallel

transport6 along the geodesic ray [γ0, p], and W0 ∈ Tγ0(0)M , similarly from
the latter now along γ0. We pause to record a lemma (the proof of which is
left as an easy exercise):

Lemma 1.1 If U is a unit tangent vector at p ∈ TR1
(γ0) and U0 stands for

its parallel transport to the point γ0

(
xn(p)

)
along the geodesic ray [γ0, p], the

following estimate holds:
∥∥U − U0

∥∥ 6 c1Θ0 r2(p).

Applying this lemma, combined with Proposition 1.2 and the triangle
inequality, to the vector u∗ ∈ Tp∗M , and recalling that ‖.‖ ≡ |.| along γ0,
we infer the estimate:

(8)
∣∣u∗

0 − en

∣∣ 6 k1r2

with k1 = 4
δ

+ c1L0Θ
2
0 +

(
c1Θ0 + c1Θ

2
0 +

1

θ2
0

(
4
δ

+ c1L0Θ
2
0

)2
)

r1. Here, we

used the positivity assumption made above on (u∗)n. Taking r2 <
1

k1
, this

estimate implies the positivity of (u∗
0)

n. Back to the definition of the chart
of kerTπ under elaboration, we take (p, u, V ) close enough to (p∗, u∗, V ∗)
for un

0 to be still positive, and we define the uα
0 ’s and V α

0 ’s by:

n−1∑

α=1

uα
0 eα = Π0u0 ,

n−1∑

α=1

V α
0 eα = Π0V0 .

We recover the full parallel transported vectors u0, V0, by setting un
0 =√

1 −
∑n−1

α=1(u
α
0 )2 since

∣∣u0

∣∣ = 1 and un
0 > 0, and V n

0 = −
1

un
0

∑n−1
α=1 uα

0 V α
0

6henceforth, with respect to the Levi–Civita connection ∇, unless otherwise specified
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since V0 ⊥ u0. So
(
xi, uα

0 , V α
0

)
is, indeed, a local chart of kerTπ. Although

heavier, let us denote it rather by
(
x∗i, u∗α

0 , V ∗α
0

)
since we are now willing

to move around the geodesic γ∗ and the point m∗ ∈ T̺(γ
∗), hence to let the

point (p∗, u∗, V ∗) itself vary in kerTπ near (p0, u0, V0) =
(
γ0(s0),

dγ0

ds
(s0), 0

)

with s0 ∈ [0, ℓ0]. Deferring the completion of the present proof, we pause to
set up an appropriate implicit function theorem.

Implicit function theorem argument. In this paragraph, the require-
ment that the geodesic γ∗ be longer than δ will be unnecessary, thus ig-
nored provisionally. Given s0 ∈ [0, ℓ0] and σ0 ∈ [0, ℓ0 − s0], let the point
(p∗, u∗, V ∗) ∈ ker Tπ be close to (p0, u0, V0) and the real σ∗ ∈ R+ be close
to σ0; let a further point m belong to Tr2

(γ0). Setting γ∗(σ) = expp∗(σu∗)
and m∗ = Eγ∗(V ∗, σ∗), consider the map:

Ψ(p∗, u∗, V ∗, σ∗, m) = x(m∗) − x(m) ∈ Rn.

Using the chart
(
x∗i, u∗α

0 , V ∗α
0

)
for (p∗, u∗, V ∗) and the chart xi for m, let us

denote the local expression of Ψ (resp. x ◦ Eγ∗) by:

Ψi
(
x∗j , u∗α

0 , V ∗α
0 , σ∗, xj

)
= Ei

(
x∗j , u∗α

0 , V ∗α
0 , σ∗

)
− xi.

At the point given by7: x∗α = 0, x∗n = s0; u∗α
0 = 0; V ∗α

0 = 0; σ∗ = σ0; xα =
0, xn = s0 + σ0, we have:

∀i ∈ {1, . . . , n}, Ψi
(
(~0, s0),~0,~0, σ0, (~0, s0 + σ0)

)
= 0 , and

det

(
∂Ψj

∂
(
V ∗α

0 , σ∗
)
(
(~0, s0),~0,~0, σ0, (~0, s0 + σ0)

)
)

6= 0 ,

where ~0 stands for the zero vector of Rn−1. The latter equation holds since
∂Ψj

∂
(
V ∗α

0 , σ∗
) ≡

∂Ej

∂
(
V ∗α

0 , σ∗
) and dEj

(
(~0, s0),~0,~0, σ0

)
≡ dxj ◦ dE0(0, s0 + σ0)

where dE0(0, s0 +σ0) is an isomorphism as seen in Section 1.1. We are thus
in position to apply the Implicit Function Theorem [Lan02]. There exists
a real ǫ > 0 and a unique map

(
x∗j , u∗α

0 , xj
)
→ F ∗ =

(
V∗1

0 , . . . ,V∗n−1
0 , ς∗

)

such that, if:

(9) ρ(x∗) 6 ǫ,
∣∣x∗n − s0

∣∣ 6 ǫ, |Π0u
∗
0| 6 ǫ, ρ(x) 6 ǫ,

∣∣xn − (s0 + σ0)
∣∣ 6 ǫ ,

the identities: ∀i ∈ {1, . . . , n},

Ψi
(
x∗j , u∗α

0 ,V∗α
0

(
x∗k, u∗α

0 , xk
)
, ς∗
(
x∗k, u∗α

0 , xk
)
, xj
)
≡ 0

7throughout with α ranging in {1, . . . , n − 1}
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are satisfied with
n−1∑

α=1

(
V∗α

0

(
x∗k, u∗α

0 , xk
))2

and
∣∣∣ς∗
(
x∗k, u∗α

0 , xk
)
− σ0

∣∣∣ small.

By construction, these identities imply m = m∗; in other words, the map
xj → F ∗i

(
x∗j , u∗α

0 , xj
)

is nothing but the expression of the Fermi map Fγ∗

along the geodesic γ∗(σ) = expp∗(σu∗) read in the Fermi chart x along γ0.
Finally, let us stress that the real ǫ > 0 occurring in (9) may be chosen
so small that it becomes independent of the couple of parameters (s0, σ0),
because the latter lies in a compact subset of R2, namely in the triangle of
the positive quadrant given by s0 + σ0 6 ℓ0. Henceforth, we fix ǫ > 0 so.

Completion of the proof of Proposition 1.3. Back to the case of
our previous geodesic γ∗, supposed longer than δ and with positive axial
component, we are now in position to choose the radius r2 of the tube about
γ0 in which γ∗ should lie. First of all, we fix a point m ∈ T (γ0, γ

∗). So far,
we have required r2 ∈

(
0,min(R1, r1,

1
k1

)
)
. Redoing the preceding implicit

function theorem argument now with p∗ = γ∗(0), s0 = xn(p∗), s0 + σ0 =
xn(m), the first and fourth inequalities of (9) prompt us to take r2 6 ǫ.
Besides, we must further shrink r2 > 0 in order to keep γ∗ nearly vertical
so that the third inequality of (9) holds as well. From (8), we can do it by

taking r2 6
ǫ

k1
, as easily verified. Altogether, if the geodesic γ∗ is longer

than δ ∈ (0, ℓ0) with dγ∗n

dσ
> 0 and if it is contained in the tube Tr2

(γ0) with

r2 ∈
(
0,min

(
R1, r1,

ǫ
k1

))
, the triple:

(
x∗i = x∗i

(
γ∗(0)

)
, u∗α

0 = u∗α
0

(dγ∗

dσ
(0)
)
, xi = xi(m)

)

satisfies the bounds (9). So we may consider its image by the local map F ∗

precedingly constructed. In particular, it follows that the point m lies in
a tube about the embedded geodesic γ∗ if and only if its height zγ∗(m) =
ς∗
(
x∗i, u∗α

0 , xi
)

lies in the interval [0, ℓ∗]. Since the point m was arbitrarily
fixed in T (γ0, γ

∗), we are done �

1.5 Second fundamental form of a cylinder

If n > 2, sticking to the notations of Section 1.1, let us study the second
fundamental form of a cylinder Cr(γ0) of small radius r about γ0.

Proposition 1.4 Given r ∈ (0,min(1, R)), a point p ∈ Cr(γ0) and a couple
of vectors (V,W ) ∈ TpCr(γ0) × TpCr(γ0), let us denote by IIp(V,W ) the
second fundamental form of the cylinder Cr(γ0) calculated at p on (V,W ).
If we extend the vectors V,W and N(p) as Fermi fields on TR(γ0) and set
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p⊥ = γ0(z(p)), the following asymptotic expansion holds:

IIp(V,W ) = −
1

r
g(Π0V,Π0W )(p⊥) + r

(
S
(
V,N(p), W, N(p)

)
(p⊥)

−
1

3
S
(
Π0V,N(p),Π0W, N(p)

)
(p⊥)

)
+ O(r2),

where, again, S stands for the sectional curvature tensor.

Proof. By definition [Gra04, p.33] [dC92, p.128], we have IIp(V,W ) =
g
(
−∇V N, W

)
(p) and, here, one may allow the vectors V,W be arbitrary in

TpM since N is vector field defined outside Cr(γ0). Covariant differentiation
of the generalized Gauss lemma identity g(N, .) = dr on

{
r > 0

}
⊂ TR(γ0)

yields:

(10) IIp(V,W ) = −∇dr(V,W )(p) .

More generally, for each couple of vector fields (A, B), we find ∇dr(A, B) =
g
(
A,∇BN

)
= g
(
B,∇AN

)
hence also, using Lie brackets:

(11) 2 ∇dr(A, B) = N.g(A, B) + g(A, [B, N ]) + g(B, [A, N ]) ,

since ∇ is torsionless. Taking a Fermi chart x along γ0 such that x(p) =(
r, 0, . . . , 0︸ ︷︷ ︸

n−2

, xn(p)
)
, let us calculate ∇dρ(r, 0, xn) using (11) with A and B

equal to the ∂
∂xi ’s. Note that ν(r, 0, xn) =

∂

∂x1
and dρ(r, 0, xn) = dx1. From

(1), we get g1i(r, 0, xn) = δ1i and N.g
( ∂

∂x1
,

∂

∂xi

)
(r, 0, xn) = 0. From (2),

we find
[ ∂

∂xn
, ν
]
(r, 0, xn) = 0 and

∀α < n,
[ ∂

∂xα
, ν
]
(r, 0, xn) =

1

r

( ∂

∂xα
− δ1α

∂

∂x1

)
;

in particular,
[ ∂

∂x1
, ν
]
(r, 0, xn) = 0. Besides, for i, j ∈ {2, . . . , n}, we can

derive the local expressions of N.g
(

∂
∂xi ,

∂
∂xj

)
(r, 0, xn) =

∂gij

∂x1
(r, 0, xn) from

the following Riemann type formulas extended to the Fermi setting [Spi79]
[DG10, Lemma 2]:

gab

(
x1, 0, . . . , 0︸ ︷︷ ︸

n−2

, xn
)

= δab −
1

3
(x1)2 Ra1b1(0, . . . , 0︸ ︷︷ ︸

n−1

, xn) + O
(
(x1)3

)
,

with a, b ∈ {2, . . . , n − 1}, and

gan(x1, 0, xn) = −
2

3
(x1)2 Ra1n1(0, xn) + O

(
(x1)3

)
,
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gnn(x1, 0, xn) = 1 − (x1)2 Rn1n1(0, xn) + O
(
(x1)3

)
,

where x1 stands for a small real parameter and Rijkl for the components of
the sectional curvature tensor. Doing so, we obtain the expression:

(12) ∇dρ(r, 0, xn) =
n−1∑

a=2

n−1∑

b=2

(1

r
δab −

2

3
r Ra1b1(0, xn) + O(r2)

)
dxa ⊗ dxb

+
n−1∑

a=2

(
−r Ra1n1(0, xn) + O(r2)

)(
dxa ⊗ dxn + dxn ⊗ dxa

)

+
(
−r Rn1n1(0, xn) + O(r2)

)
dxn ⊗ dxn.

The latter combined with (10) yields the proposition �

Remark 1.1 For later use, we record here that, if n = 2, recalling (1), the
expansion of the metric in the Fermi chart x becomes simply:

g(x1, x2) = dx1 ⊗ dx1 +
(
1 − (x1)2K(0, x2) + O

(
(x1)3

))
dx2 ⊗ dx2,

where K stands for the Gauss curvature of M . Accordingly, still from (11),
the Hessian formula (12) becomes:

∇dρ(r, x2) =
(
−rK(0, x2) + O(r2)

)
dx2 ⊗ dx2.

2 Further properties when the Jacobi operator is

negative

From the properties established is the preceding section for a thin tube
about the geodesic γ0, we will now derive stronger ones by assuming that
the operator Jγ0

is negative, as done in Theorem 0.1. Specifically, using the
notations of Corollary 1.1 and setting κ0 = max

s∈[0,ℓ0]
κn−1

0 (s), our assumption

means that κ0 < 0; henceforth, it is implicitly made.

Proposition 2.1 (the second fundamental forms stay definite) One can
find a small real r3 > 0 such that, for each p ∈ Tr3

(γ0) with r = r(p) 6= 0,
the second fundamental form of Cr(γ0) at the point p is negative definite.

Proof. Let us take a Fermi chart x at the point p like the one used in the
proof of Proposition 1.4 and write with it the expression of IIp(V,W ) found



16 Ph. Delanoë

in that proposition, with V = W =
∑n

i=2 V i ∂
∂xi ∈ TpCr(γ0). We find:

(13) IIp(V, V ) = −
1

2r

n−1∑

a=2

(
V a
)2

+
r

2
Rn1n1(0, xn)

(
V n
)2

−
1

4r

(
n−1∑

a=2

(
V a
)2

− 8r2
n−1∑

a=2

Ra1n1(0, xn)V aV n − 2r2Rn1n1(0, xn)
(
V n
)2
)

−
1

4r

n−1∑

a=2

n−1∑

b=2

V aV b
(
δab −

8

3
r2 Ra1b1(0, xn)

)
+ O(r2)

and the result readily follows from Rn1n1(0, xn) 6 κ0 < 0, provided r is
taken small enough �

Proposition 2.2 (geodesics obey a Maximum Principle) One can find a
small real r4 > 0 such that, for each geodesic path t ∈ [0, 1] → γ(t) ∈ Tr4

(γ0),
the following inequality holds:

max
t∈[0,1]

r(γ(t)) 6 max
(
r(γ(0)), r(γ(1))

)
.

Moreover, if r(γ(ϑ)) = max
(
r(γ(0)), r(γ(1))

)
for some ϑ ∈ (0, 1), the path γ

must be constant.

Proof. Anytime t ∈ [0, 1] → γ(t) ∈ TR(γ0) is a geodesic, at each t ∈ [0, 1]
such that r(γ(t)) 6= 0, we have:

d2

dt2
(
r(γ(t)

)
= ∇dr(γ(t))

(
dγ

dt
,
dγ

dt

)
.

If n > 2, combining (12) with (13) written with V = dγ
dt

, we infer that the
second derivative of the auxiliary real function t ∈ [0, 1] → r(γ(t)) is non
negative on [0, 1] provided r(γ(t)) 6 r4 = r3. If n = 2, the same conclusion
holds with r4 small enough, due to Remark 1.1 read with K(0, x2) 6 κ0 < 0.
In any case, the Maximum Principle [PW67] implies the first part of the

proposition. Moreover, it yields r ◦ γ ≡ r(γ(ϑ)) =: rϑ > 0 hence
dγ

dt
(t) ∈

Tγ(t)Crϑ
(γ0) for each t ∈ [0, 1]. From (10) and Proposition 2.1 combined

with d2

dt2

(
r(γ(t)

)
6 0, we infer that dγ

dt
≡ 0, so γ must indeed be constant �

Before stating the next property, we require a lemma of independent
interest8:

Lemma 2.1 One can find a small real r5 > 0 such that the quadratic forms
inequality g > dr2γ0

+ dz2
γ0

holds at each point of
{
p ∈ Tr5

(γ0), r(p) > 0
}
.

8a reader who ignores the rest of the paper should understand it preceded by: ”Let γ0

be an embedded unit speed geodesic with negative Jacobi operator.”
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Proof. Take a point p as stated and a Fermi chart x along γ0 such that
x(p) = (r, 0, . . . , 0, xn). From Remark 1.1 read with K(0, x2) 6 κ0 < 0, the
lemma appears straightforward if n = 2. In higher dimension, from (1) and
the expansion of gij(x

1, 0, xn) recalled above (see displayed formulas before
(12)), we infer that, for each vector V =

∑n
i=1 V i ∂

∂xi ∈ TpM , the quadratic
form

(
g − dr2γ0

− dz2
γ0

)
(p) applied to V can be expressed in the chart x,

up to O(r3) terms, as the sum of two quadratic polynomials in V , namely
n−1∑

a,b=2

(
1

2
δab −

1

3
r2Ra1b1(0, xn)

)
V aV b and:

n−1∑

a=2

(
1

2
V 2

a −
4

3
r2Ra1n1(0, xn)V aV n

)
− r2Rn1n1(0, xn)

(
V n
)2

.

By taking r > 0 small enough, and using Rn1n1(0, xn) 6 κ0 < 0 for the
second polynomial, we can make each polynomial non negative �

Proposition 2.3 (γ0 is minimizing) Take r5 > 0 as in Lemma 2.1. The
length of each piecewise C1 path t ∈ [0, 1] → c(t) ∈ M ranging in Tr5

(γ0)
with z(c(0)) = 0 and z(c(1)) = ℓ0, must be at least equal to ℓ0. Furthermore,
if equality holds and r ◦ c(t) = 0 for some t ∈ [0, 1] then c, reparametrized by
an arc length parameter suitably shifted to avoid jump9 on each subinterval
of [0, 1] in the interior of which c is C1 and dc

dt
6= 0, coincides with γ0.

Proof. Let c be a path as stated and x, a Fermi chart along γ0. From Lemma

2.1, the length of c satisfies: ℓ >
∫ 1
0

√(
d
dt

(ρ ◦ c)
)2

+
(

dcn

dt

)2
dt . Therefore,

if
∫ 1
0

∣∣ d
dt

(ρ ◦ c)
∣∣ dt 6= 0, we have ℓ >

∫ 1
0

∣∣dcn

dt

∣∣dt > ℓ0 as asserted. Moreover,

if ℓ = ℓ0, we see that d
dt

(ρ ◦ c) must vanish, hence also (ρ ◦ c) anytime it
does at some t ∈ [0, 1]. In that case, the images of c and γ0 coincide; so∣∣dc
dt

∣∣ =
∥∥dc

dt

∥∥ =
∣∣dcn

dt

∣∣ and
∫ 1
0

∣∣dcn

dt

∣∣dt = ℓ0 = cn(1) − cn(0) =
∫ 1
0

dcn

dt
dt. The

latter equality implies that dcn

dt
> 0; so the path c, reparametrized by arc

length as stated, must indeed coincide with γ0 �

Proposition 2.4 (long geodesics have a negative Jacobi operator) Given
δ > 0, we can find r6 ∈

(
0,min(R1, r1)

]
such that, for each r ∈ (0, r6) and

each unit speed geodesic σ ∈ [0, ℓ] → γ(σ) ∈ Tr(γ0) with length ℓ > δ, the
Jacobi operator Jγ is negative, or else max

s∈[0,ℓ]
κn−1

γ (s) < 0.

Proof. Let k = k(r) be the affine function of r defined in Corollary 1.1
and r+ be the positive root of the quadratic equation rk(r) + κ0 = 0; the
proposition holds with r6 = min(R1, r1, r

+) by Corollary 1.1 �

9by taking the initial value of the parameter on a subinterval equal to (zero, of course,
on the first subinterval and elsewhere to) to the final value of the parameter on the
preceding subinterval
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Proposition 2.5 (each geodesic is minimizing) One can find a small real
r7 > 0 such that, for each unit speed geodesic s ∈ [0, ℓ] → γ(s) ∈ M and
each piecewise C1 path t ∈ [0, 1] → c(t) ∈ M , both ranging in Tr7

(γ0) with
c(0) = γ(0), c(1) = γ(ℓ), the length of c must be at least equal to ℓ. More-
over, equality holds if and only if c, reparametrized by a suitable arclength
parameter on each subinterval of [0, 1] in the interior of which c is C1 and
dc
dt

6= 0, coincides with γ.

Proof. Let γ be a geodesic of length ℓ as stated. The proposition is obvious
if ℓ < i. If ℓ > i, which we suppose in the proof, we may use Propositions
1.2 and 1.3 read with δ = i; the radii r1 and r2 are understood accordingly
and we take r7 6 r2. In this situation, we know that γ is an embedding and
there exists a Fermi chart xγ along γ whose domain Tη(γ)contains T (γ0, γ)
but the (γ0, γ)-exceptional points.

Our next task is the main one, namely we must specify how the radius
η of that tubular domain can be controlled by r7. By inspecting the proof
of Proposition 1.3, we see (sticking to its notations, except for γ∗ now written γ,

so m∗ = γ(0), u∗ = dγ
ds

(0)) that such a control amounts to a similar one on:

∥∥V∗
0 (x∗,Π0u

∗
0, x)

∥∥2
=

n∑

i=1

(
V∗i

0 (x∗,Π0u
∗
0, x)

)2
,

where x∗, Π0u
∗
0, x satisfy the bounds (9) now read with ǫ = r7 and where

V∗n
0 has to be defined by:

V∗n
0 = −

1

u∗n
0

n−1∑

α=1

u∗α
0 V∗α

0 with u∗n
0 = ±

√√√√1 −

n−1∑

α=1

(
u∗α

0

)2
.

Furthermore, as r7 ↓ 0, we know that
∑n−1

α=1

(
V∗α

0

)2
tends to zero. All we

require is thus a uniform positive lower bound on
∣∣u∗n

0

∣∣. Such a bound will
follow from (5) and Lemma 1.1. Indeed, the former combined with Propo-

sition 1.1 implies here:
∣∣∣dγn

ds

∣∣∣ > 1 −

(
c1Θ

2
0 +

1

θ2
0

(
4
i
+ 2c1Θ

2
0(ℓ0 + i)

)2
)

r2
7,

while the latter yields:
∣∣u∗n

0

∣∣ >
∣∣∣dγn

ds

∣∣∣− c1Θ
2
0r

2
7, so we get:

∣∣u∗n
0

∣∣ > 1 −

(
2c1Θ

2
0 +

1

θ2
0

(4

i
+ 2c1Θ

2
0(ℓ0 + i)

)2
)

r2
7 .

Defining r1 > 0 by, say: r21

(
2c1Θ

2
0 +

1

θ2
0

(
4
i
+ 2c1Θ

2
0(ℓ0 + i)

)2
)

= 1
2 , and

taking r7 6 r1, we obtain
∣∣u∗n

0

∣∣ > 1
2 . Now, it is clear that

∥∥V∗
0 (x∗,Π0u

∗
0, x)

∥∥
tends to zero as r7 ↓ 0. Here, among the arguments of V∗

0 , we are given
the first one, since x∗ = x(γ(0)); similarly for the second one, since Π0u

∗
0 is

defined out of dγ
ds

(0); the sole variable is the third one, since x = x(m) with



Thin r-neighborhoods of negative geodesics are strongly convex 19

m ∈ T (γ0, γ) ∩ Tη(γ). Moreover, using the aforementioned Fermi chart xγ ,
the identity ρ

(
xγ

)
=
∥∥V∗

0 (x∗,Π0u
∗
0, x)

∥∥ holds. So ρ
(
xγ

)
↓ 0 as r7 ↓ 0, which

shows that the Implicit Function Theorem used in the proof of Proposition
1.3 allows us to let η go to zero as r7 ↓ 0.

Besides, Proposition 2.4 read with δ = i implies that, if we take r7 < r6,
the Jacobi operator of γ is negative.

We conclude that there exists r7 > 0 small enough such that, if γ ranges
in Tr7

(γ0), the radius η of the tube about γ provided by Proposition 1.3 may
be taken small enough such that Lemma 2.1 and Proposition 2.3 hold for
the geodesic γ in Tη(γ).

Now, we are in position to complete the proof of Proposition 2.5. Let c be
a path as stated. By the definition of T (γ0, γ), the smallness of r7 (hence of
η) and the property of Tη(γ) proved in Proposition 1.3, there exists a closed
interval contained in [0, 1] such that the restriction c̄ of c to this interval
fulfills the assumption of Proposition 2.3 (read in Tη(γ) instead of Tr5

(γ0)).
So we get the inequalities: L = length of c > length of c̄ > ℓ = length of γ,
which proves the first part of the proposition. Moreover, if L = ℓ, the images
of the paths c and c̄ must coincide, so c̄ shares with γ the same endpoints
and the last part of Proposition 2.5 follows from that of Proposition 2.3 �

Corollary 2.1 (each geodesic is uniquely determined by its endpoints)

Take r7 > 0 as in Proposition 2.5. For each (p, q) ∈ Tr7
(γ0)×Tr7

(γ0), there
exists at most one unit speed geodesic of γ : [0, ℓ] → M entirely lying in
Tr7

(γ0) with γ(0) = p, γ(ℓ) = q.

Proof. By contradiction. If two distinct unit speed geodesics of M entirely
lying in Tr7

(γ0) had the same endpoints, Proposition 2.5 would imply that
the length of each geodesic be at least equal to the length of the other; so the
geodesics would have equal length. Still by Proposition 2.5, the geodesics
would thus coincide, which is absurd �

3 Proof of Theorem 0.1

Reduction of the proof. We only have to prove the existence of a radius
r > 0 such that each couple of points of the tube Tr(γ0), located as stated

in Theorem 0.1, can be joined by a geodesic with interior lying in

◦

T̂r(γ0).
Indeed, suppose we did. Then, each such geodesic must be unique (by
Corollary 2.1) and minimizing among piecewise C1 paths sharing the same
end points and lying in Tr(γ0) (by Proposition 2.5); so the proof is complete.

Strategy. Fixing p ∈ Tr(γ0), let us consider the subsets:

(14a) Z+
p =

{
m ∈ Tr(γ0), m 6= p, z(m) > z(p)

and, if z(p) = 0 or ℓ0, z(m) 6= z(p)
}
,
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(14b) Z−
p =

{
m ∈ Tr(γ0), m 6= p, z(m) 6 z(p)

and, if z(p) = 0 or ℓ0, z(m) 6= z(p)
}
.

Assuming z(p) < ℓ0, we will prove Theorem 0.1 for q ∈ Z+
p . Assuming

z(p) > 0, we would prove it similarly for q ∈ Z−
p . Let us proceed to the

proof itself. We distinguish two cases.

Case 1: z(q) − z(p) <
c

2
. For λ ∈ [0, 1], set p⊥λ = [γ0, p](λr(p)) and

q⊥λ = [γ0, q](λr(q)). Take r <
c

2
. Then, for each λ ∈ [0, 1], the points p⊥λ

and q⊥λ lie in the Riemannian ball
{
m ∈ M, d(m⊥

0 , m) < ̺
}

with center

m⊥
0 = γ0

(z(p) + z(q)

2

)
and radius ̺ =

c

2
+ r < c. So there exists a unique

minimizing geodesic t ∈ [0, 1] → cλ(t) ∈ M such that cλ(0) = p⊥λ , cλ(1) =
q⊥λ ; here, for each t ∈ [0, 1], the map λ ∈ [0, 1] → cλ(t) ∈ M is smooth. We

must prove that c1((0, 1)) ⊂

◦

T̂r(γ0). To do so, let us argue by connectedness
on the set:

Λ =
{

λ ∈ [0, 1], cλ((0, 1)) ⊂

◦

T̂r(γ0)
}

.

By construction, Λ is non empty (0 ∈ Λ)and relatively open in [0, 1], so we
only have to prove that Λ is closed. Letting (λi)i∈N be a sequence of Λ and

λ∞ = limi→∞ λi ∈ [0, 1], it amounts to prove that cλ∞
((0, 1)) ⊂

◦

T̂r(γ0). By
continuity, the geodesic cλ∞

ranges in Tr(γ0). If cλ∞
(θ) ∈ Cr(γ0) for some

θ ∈ (0, 1), Proposition 2.2 implies that cλ∞
is constant; so p⊥λ∞

= q⊥λ∞
. But

the latter yields p = q, contradicting the assumption q ∈ Z+
p .

We are left with ruling out the following property:

(15) ∃θ ∈ (0, 1), z
(
cλ∞

(θ)
)

= 0 or ℓ0.

To do so, given δ > 0, we distinguish two subcases as stated in Theorem 0.1.

Subcase 1: n = 2. If (15) held, the vector
dcλ∞

dt
(θ) would necessarily

belong to ker dz \ {0}. But then, the geodesic t 7→ cλ∞
(t) would stay for all

t ∈ [0, 1] in the end of the tube given by the equation z = z
(
cλ∞

(θ)
)

because,
when n = 2, the latter is totally geodesic. We reach a contradiction, since
we have assumed that z(p) < ℓ0 and, if z(p) = 0, z(q) 6= 0.

Subcase 2: n > 2 and either |z(p)−z(q)| > ς or ς 6 z(p) 6 z(q) 6 ℓ0−ς.
If |z(p) − z(q)| > ς, the length ℓλ∞

of the geodesic cλ∞
must be bounded

below by ς due to Lemma 2.1. It follows that
dcn

λ∞

dt
> 0 if r > 0 is taken

small enough, due to Proposition 1.2 read with δ = ς. So, in that case,
the property (15) cannot hold. If instead ς 6 z(p) 6 z(q) 6 ℓ0 − ς, with
|z(p) − z(q)| < ς, the latter inequality yields ℓλ∞

6 ς + 2r, while the former
pinching combined with Lemma 2.1 yields ℓλ∞

> 2ς if (15) holds. In that
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case, we get the lower bound r > ς which is absurd, provided r < ς. In either
case, we conclude that (15) cannot occur for r > 0 small enough.

Having proved that λ∞ ∈ Λ, we conclude that Λ is closed hence equal
to [0, 1]. In particular, 1 ∈ Λ so Case 1 is settled. �

Case 2: z(q)−z(p) >
c

2
. Here, reading the constant r1 from Proposition

1.2 with δ =
c

2
, we take r > 0 small as done in Proposition 2.4. Furthermore,

we consider the subset of the interval [z(p), ℓ0] defined by:

Z+
p =

{
z ∈ [z(p), ℓ0],∀m ∈ Z+

p , z(m) = z =⇒ Tr(γ0) is

strongly convex for (p, m)
}
.

By construction, if z ∈ Z+
p , the whole interval [z(p), z] must lie in Z+

p and,
by Case 1, we know that Z+

p contains the interval
[
z(p), z(p) + c

2

)
. In the

next two lemmas, we prove that Z+
p is both closed and relatively open in

[z(p), ℓ0]. Granted it is, by connectedness, it must coincide with [z(p), ℓ0]
hence Theorem 0.1 is established when z(p) < ℓ0 and q ∈ Z+

p . The proof
when z(p) > 0 and q ∈ Z−

p is similar �

Lemma 3.1 The subset Z+
p is closed.

Lemma 3.2 The subset Z+
p is relatively open in [z(p), ℓ0].

Proof of Lemma 3.1. Let (zi)i∈N be a sequence of Z+
p ; set z = limi→∞ zi ∈

[z(p), ℓ0]. We must prove that z ∈ Z+
p , so we may assume with no loss of

generality that z > z(p)+
c

2
. Fix m ∈ Z+

p satisfying z(m) = z and let (mi)i∈N

be a sequence of Z+
p such that: ∀i ∈ N, z(mi) = zi and limi→∞ mi = m. For

each i ∈ N, set t ∈ [0, 1] → ci(t) ∈ M for the unique minimizing geodesic

such that ci(0) = p, ci(1) = mi and ci((0, 1)) ⊂

◦

T̂r(γ0). By Proposition 1.1,

the sequence
(dci

dt
(0)
)

i∈N

is bounded in TpM , it thus converges toward a

vector V ∈ TpM . By continuity of the map expp : TpM → M , the geodesic
t ∈ [0, 1] → expp(tV ) ∈ M (let us denote it by c) satisfies c(0) = p, c(1) = m
and c([0, 1]) ⊂ Tr(γ0). For each t ∈ (0, 1), Proposition 1.2 implies that
z(c(t)) ∈ (z(p), z(m)) while, taking r 6 r4, we know that r(c(t)) < r by

Proposition 2.2; so the inclusion c((0, 1)) ⊂

◦

T̂r(γ0) must hold. Finally, by
Proposition 2.5 and Corollary 2.1, the geodesic c must be minimizing and
unique in Tr(γ0). In other words, we have proved that Tr(γ0) is strongly
convex for (p, m). Since the point m is arbitrary, we conclude that z ∈ Z+

p

as desired �

Proof of Lemma 3.2. Pick z ∈ Z+
p and m ∈ Z+

p with z(m) = z. We may

take z ∈
[
z(p) +

c

2
, ℓ0

)
without loss of generality, due to Lemma 3.1. Let
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t ∈ [0, 1] → cm(t) ∈ M be the geodesic such that: cm(0) = p, cm(1) = m

and cm((0, 1)) ⊂

◦

T̂r(γ0). By Proposition 2.4, the Jacobi operator of cm is

negative. Therefore the tangent map d(expp)
(dcm

dt
(0)
)

: TpM → TmM is

invertible [Aub98, pp.17–18] [dC92, p.117, p.149] [Mil63, p.98, p.100]. The
Inverse Function Theorem [Lan02] yields a real ǫm > 0 such that each point
m′ lying in the Riemannian ball B(m, ǫm) can be joined to the point p by
a unique geodesic t ∈ [0, 1] → cm′(t) = expp(tV

′) ∈ M with V ′ ∈ TpM close

to Vm =
dcm

dt
(0). Possibly shrinking ǫm > 0, we take it such that z(p)+

c

4
6

z < ℓ0 on B(m, ǫm). Since the level set Tr(γ0)∩{z = z} is compact, it can be
covered by the union of finitely many balls Bi = B(mi, ǫi), i ∈ {1, . . . , N},
each constructed like the ball B(m, ǫm). There exists θ > 0 such that the
level set Tr(γ0) ∩ {z = z + θ} remains covered by

⋃N
i=1 Bi.

Claim. z + θ belongs to the subset Z+
p .

The claim, provisionally taken for granted, implies that [z(p), z+θ] ⊂ Z+
p ,

so Lemma 3.2, indeed, holds �

Proof of the Claim. Pick m′ ∈ Z+
p with z(m′) = z + θ. There exists

i ∈ {1, . . . , N} such that m′ ∈ Bi. So m′ = expp(V
′) ∈ M for a unique vector

V ′ ∈ TpM close to Vi =
dcmi

dt
(0). Moreover, there exists a unique geodesic

path λ ∈ [0, 1] → m(λ) ∈ M ranging in Bi such that m(0) = mi,m(1) = m′.
Let λ ∈ [0, 1] → Vλ ∈ TpM be the corresponding path, derived (like V ′) from
the Inverse Function Theorem as done above, such that expp(Vλ) ≡ m(λ).
Set t ∈ [0, 1] → γλ(t) ∈ M for the geodesic path given by γλ(t) = expp(tVλ).

From the pinching z(p) +
c

4
6 z(m(λ)) < ℓ0 combined with Proposition 2.2,

we know that m((0, 1)) ⊂

◦

T̂r(γ0). Let us argue by connectedness on the
subset of the interval [0, 1] given by:

L =
{

λ ∈ [0, 1], γλ((0, 1)) ⊂

◦

T̂r(γ0)
}

,

which is non empty (0 ∈ L). The closedness of L can readily be established,
arguing as we did for that of Z+

p . Let us focus on proving that L is relatively
open in [0, 1]. If λ ∈ L, the continuity of expp implies the existence of
µ > 0 such that γλ′([0, 1]) ⊂ T2r(γ0) for each λ′ ∈ (λ − µ, λ + µ) ∩ [0, 1].
By Lemma 2.1, taking 2r 6 r5, we know that the length of the geodesic

γλ′ is at least equal to
c

4
. By Proposition 1.2 read in T2r(γ0) with δ =

c

4
,

we can take r > 0 small enough such that
dγλ′

dt
> 0, hence z(γλ′((0, 1])) ⊂

(z(p), ℓ0). Furthermore, taking 2r 6 r4 and applying Proposition 2.2, we
get r

(
γλ′(t)

)
< r for t ∈ (0, 1). It follows that λ′ ∈ L, in other words, L is

relatively open in [0,1]. By connectedness, we get: L = [0, 1]. In particular,
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1 ∈ L, from what we readily infer that m′ ∈ Z+
p . Since m′ is arbitrary, we

conclude: z + θ ∈ Z+
p , as claimed �

4 Proof of Corollary 0.1

The assumption made in Theorem 0.1 on the geodesic γ0 is an open condi-
tion. Given a small real ς > 0, we can thus find r > 0 such that Theorem 0.1
holds for the geodesic s ∈ [−r, ℓ0 + r] → γr(s) ∈ M defined as the extension
of the geodesic γ0 to the interval [−r, ℓ0 + r]. There still exists a Fermi map
about the extended geodesic γr; let us stick to our preceding notations for
this map. It is important to note the inclusion:

(16) Nr(γ0) ⊂ Tr(γr)

which follows from those of B
(
γ0(0), r

)
and B

(
γ0(ℓ0), r

)
in Tr(γr) combined

with the idendity: Nr(γ0) ≡ Tr(γ0) ∪ B
(
γ0(0), r

)
∪ B

(
γ0(ℓ0), r

)
. Given a

couple of points (p, q) in Nr(γ0), say with z(p) 6 z(q), we must prove that
Nr(γ0) is strongly convex for (p, q). To do so, it suffices to construct a

geodesic path from p to q ranging in

◦

N̂r(γ0). Indeed, by (16) combined with
Proposition 2.5 and Corollary 2.1 applied in Tr(γr), such a geodesic path will
necessarily be minimizing and unique in Nr(γ0). From Theorem 0.1 applied
in Tr(γ0) ⊂ Nr(γ0), we only have to treat the following two cases.

Case 1: z(q) − z(p) > ς and, either z(p) < 0 or z(q) > ℓ0. By Theorem
0.1, the tube Tr(γr) is strongly convex for (p, q). Let t ∈ [0, 1] → γ(t) ∈ M

denote the geodesic from γ(0) = p to γ(1) = q such that γ((0, 1)) ⊂

◦

T̂r(γr).

We must prove that γ((0, 1)) ⊂

◦

N̂r(γ0). By Proposition 1.2, we know that
d(z ◦ γ)

dt
> 0 while, by Proposition 2.2, we have r ◦ γ < r on (0, 1). We

may assume with no loss of generality the existence of T ∈ (0, 1) such that,
either z(γ(T )) = 0 or z(γ(T )) = ℓ0. If the former (resp. latter) occurs,
the restriction of γ to the subinterval [0, T ] (resp. [T, 1]) is minimizing in
Tr(γr) ∩ {−r 6 z 6 0} (resp. Tr(γr) ∩ {ℓ0 6 z 6 ℓ0 + r}) among piecewise

C1 paths joining p to γ(T ) (resp. γ(T ) to q). Besides, the ball B
(
γ0(0), r

)

(resp. B
(
γ0(ℓ0), r

)
) being strongly convex, there exists a unique minimizing

geodesic τ ∈ [0, 1] → c(τ) ∈ M such that c(0) = p, c(1) = γ(T ), c((0, 1]) ⊂
◦

B
(
γ0(0), r

)
(resp. c(0) = γ(T ), c(1) = q and c([0, 1)) ⊂

◦

B
(
γ0(ℓ0), r

)
). By

uniqueness and due to (16), these geodesics must coincide: c(τ) ≡ γ(τT )
(resp. c(τ) ≡ γ(τ + (1 − τ)T )). In particular, we do have γ((0, T ]) ⊂
◦

B
(
γ0(0), r

)
(resp. γ([T, 1)) ⊂

◦

B
(
γ0(ℓ0), r

)
). Case 1 is settled.

Case 2: z(q) − z(p) < ς and, either z(p) < ς or z(q) > ℓ0 − ς. Here, we
may assume that the points p and q lie in the closure of a strongly convex
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ball B and argue as in Case 1 of the proof of Theorem 0.1, with Tr(γ0) now
replaced by Nr(γ0). Doing so, the present proof is reduced to ruling out the
analogue of (15), namely the property:

∃θ ∈ (0, 1), cλ∞
(θ) ∈

[
∂B
(
γ0(0), r

)
∩ {z < 0}

]
∪
[
∂B
(
γ0(ℓ0), r

)
∩ {z > ℓ0}

]
.

It can be done by observing that the geodesic t ∈ [0, 1] → cλ∞
(t) ∈ M is

minimizing from p⊥λ∞
to q⊥λ∞

and by relying on the inclusion (16) combined

with the strong convexity of the balls B
(
γ0(0), r

)
and B

(
γ0(ℓ0), r

)
; we leave

it as an exercise.
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