
HAL Id: hal-00804101
https://univ-cotedazur.hal.science/hal-00804101v4

Submitted on 4 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupling electrons and nuclei without the
Born-Oppenheimer approximation

Patrick Cassam-Chenaï, Bingbing Suo, Wenjian Liu

To cite this version:
Patrick Cassam-Chenaï, Bingbing Suo, Wenjian Liu. Decoupling electrons and nuclei without the
Born-Oppenheimer approximation. Physical Review, 2015, A: atomic, molecular, and optical physics,
92, pp.012502. �10.1103/PhysRevA.92.012502�. �hal-00804101v4�

https://univ-cotedazur.hal.science/hal-00804101v4
https://hal.archives-ouvertes.fr


Decoupling electrons and nuclei without the Born-Oppenheimer approximation:

The Electron-Nucleus Mean-Field Configuration Interaction Method
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We introduce the electron-nucleus mean field configuration interaction (EN-

MFCI) approach. It consists in building an effective Hamiltonian for the electrons

taking into account a mean field due to the nuclear motion and, conversely, in

building an effective Hamiltonian for the nuclear motion taking into account a

mean field due to the electrons. The eigenvalue problems of these Hamiltonians

are solved in basis sets giving partial eigensolutions for the active degrees of free-

dom (dof’s), that is to say, either for the electrons or for nuclear motion. The

process can be iterated or electron and nuclear motion dof’s can be contracted in

a CI calculation.

In the EN-MFCI reduction of the molecular Schrödinger equation to an elec-

tronic and a nuclear problem, the electronic wave functions do not depend para-

metrically upon nuclear coordinates. So, it is different from traditional adiabatic

methods. Furthermore, when contracting electronic and nuclear functions, a di-

rect product basis set is built in contrast with methods which treat electron and

nuclei on the same footing, but where electron-nucleus explicitly correlated coor-

dinates are used. Also, the EN-MFCI approach can make use of the partition of

molecular dof’s into translational, rotational and internal dof’s. As a result, there

is no need to eliminate translations and rotations from the calculation, and the

convergence of vibrational levels is facilitated by the use of appropriate internal

coordinates. The method is illustrated on diatomic molecules.

PACS numbers: 31.15.-p,31.15.A-,31.10.+z,31.15.X-,31.15.xr,31.15.xt
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I. INTRODUCTION

The Born-Oppenheimer (BO) potential energy surface (PES) is one of the main

paradigms of quantum chemistry since its origin1. It has proved very successful in solv-

ing many molecular spectroscopy and molecular dynamics problems. However, there are

a number of conceptual and practical problems with the BO PES approach. To quote

a few: Its mathematical justification is not yet completely satisfactory2 (see however3

for a review of new mathematical results). The generalisation of the PES concept to a

non-adiabatic context hits the difficulty that a PES should not be regarded as an observ-

able but rather as a quotient of observables4. The number of points needed to described

accurately a full-dimensional PES grows exponentially as the number of nuclei increases,

and the number of electronic Schrödinger equations to be solved grows accordingly. The

represention of a full-dimensional PES, only known at a discrete set of points, by a con-

tinuous function, is also an issue for the actual use of a PES in many applications. Many

technical choices must be addressed such as how to select the nuclear configurations

where the PES is evaluated, should the derivatives at these points be calculated or not,

if using finite differences what should be the stepsize, should one use an interpolation

scheme or a global analytical function, how to insure the correct asymptotical behaviour,

how to estimate the goodness of the fit...

Among all these problems, the most serious one encountered in practice, is arguably

the curse of dimensionality: the exponential growth of grid points with the number of

internal degrees of freedom (dof). It has been proposed to tame this numerical scaling

by limiting PES descriptions to only few mode couplings. However, as the number of

dof increases the probability of accidental resonances between larger and larger numbers

of dof’s also increases. When such resonances occur, calculations become very sensitive

to the high order intermode coupling constants of the dof’s involved, even though the

mechanical coupling between them might be quantitatively small.

The purpose of the present article is to show that the construction of a BO PES can

be bypassed and that one can obtain simultaneously accurate electronic and vibrational

energy levels in a single calculation using a direct product basis set, that is to say with

electronic basis functions independent of nuclear coordinates. This makes our proposal

fundamentally different from the non-adiabatic approaches briefly recalled below.
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A simple idea to go beyond the BO approach consists in coupling different BO elec-

tronic states. This is limited to small systems and a reduced number of electronic states,

since it requires the computation of one PES per electronic state plus their coupling ele-

ment surfaces (see Ref.5 for example). In practice, one can use test functions instead of

approximate solutions of the adiabatic eigenvalue equation6,7. A different approach is the

generator coordinate approach, which instead of dealing with different electronic states,

uses one electronic function parametrized by so-called “generator coordinates”8. New

proposals have appeared recently either for the time independent Schrödinger equation,

such as the free complement method9,10, a revival of Hunter’s factorized wave function11,

or in a time dependent context such as the multi-configuration electron-nuclear dynamics

method (MCEND)12, a time-dependent version of Hunter’s factorized wave function13–16.

More time will be needed to evaluate the prospects of these new approaches. However,

this shows that this field of research is vividly active.

Thomas was a precursor in treating electrons and H-nuclei simultaneously with an

orbital method17, but he was dealing only with specific problems such as the ammonia

molecule. Several groups worldwide have developed wave function methods dealing on

an equal footing with electronic and nuclear degrees of freedom. There is essentially one

and the same idea developed under different names by different groups:

- The FVMO (full variational treatment of molecular orbital) method of Tachikawa et

al.18,19, is a one-particle self-consistent field (SCF) method with simultaneous optimiza-

tion of Gaussian exponents and centers performed analytically (note that such exponents

and centers optimisation has also been performed in Ref.20 but numerically). Later, the

method was renamed, DEMO (dynamic extended molecular orbital) method21. Nakai et

al.22 developped a similar method called NOMO (nuclear orbital molecular orbital) and

extended it to configuration interaction (CI), Coupled Cluster (CC) and perturbative

post-treatments23,24, see Ref.25 for a review. Another name proposed by the Tachikawa

group is yet MCMO (multi-component molecular orbital) method, it is used alone or

combined with the fragment molecular orbital (FMO) method26;

- The CMFT-GCM (coupled mean-field theory- generator coordinate method) of Shigeta

et al.27 who later turned towards non-BO density functional theory;

- The NEO (nuclear-electronic orbital) method which comes in a variety of ansätze:

Hartree-Fock (NEO-HF), CI (NEO-CI), multi-configuration SCF (NEO-MCSCF) and
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perturbative variants30–32.

- The ENMO (electronic and nuclear molecular orbital) approaches with different level of

correlation treatments from none (SCF) to Möller-Plesset perturbation theory (MBPT)

and CI33.

- The APMO (any particule molecular orbital) method34 extended to MP2 in Ref.35. A

review of its further developments can be found in Ref.36.

In their original formulations, these approaches usually start from a global single

product wave function for all degrees of freedom. That is to say, they have to recover

electronic correlation, nuclear correlation and electron-nucleus correlation in the post-

treatment. More recently, the specific difficulties to treat electron-nucleus correlation

have led several authors37–40 to introduce explicitly correlated geminal Gaussian basis

function, inspired by the pioneering work of Cafiero and Adamowicz41,42 and/or Suzuki

and Varga43. Note that similar ideas have appeared in a time-dependent context44. How-

ever, the explicitly correlated ansatz reintroduce nuclear variables in the electronic wave

function, as in the BO framework, with significant consequences for the computational

cost.

So far, in our opinion, the success of most of these methods has been limited by the

computational cost due to the use of explicitly correlated basis sets and/or because the

coordinates were not appropriate to describe vibrational motion. In the latter case, the

basis sets used for the nuclear degrees of freedom were not amenable to describe suffi-

ciently excited vibrational states. Moreover, translational and rotational energy contri-

butions can contaminate the calculation of vibrational frequencies22,25. These drawbacks

can be easily avoided with a MFCI approach45–48.

The MFCI method is a general approach that has proved very effective to solve

the vibrational Schrödinger equation45,47. It consists in successive couplings of groups of

degrees of freedom called “active” in the mean field of the other degrees of freedom called

“spectators”. After each step, the eigenstates corresponding to energy eigenvalues that

are too high to be useful to the description of the physical states of interest, are discarded.

This way, the size of the configuration space can remain tractable regardless of the

number of atoms in the molecule. Recently, the use of more general mean field expressions

arising from perturbation theory has been proposed49, giving increased flexibility: the
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so-called “GMFCI” method.

Here, we propose to generalize the GMFCI ideas to a set of electrons and nuclei.

The main difference is that we have to relax the constraint on the Hamiltonian to be

a sum of products of separable operators. Rotational dof will be omitted to simplify

the presentation, although they can be included in a similar fashion as vibrational dof’s.

This issue will be discussed in conclusion. In the diatomic case, rotational levels can

and will be calculated in a straitforward manner. First, we will obtain a basis set of

electronic wave functions by diagonalizing a mean field electronic Hamiltonian. The

latter will only require a realistic zero order fundamental vibratonal wave function. If

this function is a Dirac delta distribution centered at a given nuclear geometry, the BO

electronic Hamiltonian will be recovered. Then, we will be able to obtain a basis set of

vibrational wave functions by diagonalizing a mean field vibrational Hamiltonian. The

latter will not require a BO PES as in the traditional approach but a mean field PES

corresponding to an electronic wave function obtained at the previous step.

Such a mean field PES has been investigated in a time dependent context44. It is

physically correct near the equilibrium geometry, but qualitatively incorrect away from

this geometry, in particular, at long distance where no dissociation occurs. Such a

behaviour is expected and turns out to be an advantage in our approach, since it allows

us to obtain basis sets of vibrational functions of arbitrary sizes, to be combined with

electronic basis functions in a product basis set. Would the potential energy curve

dissociates, only a limited set of bounded vibrational basis functions could be obtained

by solving the mean-field vibrational Schrödinger equation, and it is likely that, for some

systems the resulting electron-vibration product basis set would not be sufficiently large

to describe accurately the eigenstates of the total electron-nuclei problem.

Provided Gaussian type orbitals (GTO) are used to describe the electronic wave

function, this mean field PES admits an analytical expression in terms of confluent

hypergeometric functions. However, such an expression is not even needed in practice:

only its integrals over vibrational basis functions are required. We will show in Appendix

that Rys quadrature50–53 combined with generalized Gauss-Laguerre quadrature, is a

practical way to calculate the required integrals, when Kratzer oscillator basis functions

are used to describe the vibratonal wave functions. Only these integrals among those

required to perform a contraction of vibrational and electronic dof’s, are of a new type
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not already implemented in widely-distributed quantum chemistry codes.

The article is organized as follows: First the general frame of the GMFCI method

for electrons and nuclei is presented. Next, we explain how are computed the inte-

grals required for the Hamiltonian matrix element evaluations, leaving the essential but

more technical details in Appendix A. Then, we present some application and conver-

gence studies on dihydrogen isotopologues. Finally, we conclude on the prospects of the

method.

II. THE GMFCI METHOD FOR ELECTRONS AND NUCLEI

Although the degrees of freedom (dof) are entangled in a quantum world, from an

operational point of view, i.e. for all practical purposes, they appear dynamically au-

tonomous in many cases. When this is so, it makes sense physically to consider them

independently in the mean field of the others to a first approximation. Then, if such

a mean field approximation proves too rough, one can couple some dof’s to refine the

description.

A. General setting

Let us consider a molecule made of p electrons and N nuclei. We denote collectively

by ~Re := (~r e
1 , ~r e

2 , . . . , ~r e
p ), the electronic position variables with respect to the center

of nuclear mass, by ~Rn := (~r n
1 , ~r n

2 , . . . , ~r n
N ), the nuclear position variables in the same

frame, and by ~Q := (Q1, Q2, . . . , Qq) mass-weighted Cartesian normal coordinates, with

q = 3N − 5 or q = 3N − 6 depending upon the molecule being linear or not. The ~Q are

related to displacements, ∆ ~Rn = ~Rn − ~R0, with respect to a reference nuclear geometry,

~R0 = (~r 0
1 , ~r 0

2 , . . . , ~r 0
N ), in an Eckart frame54 by two linear operators,

~Q = L̂Ĝ∆ ~Rn. (1)

Ĝ is represented by a (3N × 3N) diagonal matrix containing the square roots of the

nuclear masses, and L̂ by a (q × 3N) matrix whose line vectors are orthonormals. So,

at nuclear configurations where the translation and rotation mass-weighted Cartesian

coordinates are zero (or considered as zero) the above formula can be inverted as

~Rn = Ĝ−1L̂T ~Q+ ~R0, (2)
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where L̂T is the transposed of L̂. In particular,

~r n
a = Ĝ−1

a L̂T ~Q+ ~r 0
a , (3)

Ĝ−1
a being the (3× 3N) submatrix of Ĝ−1 corresponding to nucleus a.

We decompose the molecular Hamiltonian into three parts:

a purely electronic one,

Ĥ( ~Re) = −1

2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ , (4)

a purely vibrational one,

Ĥ( ~Q) = −1

2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a − ~r 0

b + Ĝ−1
a L̂T ~Q− Ĝ−1

b L̂T ~Q‖
, (5)

and a coupling term,

Ĥ( ~Re, ~Q) = −
p

∑

i=1

N
∑

a=1

Za

‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖

. (6)

Eq. (3) allows one to recognise Coulomb potential terms on the right-hand side of Eqs.(5)

and (6).

It is out of the scope of the present article to review the involved procedure that one

has to follow in order to derive such a Hamiltonian from the usual Coulomb Hamiltonian

for nuclei and electrons2,55. We will not attempt to justify the omission of many terms

that are not included in Eqs. (4) to (6) for the sake of simplifying the presentation.

Eliminating translations56, for example, introduces non-diagonal mass-polarization terms

and reduced-mass corrections which are neglected here. The separation of rotational

motion from electronic dofs also imposes the neglect of terms involving the electronic

angular momenta57,58. The full rovibrational Eckart-Watson Hamiltonian54,59,60 could

have been introduced, however, in the present section, rotational dof’s and Coriolis

couplings are omitted to simplify the presentation. They will be considered in the last

sections of this article.
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B. General Mean field Hamiltonian for the electrons

Let us call φ
(0)
~0
( ~Q) a zero-order approximation of the vibrational GS. We build a first

order mean field Hamiltonian for the electrons according to

Ĥeff( ~Re) = Ĥ( ~Re) + 〈φ(0)
~0
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~0
( ~Q)〉 ~Q

= −1
2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1
‖~r e

i −~r e
j ‖ −

p
∑

i=1

N
∑

a=1

〈φ(0)
~0
( ~Q)| Za

‖~r e
i −~r 0

a −Ĝ−1
a L̂T ~Q‖ |φ

(0)
~0
( ~Q)〉 ~Q

+ 〈φ(0)
~0
( ~Q)| − 1

2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a −~r 0

b
+Ĝ−1

a L̂T ~Q−Ĝ−1
b

L̂T ~Q‖ |φ
(0)
~0
( ~Q)〉 ~Q, (7)

where 〈|〉 ~Q means that integration is carried out only for vibrational coordinates. So,

the last bracket on the right-hand side is just a constant.

The clamped nuclei approximation can be seen as a particular case, where

φ
(0)
~0
( ~Q) =

q
⊗

i=1

δ0(Qi), the tensor product of Dirac distributions centered at zero, provided

that the nuclear kinetic energy, which is ill-defined in this case, be left out,

Ĥcn( ~Re) = −1
2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1
‖~r e

i −~r e
j ‖ −

p
∑

i=1

N
∑

a=1

Za

‖~r e
i −~r 0

a ‖ +
∑

1≤a<b≤N

ZaZb

‖~r 0
a −~r 0

b
‖ .

(8)

(Note by the way that the clamped nuclei approximation55 does not necessary imply a

Born-Oppenheimer approach).

Alternatively, one can choose φ
(0)
~0
( ~Q) =

q
⊗

i=1

φi
0(Qi), that is to say, a product of GS

eigenfunctions of some one-dimensional model Hamiltonians, as a guess to initiate the

EN-GMFCI process. Then, one notices that nuclear cusps are smeared off in the Hamil-

tonian Eq.(7), and related basis set convergence issues may be removed36. Also, ap-

proximate excited states represented by products of kth
i -excited functions, φ

(0)
~K
( ~Q) =

q
⊗

i=1

φi
ki
(Qi), with ~K = (k1, . . . , kq), can be used to build a more general MF Hamiltonian,

for instance, a second order GMF Hamiltonian49 (setting ~0 := (0, · · · , 0)),

Ĥeff( ~Re) = Ĥ( ~Re) + 〈φ(0)
~0
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~0
( ~Q)〉 ~Q

+
∑

~K 6=~0

〈φ(0)
~0

(~Q)|Ĥ(~Q)+Ĥ( ~Re, ~Q)|φ(0)
~K

(~Q)〉~Q〈φ(0)
~K

(~Q)|Ĥ(~Q)+Ĥ( ~Re, ~Q)|φ(0)
~0

(~Q)〉~Q
E

(0)
~0

−E
(0)
~K

,

(9)

where the energy difference, E
(0)
~0

− E
(0)
~K

= −
q
∑

i=1

(Ei
ki
− Ei

0), is the opposite of the sum

of 1D vibrational Hamiltonian excitation energies. Such an expression, valid for non-
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degenerate GS, is reminiscent of the formula of Bunker and Moss obtained by contact

transformation, which account for non adiabatic corrections to the electronic energy 61.

C. General Mean field Hamiltonian for the vibrational dof’s

Assuming that a GMF Hamiltonian, Eq.(7), has been chosen to start the EN-GMFCI

process, one can solve the Schrödinger stationary equation by any electronic calculation

method, such as Hartree-Fock62–65, configuration interaction66, geminal-MFCI46,67,68, or

other available ansätze. Let us call, φ
(1)
~0

( ~Re), an approximate solution for the electronic

ground state. It can be used in turn to obtain an effective, first order, vibrational

Hamiltonian,

Ĥeff( ~Q) = Ĥ( ~Q) + 〈φ(1)
~0
( ~Re)|Ĥ( ~Re) + Ĥ( ~Re, ~Q)|φ(1)

~0
( ~Re)〉 ~Re

= −1
2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a −~r 0

b
+Ĝ−1

a L̂T ~Q−Ĝ−1
b

L̂T ~Q‖

+ 〈φ(1)
~0
( ~Re)| − 1

2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1
‖~r e

i −~r e
j ‖ −

p
∑

i=1

N
∑

a=1

Za

‖~r e
i −~r 0

a −Ĝ−1
a L̂T ~Q‖ |φ

(1)
~0
( ~Re)〉 ~Re ,

(10)

where 〈|〉 ~Re means that integration is carried out only for electronic coordinates. If

one manages to obtain excited electronic wave functions, then, a higher order, effective

Hamiltonian, similar to Eq.(9), can also be considered. However, sticking to first order

MF Hamiltonians averaged over spectator ground states, the GS eigenvalue of the effec-

tive Hamiltonian always corresponds to the total Hamiltonian expectation value for the

wave function equal to the product of spectator GS wave functions (for example φ
(1)
~0
( ~Re)

in Eq.(10) ) and of the (active) GS eigenfunction of Ĥeff( ~Q) (which can be denoted as

φ
(2)
~0
( ~Q) for the Hamiltonian of Eq.(10)). So, if one alternates the resolution of electronic

and vibrational MF Hamiltonians by using a variational method, which can only lower

the energy, one can expect to converge towards a self-consistent solution, as in the vi-

brational mean field configuration interaction (VMFCI) method47,48. (Note, however,

that iterating with effective Hamiltonians of order higher than 1 would not constitute a

variational process.)

In such an iterative process, at even iteration number (m = 2l) one solves an elec-

tronic problem (eigenvalue equation for the Hamiltonian given by Eq. (7) with φ
(0)
~0
( ~Q)
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substituted by φ
(2l)
~0

( ~Q)). One obtains an electronic GS wave function, φ
(2l+1)
~0

( ~Re). In

turn, this wave function is used to build the vibrational MF Hamiltonian (according to

Eq. (10) with φ
(1)
~0
( ~Re) replaced by φ

(2l+1)
~0

( ~Re)) for the next iteration.

In contrast with NOMO and NEO approaches, electronic correlation can be taken

into account from the start, if one uses a correlated method to obtain φ
(1)
~0
( ~Re). The

same is true for vibrational motion correlation. However, electron-nucleus coupling is

only included in a MF fashion. To have a description of electron-nucleus correlation,

one has to contract electronic and vibrational dof’s and perform a CI calculation on

the whole system, or to use higher order effective Hamiltonians to include excited state

contributions without actually contracting all degrees of freedom.

III. INTEGRAL CALCULATIONS

A. Integrals for diatomics

Let us first consider the case of a diatomic molecule and standard MFCI, that is to say

order 1 GMFCI, equations. ~Q reduces to one scalar component that we denote simply

by Q, dropping the component index. Assuming that the molecule lies along the z-axis

of a body-fixed frame, Q will be the Cartesian displacement along z weighted by the

reduced mass of the nuclei, µab =
mamb

ma+mb
,

Q =
√
µab(raz − r0az − rbz + r0bz), (11)

that is to say,

L̂ = (0, 0,+

√
mb√

ma +mb

, 0, 0,−
√
ma√

ma +mb

). (12)

The range of Q is ]− ξ0ab,+∞[, where ξ0ab = ‖√µab(~r
0

a −~r 0
b )‖, (by convention the z-axis

is oriented such that raz ≥ rbz). It follows easily that,

Ĝ−1
a L̂T ~Q =











0

0
+
√
µabQ

ma











, Ĝ−1
b L̂T ~Q =











0

0
−√

µabQ

mb











.
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So, Eq. (10) becomes,

Ĥeff(Q) = −1

2

q
∑

i=1

∆Qi
+

√
µabZaZb

|ξ0ab +Q| + 〈φ(1)
~0
( ~Re)| − 1

2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖

−
p
∑

i=1

Za
√

(reix )
2+(reiy )

2+(reiz−r0az−
√

µabQ

ma
)2
+ Zb

√

(reix )
2+(reiy )

2+(reiz−r0bz
+

√
µabQ

mb
)2
|φ(1)

~0
( ~Re)〉 ~Re, (13)

and Eq. (7) becomes,

Ĥeff( ~Re) = −1

2

p
∑

i=1

∆ ~rei
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ + 〈φ(0)
0 (Q)| − 1

2
∆Q +

√
µabZaZb

|ξ0ab +Q|

−
p
∑

i=1

Za
√

(reix )
2+(reiy )

2+(reiz−r0az−
√

µabQ

ma
)2
+ Zb

√

(reix )
2+(reiy )

2+(reiz−r0
bz

+
√

µabQ

mb
)2
|φ(0)

0 (Q)〉Q. (14)

Let us begin with the latter equation. In general, the vibrational GS wave function,

φ0(Q), will be expressed in terms of a model Hamiltonian eigenfunction basis set. In the

diatomic case, a harmonic model potential is not suitable, since the nuclear Coulomb

(second term on the left-hand side of Eq. (13)) integrals will diverge. So, we choose a

Kratzer potential basis set, which is not only more accurate69, but also leads to conver-

gent nuclear Coulomb integrals.

φ0(Q) =

nmax
∑

i=0

c0iφ
kra
i (Q), (15)

where φkra
i (Q) is the ith eigenfunction of a Hamiltonian with Kratzer potential,D

(

Q

Q+ξ0
ab

)2
70,71.

However, to initiate the MFCI process, this expansion will be limited to the term i = 0,

φ
(0)
0 (Q) = φkra

0 (Q) =
[2(λ− 1)]λ+

1
2

√

ξ0abΓ[2λ+ 1]

(

1 +
Q

ξ0ab

)λ

Exp

[

(1− λ)(1 +
Q

ξ0ab
)

]

, (16)

where Γ[x] is the gamma function and λ is a constant,

λ =
1

2
+

√

1

4
+ 2D ξ0ab

2
. (17)

The normalization factor assumes integration on dQ over ]− ξ0ab,+∞[.

For H2 in its GS, a reasonable set of parameters is λ = 36.754020 au and ξ0ab =

42.430690 au. Given µab = mH

2
= 918.07633622 au, one gets D = .364955 hartree,

not really close to the dissociation energy De = 0.166107 hartree. However, with these

parameters the zero point energy is, 2179.31 cm−1 , as obtained from spectroscopic

analysis72. The same values of D and of the equilibrium distance (parameters specifying
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the Kratzer potential required as input in our code) will be used for all isotopologues.

The corresponding values of λ and ξ0ab are displayed in Table I.

Given this choice of wave function, the integrals over Q in Eq.(14) are calculated to

be,

〈φ(0)
0 (Q)| − 1

2
∆Q|φ(0)

0 (Q)〉Q =
(λ− 1)2

2 (2λ− 1) ξ0ab
2 , (18)

〈φ(0)
0 (Q)|

√
µabZaZb

|ξ0ab +Q| |φ
(0)
0 (Q)〉Q =

(λ− 1)
√
µabZaZb

λ ξ0ab
,

(19)

which shows that the nuclear repulsion energy is damped by a factor λ−1
λ

by convolution

with nuclear motion. Note that considering rotational motion would just add a constant,

〈φ(0)
0 (Q)| J(J+1)

2|ξ0
ab
+Q|2 |φ

(0)
0 (Q)〉Q to Eq.(14). These matrix elements, as well as general ones

between arbitrary Kratzer basis functions needed for a general wave function of the type

given in Eq.(15), can be calculated analytically with the help of the formulas of Ref.71,

implemented in the code CONVIV45,47,48,73.

It remains to evaluate the last two symmetrical one-electron integrals of Eq.(14),

which give an effective attractive potential for the electrons. However, in practice this

potential, which corresponds to an attractive Coulomb potential convoluted with nuclear

motion, needs not be calculated explicitly. One only needs to calculate matrix elements

between pairs of one-electron orbital basis functions of the form,

Ie−n[ZI , r
0
Iz
, η] = 〈φ(0)

0 (Q)χ1(~re)|
ZI

√

(rex)
2 + (rey)

2 + (rez − r0Iz + ηQ)2
|φ(0)

0 (Q)χ2(~re)〉,

(20)

where, η = −
√
µab

ma
or η = +

√
µab

mb
.

We will consider the case of primitive Gaussian functions:

χi(~re) = Ni(r
e
x)

li(rey)
ki(rez − r0iz)

jiExp
[

−ζi
(

(rex)
2 + (rey)

2 + (rez − r0iz)
2
)]

, (21)

where Ni is a normalization factor. Then, setting,

Ie−n[ZI , r
0
Iz
, η] =

ZIN1N2 [2(λ− 1)]2λ+1

Γ[2λ+ 1]
Ĩe−n[r

0
Iz
+ ηξ0ab, ηξ

0
ab]

(22)
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we have to calculate, setting r̃0Iz = r0Iz + ηξ0ab, η̃ = ηξ0ab, α =
(

1 + Q

ξ0ab

)

,

Ĩe−n[r̃
0
Iz
, η̃] =

∫ +∞
0 dα α2λExp [2(1− λ)α]

∫ +∞
−∞ drex

∫ +∞
−∞ drey

∫ +∞
−∞ drez

× Exp
[

−(ζ1 + ζ2)(r
e
x)

2
]

Exp
[

−(ζ1 + ζ2)(r
e
y)

2
]

Exp
[

−ζ1(r
e
z − r01z)

2 − ζ2(r
e
z − r02z)

2
]

× (rex)
l1+l2(rey)

k1+k2(rez−r01z )
j1 (rez−r02z )

j2
√

(rex)
2+(rey)

2+(rez−r̃0Iz
+η̃α)2

(23)

This is a particular case for two Kratzer GS basis functions of the general integral

treated in Appendix A. Here, we only sketch the main steps of the derivation. A first

intermediate step, consists in integrating over electronic variables,

Ĩe−n[r̃
0
Iz
, η̃] =

δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√

π
Γ
[

k1+k2+1
2

]

Γ
[

l1+l2+1
2

]

Exp
[

− ζ1ζ2
ζ1+ζ2

(r01z − r02z)
2
]

×
j1
∑

i1=0

j2
∑

i2=0

(

j1
i1

)(

j2
i2

)

δ
[2]
0,i1+i2

Γ
[

i1+i2+1
2

] ∫ +∞
0

dα α2λExp [2(1− λ)α] Iβ [i1, i2, α], (24)

where δ
[2]
0,k is 0 or 1 according to k being odd or even, and,

Iβ[i1, i2, α] =
∫ +∞
0

dβ β− 1
2 (ζ1 + ζ2 + β)−

k1+k2+l1+l2+2j1+2j2−i1−i2+3

2

(

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z)

)j1−i1

×
(

ζ1(r
0
1z − r02z) + β(r̃0Iz − η̃α− r02z)

)j2−i2
Exp

[

− (ζ1+ζ2)β
ζ1+ζ2+β

(

ζ1r
0
1z

+ζ2r
0
2z

ζ1+ζ2
− r̃0Iz + η̃α

)2
]

. (25)

For i1 = j1, (respectively, i2 = j2), the undetermined factor
(

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z)

)j1−i1
,

(respectively,
(

ζ1(r
0
1z − r02z) + β(r̃0Iz − η̃α− r02z)

)j2−i2), should be set to 1, when

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z) = 0, (respectively, ζ1(r

0
1z − r02z) + β(r̃0Iz − η̃α− r02z) = 0).

The integral of Eq.(25) can be obtained analytically,

Iβ[i1, i2, α] =
j1−i1
∑

s1=0

j2−i2
∑

s2=0

(

j1−i1
s1

)(

j2−i2
s2

)

ζ
j2−i2−s2
1 (−ζ2)

j1−i1−s1(ζ1 + ζ2)
s1+s2− k1+k2+l1+l2+2j1+2j2−i1−i2

2
−1

× (r01z − r02z)
j1+j2−i1−i2−s1−s2(r̃0Iz − η̃α− r01z)

s1(r̃0Iz − η̃α− r02z)
s2Iγ[s1, s2, α], (26)

where, Iγ [s1, s2, α] is related to the confluent hypergeometric function 1F1[a, c; x]
74,

Iγ[s1, s2, α] =
Γ[s1+s2+

1
2
]Γ[

k1+k2+l1+l2+2j1+2j2−i1−i2
2

−s1−s2+1]

Γ[
k1+k2+l1+l2+2j1+2j2−i1−i2+3

2
]

× 1F1

[

s1 + s2 +
1
2
, k1+k2+l1+l2+2j1+2j2−i1−i2+3

2
;−(ζ1r01z+ζ2r

0
2z

−(ζ1+ζ2)(r̃0Iz−η̃α))
2

ζ1+ζ2

]

.

(27)

However, it is more practical to calculate it numerically using Rys quadrature as ex-

plained in Appendix A. The δ[2] functions in Eq.(24) insure that k1+k2+l1+l2+2j1+2j2−i1−i2
2
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will always be an integer, and the Rys quadrature will be exact provided that the number

of quadrature points is larger than this integer (see Appendix A). So, setting,

ν(α) =

(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2
, (28)

we can rewrite exactly Iγ [s1, s2, α] as a discretized Rys sum,

Iγ [s1, s2, α] = 2
∑

p

wRys
p [ν(α)]τp[ν(α)]

2(s1+s2)(1− τp[ν(α)]
2)

k1+k2+l1+l2+2j1+2j2−i1−i2
2

−s1−s2,

(29)

where the τp[ν(α)]’s are the roots of the Rys polynomials, and wRys
p [ν(α)]’s the Rys

“weights”. Clearly, this can only be evaluated for a finite set of α-values. So, the

integral over α has to be integrated numerically too, and generalized Gauss-Laguerre

quadrature seems the most appropriate scheme75:

Ĩe−n[r̃
0
Iz
, η̃] =

δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√

π
Γ
[

k1+k2+1
2

]

Γ
[

l1+l2+1
2

]

Exp
[

− ζ1ζ2
ζ1+ζ2

(r01z − r02z)
2
]

×
j1
∑

i1=0

j2
∑

i2=0

(

j1
i1

)(

j2
i2

)

δ
[2]
0,i1+i2

Γ
[

i1+i2+1
2

]
∑

q w
Lag
q Iβ[i1, i2, κq], (30)

where κq and wLag
q are respectively the generalized Gauss-Laguerre polynomials roots

and weights corresponding to parameters (2λ, 2(λ− 1)).

Inserting Eq.(30) into Eq.(22) gives the required integrals for performing an electronic

calculation, in the MF of the vibrational dof’s GS, electron kinetic energy and electron

repulsion integrals being already available in all quantum chemistry package. Solving

the eigenvalue problem for the Hamiltonian of Eq.(14), one obtains a wave function

φ
(1)
~0
( ~Re) which can be used in Eq.(13) to obtain a new MF Hamiltonian for the vibration

dof’s. The derivation of the required integrals follows the same pattern, in particular

the electron-vibration coupling integrals can be obtained by quadrature, between pairs

of possibly excited Kratzer basis functions. The only real complication will be the eval-

uation of confluent hypergeometric functions at quadrature points. Then, performing a

CI for the new MF vibrational Hamiltonian, a basis set φ
(2)
k (Q) will be obtained. One

can iterate this process or decide to diagonalize the total Hamiltonian in a possibly trun-

cated, product basis φ
(1)
~K
( ~Re)⊗φ

(2)
k (Q). The only unusual integrals required to compute

Hamiltonian matrix elements are those of the coupling term, Eq.(6), and Appendix A

explains how to deal with them with the double quadrature method. The integrals have
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been implemented in the BDF code76–79 and thoroughly checked against a Mathematica80

code.

B. Generalization to larger polyatomics

We have seen in the diatomic case, that the electron-nucleus attraction integrals could

be dealt with by quadrature integration. In the polyatomic case, the same techniques

can be applied:

- The expression Za

‖~r e
i −~r 0

a −Ĝ−1
a L̂T ~Q‖ can be cast into an exponential form using the Laplace

formula

1

‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖

=
1√
π

∫ +∞

0

Exp
[

−v‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖2

] dv√
v

(31)

- The integrals over the three electronic variables can be permuted with the Laplace

integral and replaced by analytic expressions.

- The remaining integrals over the (q+1) variables (i.e. the Laplace variable and the

internal variables (Qi)i∈{1,··· ,q}) can be performed numerically by the quasi Monte-Carlo

quadrature integration of Ref.81 for molecules up to penta-atomics. Smolyak’s quadra-

ture algorithm could also be considered, see Ref.82 and therein. For larger systems, quasi

Monte-Carlo techniques83 achieve a speed of convergence for (D = q + 1)-dimensional

integrals, which scales as O( ln[M ]q

M
), where M is the number of points.

The number of points can be reduced by more than one order of magnitude by cal-

culating not directly the MFCI integrals, but their difference with respect to the corre-

sponding traditional (i.e. those with cusps) integrals which can be efficiently obtained

from quantum chemistry packages. Work in progress will be presented in a forthcoming

article.

IV. RESULTS FOR DIHYDROGEN AND ISOTOPOLOGUES

The simplest non-trivial molecular systems to apply the EN-MFCI method is arguably

dihydrogen and its isotopologues.
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In the previous section, the so-called mass-polarization terms were neglected. They

consist in two contributions: the diagonal contribution which amounts to the substitution

of the electron mass by its reduced mass and the non-diagonal contribution which is a

two-electron term coupling electron linear moments. In this section, for the sake of

comparaison with reference calculations available in the literature85–88, we include the

diagonal contribution unless specified otherwise. For dihydrogen, it increases the ground

state energy by about 70 cm−1 , as found in an adiabatic approach91 for geometries

close to equilibrium, and changes the fundamental frequency by only a few cm−1 . The

non-diagonal contribution is expected to increase the ground state energy by about 6

cm−1 , if one assumes that the equilibrium value91 is close to its vibrational ground state

average, as for the diagonal contribution. It will be neglected for all isotopologues, since

its effect on fundamental frequencies is expected to be less than 1 cm−1 .

So, the electronic kinetic terms in Eqs.(13) and (14) is replaced by − 1
2µe

p
∑

i=1

∆ ~rei
where

µe is the electronic reduced mass. Nuclear mass ratios were taken from NIST96: mp

me
=

1836.15267244, md

me
= 3670.48296514, mt

me
= 5496.92152668. Therefore, the electronic re-

duced masses in a frame fixed at the center of nuclear mass are µe = 0.999727765621 me

for H2, µe = 0.999863796698 me for D2, µe = 0.999909048270 me for T2.

A. Basis set convergence

The first issue we need to address to carry out EN-MFCI calculations, is that of the

choice of the basis set. The numerous electronic basis sets available in quantum chem-

istry packages have been tailored to describe static electronic densities in a clamped

nuclei framework. Here, we need to described electronic densities spread out along all

geometries accessible through vibrational motion. This is why we have added to stan-

dard H-nucleus electronic basis sets, one or more inner shell s-functions on both sides, in

an ad hoc manner. The centers of all these basis functions are fixed, whatever the values

of nuclear coordinates might be. So, the product basis set of electronic basis functions

with the Kratzer basis functions used to describe nuclear motion, is a genuine direct

product in the mathematical sense.
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We have first examined the convergence of full CI calculation with the number of

Kratzer basis functions, for two cc-pVTZ electronic basis sets of H-atom84 located apart

from each other at approximately the H2 GS equilibrium distance and different numbers

of s-orbital pairs located on both sides of each cc-pVTZ H-nucleus basis center on the

same axis, see Tab. II. The results suggest that the GS energies are converged to the

µHartree precision with 16 Kratzer modal basis functions whatever the number of ghost

atoms carrying 2s-basis sets might be. (Note that the H and Ghost atoms’ electronic

basis centers are fixed and independent of H-nucleus position variables.)

Looking at the GS energy variations as a function of the number of ghost atoms, n, in

Tab. II, we see that a decrease of about 30 µHartree occurs when going from n = 12 to

n = 16 whatever the number of Kratzer functions might be. This seems to be reduced

to 11 µHartree for 16 Kratzer functions, when lowering the quasi-linear dependency

cutoff from 10−6 to 10−7, as seen from the third column of Tab. III. However, numerical

accuracy issues prevented us to converge the cc-pVTZ calculation for n = 16. In the

cc-pVDZ column, the difference is larger. This can be understood easily by the fact

that the H-basis set being more incomplete, the importance of ghost atom basis sets is

greater. On the other side, the cc-pVQZ, n = 16 energy is found higher than its n = 12

counterpart. This does not contradict the Hylleraas-Undheim-MacDonald theorem92,93

since the variational spaces of the two calculations are not fully included one in the other,

due to quasi-linear dependencies elimination. The n = 16 calculation has only 3 more

orbitals than the n = 12 one and as a matter of fact among the 10 orbitals eliminated

in the n = 16 calculation some were contributing to a few µHartree to the GS energy.

This anomalous behaviour is not observed for the cc-pV5Z column, where a lowering of

7 µHartree is found between n = 12 and n = 16 calculations. This is less than the error

due to the neglect of the off-diagonal mass-polarization (about 27 µHartree).

Examining now the convergence of GS energy with the number of valence orbitals in

the H-atom correlation consistent polarized basis, we see in Tab. III, that there is still a

72 cm−1 difference between cc-pVQZ and cc-pV5Z. A sextuple zeta calculation appears

necessary to improve convergence. It seems also necessary to obtain a fundamental

frequency closer to the non relativistic result of Bubin et al.86, see Tab. IV. The problem
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of finding adequate electronic basis sets for performing EN-MFCI calculation appears to

be the most stringent one at present. The use of standard basis set is not appropriate,

even large ones. The addition of off-centered or floating orbitals is probably not the end

answer because of quasi-linear dependency issues and the numerical problems already

discussed (vide supra). In the following of the paper, we have retained for the electronic

basis set the one used in the last entries of Tabs. III and IV:

- Two sets of cc-pV5Z H-atom basis located 1.40036324 au apart

- 16 sets of 2s basis sets located on both sides of both cc-pV5Z H-atom basis with a step

size of 0.08 au.

B. EN-SCF calculations

In the present study, we have limited ourselves to MF of order 1. So, iterating the

same dof partition, i.e. the partition into vibrational and electronic dofs, the lowest

eigenvalues of the successive effective Hamiltonians are the GS energies of the product

wave functions φ
(0)
~0
( ~Q)φ

(1)
~0
( ~Re), · · · , φ(2n)

~0
( ~Q)φ

(2n+1)
~0

( ~Re), φ
(2n+2)
~0

( ~Q)φ
(2n+1)
~0

( ~Re), · · · . If

the effective Hamiltonians are solved variationally, and if for each dof subset (electron

or vibrational coordinates) the successive variational spaces are kept identical (which

we assume here) or possibly enlarged, the GS energy can only decrease iteration after

iteration. The latter being bounded from below, the process ought to converge to a

self-consistent solution. We call such a calculation an EN-SCF(Velec,Vvib) where Velec

(resp. Vvib) specifies the variational space for electrons (resp. vibrations).

Tab. V displays the convergence of two EN-SCF processes with the iteration number

corresponding to two different electronic variational spaces: the variational space ex-

plored by the Hartree-Fock method94,95 and the Full CI variational space. The effective

vibrational Hamiltonian (even iteration numbers) is always solved by Full CI which

amounts in this particular case to the diagonalization of the Hamiltonian in the space

spanned by the 16 lowest eigenfunctions of the Kratzer model potential. In both cases,

the ZPE is decreased by about 4 mHartree. This is one order of magnitude smaller

than the decrease obtained by going from HF to Full CI. So, electron correlation is
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dominant. However, the EN-SCF lowering is not insignificant, and the optimization of

the best (with respect to the energy lowering criterium) product wave function of the

form φ~0(
~Q)φ~0(

~Re), whether φ~0(
~Re) is a HF or a Full CI wave function, is worth consid-

ering. In particular, if one wish to contract electrons and vibrations, one can think of

selecting a subset of the self-consistent electronic CI eigenfunctions (resp. vibrational

CI eigenfunctions) to generate a product basis of reduced size but of good accuracy, as

in VMFCI calculations47.

C. Comparison with other methods

To assess the potential accuracy of our method, we have contracted electronic and

vibrational dofs and performed Full electron-nucleus CI calculations. So, we have used

all 16 Kratzer basis functions and step 1 electronic eigenfunctions to generate product

functions, since without basis truncation all basis sets are equivalent, (in fact, we could

have even used electronic configuration state functions instead of step 1 solutions).

First, we compare our vibrational and electronic energy differences with respect to

NOMO results available in the literature25, so the comparison is limited to the two lowest

excited vibrational states and the lowest singlet excited state of the same symmetry as

the GS, see Tab. VI. Clearly, our results are closer to the experimental results quoted

in25 in all cases. Even the translation-Free NOMO (TF-NOMO) Full CI (referred to

as Full-CI MC MO calculations by their original author) fundamental frequencies of

Tachikawa99 are more than 10 cm−1 away for all isotopologues, whereas ours are within

the cm−1 accuracy except for H2.

Note that Webb et al.30 reported a NEO-CI value for H2 of 4161 cm−1 in perfect

agreement with experiment. However, they admitted that, given the size of their basis,

such an agreement may be fortuitous. This is not the case of our variatonal results and

we have reported in the legend of Tab. VI, the ZPE of our calculations together with

reference values. In fact, as also displayed in Table IV, where a convergence pattern is

observed with basis set extension, our results are quite reliable. Note, also that cc-pVDZ

with 8 sets of 2s basis sets is enough to obtain meaningful fundamental frequencies.

Such a calculation takes only a few seconds of CPU time on a laptop (processor: Intel
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quadriCore i5 CPU M520 at 2.40 GHz, RAM: 6 Go), once the integrals have been

computed. The integral computation bottleneck, which is not yet parallelized took about

4.5 min.

As we go towards heavier isotopologues in Tab. VI, our vibrational transition predic-

tions improve whereas the electronic transition one deteriorates. This can be understood

by the fact that the vibrational basis is limited to 16 functions. In the case of H2, excited

Kratzer functions multiplied by the lowest approximate electronic state can probably

overlap with the lowest Kratzer functions multiplied by the approximate electronic ex-

cited state, and the differences in the sums of vibrational plus electronic energies should

remain relatively small. So, a perturbation theory argument leads to the conclusion that

these product functions can combine linearly and reconstitute properly both the global

GS and the lowest electronic excited states. This is not the case of D2 and T2, where

even the highest Kratzer function is much lower than the lowest electronic excited state.

In contrast, the Kratzer functions multiplied by the approximate electronic GS will have

closer total energies in D2 and T2 than in H2, and will form a locally “dense” basis set

able to accurately describe the lowest vibrational levels of D2 and T2 isotopologues.

Turning now to the rotational energy differences for the electronic GS, we compared

our results to the accurate values of Matyus and Reiher39, and to the perturbative results

of Pachucki and Komasa85. We did not quote those that include relativistic and/or QED

corrections such as89,90. We see in Tab. VII that, the lowest rotational levels are predicted

within 1 or 2 wave number accuracy for all vibrational levels. Not surprinsingly, the

quality of our variational results deteriorates as energy increases, whether it is vibrational

or rotational energy. However, very good values are obtained for the vibrational GS as

high as J = 14. Note that such results were considered as “extremely hard to obtain in

practice” with the ENMO-CI method by Bochevarov et al.33.

Note that the results presented in Tabs. VI and VII come from full electron-nucleus CI

calculations, which are affordable for H2 and isotopologues. However, as demonstrated in

Tab. VIII, a very limited number of configurations (6286 out of the 144720 configuration

state functions (CSF) of the full CI in the case of cc-pV5Z basis with 8 sets of 2s) is enough

to obtain results of similar accuracy. It is likely that the number of useful CSF’s could

be further reduced by using electronic core basis functions specifically designed for EN-

MFCI calculations instead of the off-nucleus orbitals which generate numerous unwanted
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virtuals spaming the orbital space. Of course, as in standard electronic calculations,

selecting a priori the important configurations remains a difficult issue.

V. CONCLUSION

The EN-GMFCI approach remedies to drawbacks encountered in previous endeavour

to treat electrons and nuclei on an equal footing. First, the basis sets used to describe

the vibrational states are expressed in terms of appropriate vibrational basis functions,

as used in vibrational codes. This avoids the shortcomings of the Gaussian basis sets

with limited angular quantum number values used in other approaches for nuclear dof’s.

Second, the EN-GMFCI method only couples the electronic and nuclear degrees of

freedom after having obtained possibly already correlated vibrational and electronic wave

functions. So the crucial GMFCI step contracting all dof’s has mainly to deal with

electron-vibration correlation. Of course, the purely electronic and purely vibrational

correlations are affected too, because the Hamiltonian in the last GMFCI step is the

full Hamiltonian and not partial mean field Hamiltonians that have served to obtain the

product basis functions. However, the electronic mean field Hamiltonians can capture

the dominant electronic correlations.

The energy expression for diatomic EN-MFCI calculations limited to a one-dimensional

vibrational nuclear dof has been fully worked out. Dealing with rotational dof’s adds no

particular difficulty in the diatomic case. Numerical results on dihydrogen isotopologues

reveal that our approach is able to compute vibrational and electronic levels within a few

wave numbers in a single calculation. Duplicating such calculation for different J-values

gives also rotational energy levels within the wave number accuracy.

However, the EN-MFCI method is still at an embryonic stage and as not yet been

fully implemented. Many aspects remain to be developed and studied carefully. We

review some of them below.

In the present article, we just wanted to expose the principle of the method avoiding

unnecessary technical complications. However, the method is not limited to the special

form of Hamiltonian used in this study. For example, general curvilinear coordinates

can be used to describe nuclear motion, and the terms neglected such as non diagonal

mass polarization terms, coupling terms between electronic angular momentum and total
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angular momentum can in principle be taken into account.

Dealing with polyatomics having more nuclear dofs will result in non separable in-

tegrals of large dimensionality. One will have to use numerical techniques as already

developed for purely ro-vibrational calculations82,97,98 or (quasi) Monte-Carlo techniques

recently developed in mathematics81.

Higher orders of generalized mean field should be investigated and truncation of the

product basis set should also be implemented and taken advantage of to tackle larger

systems, or small systems such as those studied here, but with larger basis sets to reach

convergence of the Hamiltonian eigenvalues to the µHartree accuracy. However, the next

point should be adressed first.

Special basis set appropriately suited to perform EN-GMFCI need to be developed.

For the nuclear dof’s, one needs basis functions such that 1
Q
integrals converge, such as

Kratzer basis functions, suitable to describe all types of internal motion, not only bond

stretching. For electronic dof’s, the use of off-nucleus orbitals gives many unwanted

virtuals, and configuration state functions built with the latter, spam the electonic con-

figuration space. One needs to modify standard Gaussian basis sets to describe an

electronic cloud smeared by the vibrational motion of the nuclear centers. In particular

for diatomics, nucleus-centered core orbitals, must be replaced by segment-centered or-

bitals and formulas for matrix elements must be adapted accordingly. For polyatomics,

ellipsoid-centered orbitals would be needed. Work is in progress along these lines of

research.
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APPENDIX A: RYS / GENERALIZED LAGUERRE DOUBLE

QUADRATURE FORMULAS FOR ELECTRON-NUCLEUS INTEGRALS

The most general electron-nucleus Coulomb integrals that will appear in our diatomic

calculations are of the form:

Ie−n[ZI , r
0
Iz
, η] = 〈φkra

i (Q)χ1(~re)|
ZI

√

(rex)
2 + (rey)

2 + (rez − r0Iz + ηQ)2
|φkra

j (Q)χ2(~re)〉,

(32)

where the χi’s are primitive Gaussian functions of the form given in Eq. (21) and the

φkra
i ’s are Kratzer basis functions:

φkra
i (Q) =

Nkra
i

√

ξ0ab

(

1 +
Q

ξ0ab

)λ

Exp

[

λ(1− λ)

λ+ i
(1 +

Q

ξ0ab
)

]

1F1[−i, 2λ;
2λ(λ− 1)

λ+ i

(

1 +
Q

ξ0ab

)

].

(33)

The normalization factor Nkra
i is

Nkra
i =

1

Γ[2λ]

(

2λ(λ− 1)

i+ λ

)λ+ 1
2

√

Γ[2λ+ i]

2(i+ λ)i!
, (34)

and the confluent hypergeometric function 1F1[a, c; x] (see Ref.
74) appearing in Eq. (33),

is in fact a polynomial of degree i. Setting r̃0Iz = r0Iz + ηξ0ab, η̃ = ηξ0ab, α =
(

1 + Q

ξ0
ab

)

,

and,

Ie−n[ZI , r
0
Iz
, η] = ZIN1N2N

kra
i Nkra

j Ĩe−n[r̃
0
Iz
, η̃]

(35)

we have to calculate,

Ĩe−n[r̃
0
Iz
, η̃] =

∫ +∞
0 dα α2λ

1F1[−i, 2λ; 2λ(λ−1)
λ+i

α] 1F1[−j, 2λ; 2λ(λ−1)
λ+j

α]Exp
[

λ(2λ+i+j)
(λ+i)(λ+j)(1− λ)α

]

×
∫ +∞
−∞ drex

∫ +∞
−∞ drey

∫ +∞
−∞ drezExp

[

−(ζ1 + ζ2)(r
e
x)

2
]

Exp
[

−(ζ1 + ζ2)(r
e
y)

2
]

× Exp
[

−ζ1(r
e
z − r01z)

2 − ζ2(r
e
z − r02z)

2
] (rex)

l1+l2(rey)
k1+k2(rez−r01z )

j1 (rez−r02z )
j2

√

(rex)
2+(rey)

2+(rez−r̃0
Iz

+η̃α)2

(36)

The square root can be transformed using Laplace transform and assuming that the

integrals commute, one can integrate over electronic variables:
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Ĩe−n[r̃
0
Iz
, η̃] =

∫ +∞
0 dα α2λ

1F1[−i, 2λ; 2λ(λ−1)
λ+i

α] 1F1[−j, 2λ; 2λ(λ−1)
λ+j

α]Exp
[

λ(2λ+i+j)
(λ+i)(λ+j)(1− λ)α

]

∫ +∞
0

dβ√
πβ

∫ +∞
−∞ drex(r

e
x)

l1+l2Exp
[

−(ζ1 + ζ2 + β)(rex)
2
] ∫ +∞

−∞ drey(r
e
y)

k1+k2Exp
[

−(ζ1 + ζ2 + β)(rey)
2
]

×
∫ +∞
−∞ drez(r

e
z − r01z)

j1(rez − r02z)
j2Exp

[

−ζ1(r
e
z − r01z)

2 − ζ2(r
e
z − r02z)

2 − β(rez − r̃0Iz + η̃α)2
]

=
δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√

π
Γ
[

k1+k2+1
2

]

Γ
[

l1+l2+1
2

]

Exp
[

− ζ1ζ2
ζ1+ζ2

(r01z − r02z )
2
]

×
∫ +∞
0 dα α2λ

1F1[−i, 2λ; 2λ(λ−1)
λ+i

α] 1F1[−j, 2λ; 2λ(λ−1)
λ+j

α]Exp
[

λ(2λ+i+j)
(λ+i)(λ+j) (1− λ)α

]

×
∫ +∞
0 dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2

2
−1Exp

[

− (ζ1+ζ2)β
ζ1+ζ2+β

(

ζ1r
0
1z

+ζ2r
0
2z

ζ1+ζ2
− r̃0Iz + η̃α

)2
]

×
∫ +∞
−∞ drez(r

e
z − r01z)

j1(rez − r02z)
j2Exp

[

−
(

ζ1 + ζ2 + β)(rez −
ζ1r

0
1z

+ζ2r
0
2z

+β(r̃0Iz−η̃α)

ζ1+ζ2+β

)2
]

=
δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√

π
Γ
[

k1+k2+1
2

]

Γ
[

l1+l2+1
2

]

Exp
[

− ζ1ζ2
ζ1+ζ2

(r01z − r02z)
2
] j1
∑

i1=0

j2
∑

i2=0

(

j1
i1

)(

j2
i2

)

δ
[2]
0,i1+i2

Γ
[

i1+i2+1
2

]

×
∫ +∞
0 dα α2λ

1F1[−i, 2λ; 2λ(λ−1)
λ+i

α] 1F1[−j, 2λ; 2λ(λ−1)
λ+j

α]Exp
[

λ(2λ+i+j)
(λ+i)(λ+j) (1− λ)α

]

×
∫ +∞
0 dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2+2j1+2j2−i1−i2+3

2

(

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z)

)j1−i1

×
(

ζ1(r
0
1z − r02z) + β(r̃0Iz − η̃α− r02z)

)j2−i2 Exp

[

− (ζ1+ζ2)β
ζ1+ζ2+β

(

ζ1r
0
1z

+ζ2r
0
2z

ζ1+ζ2
− r̃0Iz + η̃α

)2
]

, (37)

where δ
[2]
0,k is 0 or 1 according to k being odd or even, and, where for i1 = j1,

(respectively, i2 = j2), the undetermined factor
(

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z)

)j1−i1
,

(respectively,
(

ζ1(r
0
1z − r02z) + β(r̃0Iz − η̃α− r02z)

)j2−i2), should be set to 1,

when ζ2(r
0
2z−r01z)+β(r̃0Iz−η̃α−r01z) = 0, (respectively, ζ1(r

0
1z−r02z)+β(r̃0Iz−η̃α−r02z) = 0).

Let us consider first the integral over β,

Iβ[i1, i2, α] =
∫ +∞
0 dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2+2j1+2j2−i1−i2+3

2

(

ζ2(r
0
2z − r01z) + β(r̃0Iz − η̃α− r01z)

)j1−i1

×
(

ζ1(r
0
1z − r02z) + β(r̃0Iz − η̃α− r02z)

)j2−i2 Exp

[

− (ζ1+ζ2)β
ζ1+ζ2+β

(

ζ1r
0
1z

+ζ2r
0
2z

ζ1+ζ2
− r̃0Iz + η̃α

)2
]

.

(38)

Making the change of variable β → γ = β

ζ1+ζ2+β
and using the binomial expansion if

(r01z − r02z) is non zero, we obtain,

Iβ[i1, i2, α] =

j1−i1
∑

s1=0

j2−i2
∑

s2=0

(

j1 − i1

s1

)(

j2 − i2

s2

)

ζ
j2−i2−s2
1 (−ζ2)

j1−i1−s1(ζ1 + ζ2)
s1+s2− k1+k2+l1+l2+2j1+2j2−i1−i2

2
−1

× (r01z − r02z )
j1+j2−i1−i2−s1−s2(r̃0Iz − η̃α− r01z)

s1(r̃0Iz − η̃α− r02z)
s2Iγ [s1, s2, α]. (39)

25



If (r01z − r02z) = 0, that is if the electronic orbitals are on the same center, the expression

is simply,

Iβ[i1, i2, α] = (ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2 (r̃0Iz − η̃α− r01z)
j1−i1(r̃0Iz − η̃α− r02z )

j2−i2Iγ [j1 − i1, j2 − i2, α].

(40)

In the last two equations, Iγ[s1, s2, α] is defined to be,

Iγ [s1, s2, α] =
∫ +1
0 dγ γs1+s2− 1

2 (1− γ)+
k1+k2+l1+l2+2j1+2j2−i1−i2

2
−s1−s2

× Exp

[

−(ζ1r01z+ζ2r
0
2z

−(ζ1+ζ2)(r̃0Iz−η̃α))
2

ζ1+ζ2
γ

]

, (41)

where we recognize the confluent hypergeometric function 1F1[a, c; x]
74,

Iγ [s1, s2, α] =
Γ[s1+s2+

1
2
]Γ[

k1+k2+l1+l2+2j1+2j2−i1−i2
2

−s1−s2+1]

Γ[
k1+k2+l1+l2+2j1+2j2−i1−i2+3

2
]

× 1F1

[

s1 + s2 +
1
2 ,

k1+k2+l1+l2+2j1+2j2−i1−i2+3
2 ;−(ζ1r01z+ζ2r

0
2z

−(ζ1+ζ2)(r̃0Iz−η̃α))
2

ζ1+ζ2

]

.

(42)

However, it is probably more practical to integrate numerically using Rys quadrature

after a new change of variable, γ → τ =
√
γ,

Iγ[s1, s2, α] = 2
∫ +1

0
dτ τ 2(s1+s2)(1− τ 2)

k1+k2+l1+l2+2j1+2j2−i1−i2
2

−s1−s2

× Exp

[

−(ζ1r01z+ζ2r
0
2z

−(ζ1+ζ2)(r̃0Iz−η̃α))
2

ζ1+ζ2
τ 2
]

. (43)

the δ[2] functions in Eq.(36) insure that the Rys quadrature will be exact, since

k1+k2+l1+l2+2j1+2j2−i1−i2
2

will always be an integer. The minimum number of quadra-

ture points or “roots” to have an exact quadrature, is the smallest integer larger than

half the degree of the polynomial in factor of the Gaussian functions, that is to say, in

the present case,

n
Rys
roots =

k1 + k2 + l1 + l2 + 2j1 + 2j2 − i1 − i2

2
. (44)

So, setting,

ν(α) =

(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2
, (45)

we can rewrite exactly Iγ [s1, s2, α] as a discretized Rys sum,

Iγ [s1, s2, α] = 2
∑

p

wRys
p [ν(α)]τp[ν(α)]

2(s1+s2)(1− τp[ν(α)]
2)

k1+k2+l1+l2+2j1+2j2−i1−i2
2

−s1−s2,

(46)
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where the τp[ν(α)]’s are the roots of the Rys polynomials, and wRys
p [ν(α)]’s the Rys

“weights”. Clearly, this can only be evaluated for a finite set of α-values. So, the

integral over α has to be integrated numerically too, and generalized Laguerre-Gauss

quadrature seems the most appropriate scheme75:

Ĩe−n[r̃
0
Iz
, η̃] =

δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√

π
Γ
[

k1+k2+1
2

]

Γ
[

l1+l2+1
2

]

Exp
[

− ζ1ζ2
ζ1+ζ2

(r01z − r02z)
2
] j1
∑

i1=0

j2
∑

i2=0

(

j1
i1

)(

j2
i2

)

× δ
[2]
0,i1+i2

Γ
[

i1+i2+1
2

]
∑

q w
Lag
q 1F1[−i, 2λ; 2λ(λ−1)

λ+i
κq] 1F1[−j, 2λ; 2λ(λ−1)

λ+j
κq]Iβ[i1, i2, κq],

(47)

where κq and wLag
q are respectively the generalized Gauss-Laguerre polynomials roots

and weights corresponding to parameters
(

2λ+ i+ j,
λ(2λ+i+j)
(λ+i)(λ+j)

(λ− 1)
)

: that is to say,

the appropriate roots and weights to integrate by quadrature an integral of the form,

∫ +∞

0

dx x2λ+i+jExp[− λ(2λ+ i+ j)

(λ + i)(λ+ j)
(λ− 1)x]f(x). (48)

Inserting Eq.(47) into Eq.(35) gives the required electron-nucleus attraction integrals.
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45P. Cassam-Chenäı and J. Liévin, Int. J. Quantum Chem. 93, 245-264 (2003).
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Kratzer potential parameters (in au)

H2 D2 T2

λ 36.754020 51.755767 63.224041

ξ0ab 42.430690 59.991167 73.415113

TABLE I. Kratzer potential parameters used for the vibrational modal basis sets of dihydrogen

and isotopologues.

Convergence of H2 GS energy with number of

modals and number of ghost atomic functions

k=4 k=8 k=12 k=16

n = 4 -1.1621504 -1.1622377 -1.1622418 -1.1622419

n = 8 -1.1623184 -1.1624301 -1.1624334 -1.1624341

n = 12 -1.1623574 -1.1624676 -1.1624750 -1.1624754

n = 16 -1.1623887 -1.1624996 -1.1625050 -1.1625060

TABLE II. Convergence of H2 ground state energy (hartree) with number of Kratzer basis

functions, k, and the number of off-centered ghost atoms, n. The Kratzer basis functions used

for the nuclear modal basis set are the lowest eigenfunctions of a Kratzer potential with pa-

rameters ξ0ab = 42.430690 au, D = 0.364955174 au. H-atom Dunning correlation basis sets

CC-PVTZ84 were locate at ±0.70018162 au on the x-axis and ghost atom two s-orbital basis

sets corresponding to the core 1s-orbital of the cc-pVTZ H-basis plus the third uncontracted

s-Gaussian primitive corresponding to exponent 1.159au, were located on each side of each

H-atom with a step size of ±0.08 au . For example the first set of 4 ghost atoms were located

at respectively ±0.78018162 au and ±0.62018162 au. A tolerance of 10−6 was used to elimi-

nate quasi-linear dependencies of the electronic orbital basis set. Reduced mass correction is

included.

33



Convergence of H2 ground state energy with electronic basis

basis set:

+ n off-centered 2s
cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

n = 4 -1.1576745 (18-0) -1.1622419 (36-0) -1.1632984 (68-0) -1.1636441 (118-0)

n = 8 -1.1579290 (26-5) -1.1624380 (44-4) -1.1634754 (76-2) -1.1638262 (126-0)

n = 12 -1.1581072 (34-10) -1.1624953 (52-9) -1.1635184 (84-5) -1.1638365 (134-5)

n = 16 -1.1581475 (42-16) -1.1625060∗(60-16) -1.1635140 (92-10) -1.1638438 (142-8)

TABLE III. Convergence of H2 ground state energy (hartree) with electronic orbital basis set.

The 16 lowest eigenfunctions of a Kratzer potential with parameters ξ0ab = 42.430690 au, D =

0.364955174 au were used for the nuclear modal basis set. H-atom Dunning correlation basis

sets84 were locate at ±0.70018162 au on the x-axis and two s-orbital basis sets corresponding to

the contracted 1s-orbital of the cc-pVnZ H-basis plus the most diffuse primitive Gaussian not

used as an uncontracted s-orbital in the H-basis, were located on each side of each atom with

a step size of ±0.08 au. A tolerance of 10−7 was used to eliminate quasi-linear dependencies of

the electronic orbital basis set. In parenthesis, the first integer is the total number of orbital

basis functions, the second integer is the number or quasi-linearly dependent functions removed.

Reduced mass correction is included. These numbers should be compared with the value of

Bubin et al.86, −1.1640250308 Hartrees. However, note that our numbers do not include the

non diagonal mass polarization contribution.

∗ Tolerance of 10−6 was used for this calculation.

Convergence of H2 fundamental frequency with electronic basis

basis set:

+ n off-centered 2s
cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

n = 4 4243.9614 4368.4358 4370.9965 4343.8847

n = 8 4167.3741 4221.7984 4223.5432 4213.2700

n = 12 4157.3350 4179.1580 4173.7389 4172.7935

n = 16 4151.8120 4172.7132∗ 4165.2741 4165.3588

TABLE IV. Convergence of H2 fundamental frequency (cm−1 ) with electronic orbital basis

set. Details as in Tab. III. These numbers should be compared with the value of Bubin et

al.86, 4161.1641150762 cm−1 . However, note that our numbers do not include the non diagonal

mass polarization contribution.
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Convergence of H2 ground state energy

with MFCI iterations

iteration number HF Full CI

0 -1.1100467 -1.1508083

1 -1.1138025 -1.1546101

2 -1.1139342 -1.1547108

3 -1.1139687 -1.1547212

4 -1.1139925 -1.1547273

5 -1.1140094 -1.1547317

6 -1.1140215 -1.1547349

7 -1.1140300 -1.1547374

8 -1.1140360 -1.1547391

9 -1.1140404 -1.1547403

CV -1.1140507 -1.1547436

TABLE V. Convergence of H2 ground state energy (hartree) with MFCI iterations for different

electronic methods: Hartree-Fock (HF) and Full configuration interactions (Full CI). The [cc-

pV5Z + 16 (2s)]⊗[16 Kratzer] basis corresponding to the last entries of Tabs. III and IV has

been used. The vibrational method is always the Full CI. CV stands for “converged”.
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Vibrational and electronic transition wave numbers (in cm−1 )
of H2, D2, and T2.

H2 D2 T2

Transition TF-NOMO/CIS TF-NOMO/FCI this work Exp. TF-NOMO/CIS TF-NOMO/FCI this work Exp. TF-NOMO/CIS TF-NOMO/FCI this work Exp.

ν : 0 → 1 4655 4182 4165 4161 3549 3006 2994 2994 2929 2477 2465 2465

ν : 0 → 2 9406 N/A 8110 8087 7026 N/A 5874 5869 5843 N/A 4851 4849

Σ+
g

: 0 → 1 106556 N/A 91711 91700 107628 N/A 92182 91697 108043 N/A 92375 91696

TABLE VI. Selected electronic and vibrational transitions of dihydrogen isotopologues (in cm−1 ). “this work” corresponds to the [cc-pV5Z

+ 16 (2s)]⊗[16 Kratzer] basis set and EN-MFCI calculation contracting electron and nuclei after a single MFCI iteration (see last entries of

Tabs. III and IV). However, for D2 and T2 a step size of 0.07 au instead of 0.08 au has been chosen to spread off-centered orbitals because

of the smaller vibrational motion amplitude. GS energy is −1.1669493 Hartree for D2 (−1.1683018 resp. for T2) to be compared with the

non relativistic value, 1.16716880921 Hartree of Bubin et al.87 (resp. −1.16853567568). Translation-Free NOMO (TF-NOMO) results and

experimental (Exp.) numbers are taken from Nakai25. More precisely, the TF-NOMO/CIS results correspond to a cc-pVTZ electronic basis

set and a (3s3p3d) nuclear basis set; the TF-NOMO/FCI results correspond to a (6s3p1d) electronic basis set and a (3s3p) nuclear basis

set99.
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Selected rotational energy levels (in cm−1 )
of H2.

this work Ref.85 Ref.39

ν = 0

J = 1 118.4 118.4851 118.485355

J = 2 354.1 354.3684 354.369007

J = 3 705.1 705.5097 705.509982

J = 4 1168.1 1168.7825 1168.782740

J = 5 1739.1 1740.1675 N/A

J = 14 10797.7 10800.9043 N/A

ν = 1

J = 1 112.5 112.5730 N/A

J = 2 336.5 336.6682 N/A

J = 3 669.9 670.2172 N/A

J = 4 1109.7 1110.2000 N/A

J = 5 1652.2 1652.7361 N/A

J = 14 10257.8 10237.9613 N/A

ν = 2

J = 1 107.0 106.7905 N/A

J = 2 319.9 319.3545 N/A

J = 3 637.0 635.6922 N/A

J = 4 1055.6 1052.8833 N/A

J = 5 1572.0 1567.1775 N/A

J = 14 9795.1 9684.4911 N/A

ν = 5

J = 1 88.3 89.7800 N/A

J = 2 264.5 268.4120 N/A

J = 3 527.8 534.0707 N/A

J = 4 876.7 884.0925 N/A

J = 5 1309.0 1168.7825 N/A

J = 14 8218.6 8029.4047 N/A

TABLE VII. First rotational energy levels of dihydrogen (in cm−1 ). “this work” corresponds to

the [cc-pV5Z + 16 (2s)]⊗[16 Kratzer] basis set and EN-MFCI calculation contracting electron

and nuclei after a single MFCI iteration.
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Full CI Limited CI

Number of CSF’s 144720 6286

E0 (hartrees) −1.1638438 −1.1638413

ν : 0 → 1 (cm−1 ) 4165.36 4165.86

TABLE VIII. Comparison of full and limited electron-nucleus CI calculations. The electronic

full-CI eigenfunctions and vibrational eigenfunctions obtained in the converged MFCI calcula-

tion of the last column of Tab. V were used to build an electron-nucleus direct product basis

set. The configuration state functions (CSF’s) selected for the limited CI were those having

a coefficient in the full CI expansion of the ground or first excited states with absolute value

larger than 10−5.
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