
HAL Id: hal-00737040
https://univ-cotedazur.hal.science/hal-00737040v4

Preprint submitted on 18 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXACT SAMPLING USING BRANCHING
PARTICLE SIMULATION

Christophe Andrieu, Nicolas Chopin, Arnaud Doucet, Sylvain Rubenthaler

To cite this version:
Christophe Andrieu, Nicolas Chopin, Arnaud Doucet, Sylvain Rubenthaler. EXACT SAMPLING
USING BRANCHING PARTICLE SIMULATION. 2012. �hal-00737040v4�

https://univ-cotedazur.hal.science/hal-00737040v4
https://hal.archives-ouvertes.fr

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION

CHRISTOPHE ANDRIEU, NICOLAS CHOPIN, ARNAUD DOUCET, AND SYLVAIN RUBENTHALER

Abstract. Particle methods, also known as Sequential Monte Carlo methods, are a popular
set of computational tools used to sample approximately from non-standard probability distri-
butions. A variety of convergence results ensure that, under weak assumptions, the distribution
of the particles converges to the target probability distribution of interest as the number of
particles increases to infinity. Unfortunately it can be difficult to determine practically how
large this number needs to be to obtain a reliable approximation. We propose here a procedure
which allows us to return exact samples. The proposed algorithm relies on the combination of
an original branching variant of particle Markov chain Monte Carlo methods and dominated
coupling from the past.

1. Introduction

We are given measurable spaces (E1, E1), (E2, E2), . . . , M1 a probability measure on E1, for
each k ≥ 2, a transition kernel Mk from Ek−1 to Ek and bounded measurable potentials (Gk)k≥1

(Gk : Ek → R+, R+ equipped with the Lebesgue tribe). All densities and kernels are supposed to
have a density with respect to some reference measures on Ek (k = 1, 2, . . . , T). Moreover, in the
following, densities on enumerable sets will always be taken with respect to the counting measure.
In the case we write a density on a space defined as a product of spaces Ei, the reference measure
will be the product of the measures mentioned above. We want to draw samples according to the
law (on paths of length T) defined for any measurable function f by

(1.1) π(f) =
E
(
f(X1, . . . , XT)

∏T−1
k=1 Gk(Xk)

)
E
(∏T−1

k=1 Gk(Xk)
)

where (Xk)k≥1 is Markov with initial law M1 and transitions (Mk)k≥2 (for all k ≥ 1, Xk takes
values in Ek). For all n ∈ N∗, we note [n] = {1, . . . , n}. We set ZT = E

(∏T−1
i=1 Gi(Xi)

)
. Then π

has the following density at (x1, . . . , xT) ∈ E1 × · · · × ET :

(1.2) π(x1, . . . , xT) =
1

ZT
M1(x1)

T−1∏
k=1

Gk(xk)Mk+1(xk, xk+1) .

In the following, all the random variables are defined on a probability space (Ω,F ,P).
We would like to draw a random variable according to the law π. Moreover, we want the

complexity of the algorithm used to draw this variable to grow at most as a polynomial in T .
There is a straightforward way of sampling according to the law π. Suppose ‖Gk‖∞ ≤ 1 for

all k, for the sake of simplicity (the argument could be adapted to our hypotheses). We can
use an accept-reject scheme by sampling the Markov chain (X1, X2, . . . , XT) and U of uniform
law on [0, 1] until U ≤ G1(X1) × . . . GT−1(XT−1). The first accepted (X1, . . . , XT) is of law π.
Unfortunately, the cost of this procedure is, in expectation, exponential in T .

In [ADH10], the authors propose a new algorithm called PMCMC (Particle Markov Chain
Monte Carlo). Applied to our case, it is essentially a Markov chain in some space of genealogy of
particles containing E1 × E2 × · · · × ET as a subspace. It happens that this Markov chain has a

Date: 18th October 2016.
Key words and phrases. Coupling from the past, Exact simulation, Particle methods, Particle Markov chain

Monte Carlo Methods.
1

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 2

stationary law whose marginal in E1× · · ·×ET is exactly π. In order to generate genealogies, the
PMCMC algorithm uses an SMC scheme (Sequential Monte-Carlo).

Given a Markov chain having this interesting stationary measure, we want to use CFTP (Coup-
ling From The Past) to generate random variables which are exactly of law π. There are essentially
two cases where CFTP is easy to apply: Markov chains in a partially ordered space (such as in the
Ising’s model) and Metropolis-Hastings Markov chain with independent proposals. We recall here
a few references on CFTP: [FT98, PW96] (fundamental papers), [Ken05] (survey on perfect sim-
ulation), [CT02] (Metropolis-Hastings with independent proposals). In the present paper, we use
a Metropolis-Hastings with independent proposals to build an algorithm which produces samples
of law π. The proposals are inspired by the PMCMC algorithm. However, the use of the SMC
makes the stopping time in the CFTP difficult to control. So we replace the SMC part by what
we call “branching processes”, which is another way of producing genealogies of particles.

The outline of the paper is the following. In Section 2, we define branching processes, which
are random variable on complex spaces. In Section 3, we describe a Markov chain in the space
of trajectories (E1 × E2 × · · · × ET) having the invariant law π, this construction is inspired by
the PMCMC algorithm. In Section 4,we use CFTP to build an algorithm producing samples of
law π. In Section 5, we discuss the implementation and the complexity of this algorithm on two
examples.

2. Densities of branching processes

2.1. Branching process. We first introduce some definitions concerning the elements of (N∗)k
for k = 1, 2, If 1 ≤ q ≤ n and iii = (i1, . . . , in) ∈ (N∗)n, we define iii(q) = (i1, . . . , iq) and we
say that iii(q) is an ancestor of iii and we denote this relation by iii(q) ≺ iii; we will also say that iii is
a descendant of iii(q). We introduce the following notation: if iii = (i1, . . . , ik) ∈ (N∗)k and j ∈ N∗,
(iii, j) = (i1, . . . , ik, j) ∈ (N∗)k+1. For iii, jjj in (N∗)k (k ∈ N∗), we write iii ≤ jjj if iii is smaller that jjj in
the alphanumerical sense. For example, in the case k = 2, (1, 1) ≤ (1, 2) ≤ (1, 3) ≤ · · · ≤ (2, 1) ≤
(2, 2) ≤

We now define a branching process. We start with n1 particles, i.i.d. with lawM1 (n1 is a fixed
number). We then proceed recursively through time to build a genealogical tree. At time 1, the
particles are denoted by X1

1 , . . . , Xn1
1 . We set

(2.1) S1 = {1, 2, . . . , n1} .

At time k, the particles are denoted by (Xiii
k)iii∈Sk , where Sk is a finite subset of (N∗)k, and the

number of particles is Nk = #Sk (the cardinality of Sk). For iii ∈ Sk, we say that Xiii
k is the position

of the particle indexed by iii, or, in a shorter way, the position of iii. In an abuse of notation, in the
case jjj ≺ iii (jjj ∈ Sq), we also say that Xjjj

q is an ancestor of Xiii
k and that Xiii

k is a descendant of Xjjj
k.

Starting from the particles at time k ≤ T − 1 with particles (Xiii
k)iii∈Sk (Sk ⊂ (N∗)k), the system

evolves in the following manner:

• For each iii ∈ Sk, the number of children of iii is a random variable Niii
k+1 with law fk+1 such

that :

P(Niii
k+1 = j

∣∣Xiii
k) = fk+1(Gk(Xiii

k), j) .

Here, fk+1 is a law with a parameter Gk(Xiii
k), we will define this law precisely later. We

suppose that

(2.2) fk+1(Gk(x), 0) = 1− αk+1Gk(x)

for some αk+1 in [0, 1/‖Gk‖∞]. This will remain true trough all the paper. The variables
Niii
k+1 (iii ∈ Sk) are independent. The total number of particles at time k + 1 is then

Nk+1 =
∑
iii∈Sk N

iii
k.

• If Nk+1 6= 0, we draw σk+1 uniformly in SNk+1
(the Nk+1-th symmetric group). If

Nk+1 = 0, we use the convention SNk+1
= ∅ and the system stops here.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 3

• We order Sk alphanumerically: Sk = {iii1, . . . , iiiNk with iii1 ≤ · · · ≤ iiiNk}. For r ∈ [Nk], we
set

Crk+1 =

{
1 +

r−1∑
l=1

Niiil
k+1, 2 +

r−1∑
l=1

Niiil
k+1, . . . ,

r∑
l=1

Niiil
k+1

}
.

We set
Sk+1 = ∪Nkr=1 ∪j∈σk+1(Crk+1) (iiir, j) .

For r ∈ [Nk], j ∈ σk+1(Crk+1), we draw X
(iiir,j)
k+1 ∼ Mk+1(Xiiir

k , .) in Ek+1. To simplify
the notation, we write C(iiir) = Crk+1 for all r ∈ [Nk] and C(iii) = C(iiir) if iii = iiir ∈ Sk.
We can then write that, for iii ∈ Sk, the descendants of iii at time k + 1 are the (iii, j) for
j ∈ σk+1(C(iii)).

Such a system takes values in the space

E = {(S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk) : Sk ∈ (N∗)k ∀k ∈ [T] , satisfying condition HT } ,

where the conditions H1, H2, . . . are defined recursively:
• H1 is: S1 = [n1], ∀iii ∈ S1, xiii1 ∈ E1,
• (S1, . . . , ST , (x

iii
k)k∈[T],iii∈Sk) satisfies condition HT if

– ST ⊂ (N∗)T
– (S1, . . . , ST−1, (x

iii
k)k∈[T−1],iii∈Sk) satisfies condition HT−1,

– ∀iii ∈ ST , ∃jjj ∈ ST−1 such that jjj ≺ iii
For (S1, . . . , ST , (x

iii
k)k∈[T],iii∈Sk)) in E, we set

∀k ∈ [T − 1] , ∀iii ∈ Sk , niiik+1 = #{jjj ∈ Sk+1 : iii ≺ jjj} , nk+1 =
∑
iii∈Sk

niiik+1 .

We remark that for any element (S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk) of E and k ∈ {1, 3, . . . , T − 1}, if

nk+1 = 0 then nk+1 = nk+2 = · · · = nT = 0, Sk+1 = Sk+2 = · · · = ST = ∅. A random variable on
the space E will be called a branching process.

At a point (S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk) in E, the density of the branching process defined above

is given by

(2.3) q(S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk) =

∏
iii∈S1

M1(xiii1)

T−1∏
k=1

∏
iii∈Sk

fk+1(Gk(xiiik), niiik+1)× 1

nk+1!
×
∏
iii∈Sk

∏
jjj∈Sk+1:iii≺jjj

Mk+1(xiiik, x
jjj
k+1)

 .

In the following, we use the short cut notation (S1:T , (x
iii
k)) for a point in E. For χ ∈ E, we write

Sk(χ), k ∈ [T] for the corresponding subsets of (N∗)k, k ∈ [T], we write Nk(χ) for the number of
particles at each time step k ∈ [T]. We will use the same notations for a point χ ∈ E′ (E′ defined
below).

2.2. Proposal distribution. We introduce the space

E′ = E × (N∗)T .

Suppose we draw a branching process (S1:T , (X
iii
k)) with law q and then draw BBB uniformly in ST

if NT ≥ 1 , and set BBB = (1, 1, . . . , 1) if NT = 0. This random variable takes values in E′ and, at
a point (S1, . . . , ST , (x

iii
k)k∈[T],iii∈Sk , bbb) with (S1:T , (x

iii
k)) ∈ E such that nT ≥ 1, bbb ∈ ST , it has the

density

(2.4) q̂(S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk , bbb) = q(S1, . . . , ST , (x

iii
k)k∈[T],iii∈Sk)× 1

nT
.

We call this the proposal distribution. One can view the space E′ as the space of branching
processes where a particular trajectory is singled out, we will call it the coloured trajectory. At a
point (S1:T , (x

iii
k), bbb), what we call the coloured trajectory is (x

bbb(1)
1 , . . . , x

bbb(T)
T) in the case nT ≥ 1;

in the case nT = 0, the coloured trajectory is (x1
1, x

(1,1)
2 , . . . , x

(1,...,1)
q) where q = max{k : nk ≥ 1}.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 4

In Figure 2.1, we have a representation of a the realisation variable of law q̂ on the left. The
sets E1, E2, . . . are equal to R, we draw n1 = 3 points at time 1 and a full branching process
according to the law q. The terminal time T is equal to 4. The number of particles at time T is
NT = 7. Two particles are linked when one is the children of the other. One particle is chosen
uniformly amongst the particles at time T . This particle is coloured and its ancestors are coloured.
This makes the coloured trajectory.

Figure 2.1. Examples

2.3. Target distribution. Let us denote by f̂(g, .) the law f(g, .) conditioned to be ≥ 1, that is:
for all g ≥ 0, i ≥ 1, k ≥ 1,

(2.5) f̂k(g, i) =
fk(g, i)

1− fk(g, 0)
.

This quantity is not defined in the case g = 0 but we will not need it in this case. An alternative
way of building a branching process with a coloured trajectory is to draw a trajectory with law π,
say that is is the coloured trajectory and then build a branching process conditioned to contain
this trajectory. The indexes of the coloured trajectory embedded in the branching process are
denoted by a random variable BBB. The first coordinate BBB(1) is chosen uniformly in [n1]. The other
coordinates are deduced from the branching process in the following way: suppose that, at time
k + 1, the random permutation of the branching process is σk+1 and the numbers of children are
(Niii

k+1)iii∈Sk , we setBBBk+1 = σk+1(min{C(BBB(k))}) andBBB(k+1) = (BBB(k),BBBk+1). We thus introduce
what we call the target distribution. Its support is contained in {(S1, . . . , ST , (x

iii
k)k∈[T],iii∈Sk , bbb) ∈

E′ : nT ≥ 1} and it has the density:

(2.6) π̂(S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk , bbb)

=
1

n1
π
(
x
bbb(1)
1 , ..., x

bbb(T)
T

) ∏
iii∈S1 , iii 6=bbb(1)

M1(xiii1)

×
T−1∏
k=1

 ∏
iii∈Sk,iii6=bbb(k)

fk+1(Gk(xiiik), niiik+1)

 × f̂k+1(Gk(x
bbb(k)
k), n

bbb(k)
k+1)× 1

nk+1!

×

 ∏
iii∈Sk,iii 6=bbb(k)

∏
jjj∈Sk+1\{bbb(k+1)},iii≺jjj

Mk+1(xiiik, x
jjj
k+1)

 ,

where the term f̂k+1(Gk(x
bbb(k)
k), n

bbb(k)
k+1) corresponds to the simulation of the number of offsprings

of the particle xbbb(k)
k . Using (1.2). (2.2) and (2.5), we can rewrite π̂ into

(2.7) π̂(S1, . . . , ST , (x
iii
k)k∈[T],iii∈Sk , bbb)

=
1

n1
×

n1∏
i=1

M1(xi1)×
T−1∏
k=1

 1

nk!

∏
i∈Sk

fk+1(Gk(xiiik), niiik+1)×
∏

j∈Sk+1,iii≺jjj

Mk+1(xiiik, x
(iii,j)
k+1)

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 5

× 1

ZTα1 . . . αT−1
.

In Figure 2.1, we have a representation of a the realisation variable of law π̂ on the right. We
draw a trajectory with law π. This is the coloured trajectory. We then draw a forest of law q
conditioned to contain this coloured trajectory. The number of particles at time T is NT = 7.

2.4. Ratio of densities. We deduce from (2.3), (2.4) and (2.7), that at a point in the support
of π̂, the ratio of π̂ and q̂ is equal to

(2.8)
π̂((xiiik)k∈[T],iii∈Sk , (n

iii
k)k∈{2,...,T},iii∈Sk−1

, (σk)k∈{2,...,T}, bbb)

q̂((xiiik)k∈[T],iii∈Sk , (n
iii
k)k∈{2,...,T},iii∈Sk−1

, (σk)k∈{2,...,T}, bbb)
=

nT
n1ZTα1 . . . αT−1

.

3. A Markov chain on E1 × · · · × ET
We now define a Markov kernel Q on E1 × · · · × ET . We start from a path (x1, . . . , xT) ∈

E1 × · · · × ET . We will move to a new path in several steps.
(1) Draw of a conditional forest. We sample a random variable χ with law π̂ conditionally on

(X
BBB(1)
1 , . . . , X

BBB(T)
T) = (x1, . . . , xT) . We use for this the expression (2.6). Such a sampling

can be done recursively in k ∈ [T] in the following way.
• We take BBB(1) = BBB1 uniformly in [n1]. We take (Xiii

1)iii∈S,iii6=BBB1
i.i.d. with law M1.

• Suppose we have sampled ((Xiii
q)1≤q≤k,iii∈Sq , (N

iii
q)2≤q≤k,iii∈Sq−1

, Sk) for k ≤ T − 1. For
iii ∈ Sk, we take Niii

k+1 with law fk+1(Gk(Xiii
k), .) if iii 6= BBB(k) and N

BBB(k)
k+1 with law

f̂k+1(Gk(X
BBB(k)
k), .). We set Nk+1 =

∑
iii∈Sk N

iii
k. We draw σk+1 uniformly in SNk+1

.
We set BBBk+1 = σk+1(min{C(BBB(k))}), BBB(k + 1) = (BBB(k),BBBk+1). We set Sk+1 =
∪iii∈Sk ∪j∈σk+1(C(iii)) (iii, j).

– For iii ∈ Sk , iii 6= BBB(k), j ∈ σk+1(C(iii)), we take X(iii,j)
k+1 with law Mk+1(Xiii

k, .).
– For iii = BBB(k), j ∈ σk+1(C(iii)), j 6= BBBk+1, we take X(iii,j)

k+1 with law Mk+1(Xiii
k, .).

(2) Proposal. We draw a proposal χ with law q̂. It contains a coloured trajectory

(X
BBB(1)

1 , . . . , X
BBB(T)

T).

(3) Accept/reject step. We move to (X
BBB(1)

1 , . . . , X
BBB(T)

T) with probability min
(

1, NT (χ)
NT (χ)

)
and

we stay in (x1, . . . , xT) with probability

(3.1) 1−min

(
1,
NT (χ)

NT (χ)

)
.

Theorem 3.1. The law π is invariant for the kernel Q.

Proof. Suppose we start with a random variable (X1, . . . , XT) with law π. Going through step 1
of the construction above, we get a random variable

χ = ((Xiii
k)k∈[T],iii∈Sk , (N

iii
k)k∈{2,...,T},iii∈Sk−1

, (σk)k∈{2,...,T},BBB)

in E′ such that (X
BBB(1)
1 , . . . , X

BBB(T)
T) = (X1, . . . , XT). By (2.6), χ has the law π̂. We draw a random

variable χ with law q̂ as in step 2 above. We then proceed to the step 3 above. Let U be a uniform
variable in [0, 1]. We set

χ̂ =

{
χ if U ≤ min

(
1, NT (χ)

NT (χ)

)
,

χ otherwise.

The result of the random move by the Markov kernel Q is the coloured trajectory of χ̂. By (2.8),
we have that

(3.2)
NT (χ)

NT (χ)
=
π̂(χ)q̂(χ)

q̂(χ)π̂(χ)
,

and so χ̂ is of law π̂ (we recognise here the accept-reject step of a Metropolis-Hastings algorithm).
This finishes the proof. �

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 6

Remark 3.2. We use permutations in the definitions of the proposal and target distribution. It
might look as an unnecessary complication. However, this is what makes that π̂ and q̂ have almost
the same support and that the acceptance ratio on the right-hand side of Equation (3.2) above
simplifies nicely into NT (χ)/NT (χ).

4. Algorithms

4.1. Simulation of a branching process. One might be worried whether a process of law q
might be such that NP is very big or equal to 0 with a high probability. Such events are undesirable
in our simulations, as it will be seen later. For all k ≥ 1, g ∈ [0; ‖Gk‖∞], we want

fk+1(g, 0) = 1− αk+1g

(for some parameter αk+1 ∈ (0, 1/‖Gk‖∞]). Suppose we take the following simple law:

(4.1) fk+1(g, i) = αk+1pk+1,ig for i ∈ [qk+1]

and fk+1(g, i) = 0 for i ≥ qk+1 + 1, with pk+1,i ≥ 0 for i ∈ [qk+1], and with some integer qk+1 to
be chosen. For example, one could choose pk+1,i = 1/qk+1 for all i ∈ [qk+1] , in which case:

(4.2) fk+1(g, i) = g × αk+1i

qk+1
.

Suppose we have built a branching process up to time k. We define a measure πk on Ek by its
action on test functions:

(4.3) πk(f) =
E(f(Xk)

∏k−1
i=1 Gi(Xi))

E(
∏k−1
i=1 Gi(Xi))

,

where (X1, . . . , XT) is a non-homogeneous Markov chain with initial law M1 and transitions M2,
M3, . . . MT . Suppose we make a simulation of a branching process up to time k. The particles
at time k are denoted by (Xiii

k)iii∈Sk . The empirical measure
1

Nk

∑
iii∈Sk

δXiiik

is such that, for all bounded measurable ϕ : Ek → R+,
1

Nk

∑
iii∈Sk

ϕ(Xiii
k)

P−→
n1→+∞

πk(ϕ)

and Nk
P−→

n1→+∞
+∞ (see Section 6.1 for the details). Knowing Nk, we want the expected number

of children of the (k + 1)−th generation to be Nk, that is:

(4.4)
1

Nk

∑
iii∈Sk

qk+1∑
j=1

jαk+1pk+1,jGk(Xiii
k) =

1

Nk

Nk∑
i=1

m1,k+1Gk(Xiii
k) = 1 ,

where

(4.5) m1,k+1 =

qk+1∑
j=1

αk+1pk+1,jj .

This is true asymptotically when n1 → +∞ if

(4.6) m1,k+1πk(Gk) = 1 .

Suppose now we have approximated πk by an empirical measure 1
N

∑N
i=1 δY ik with some particles

(Y ik)1≤i≤N coming from a SMC scheme (with N particles). We then have, for all bounded meas-
urable ϕ,

1

N

N∑
i=1

ϕ(Y ik)
P−→

N→+∞
πk(ϕ)

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 7

We set

πNk (Gk) =
1

N

N∑
i=1

Gk(Y ik) .

We suppose now, we are in the sub case of Equation (4.2). We take αk+1 such that

(4.7)
2

αk+1πNk (Gk)
=

⌈
2‖G‖∞
πNk (Gk)

⌉
(upper integer part),

and

(4.8) qk+1 =

⌈
2‖G‖∞
πNk (Gk)

⌉
− 1 .

Then Equation (4.4) is true asymptotically when n1 → +∞, N → +∞. With this choice of αk+1,
qk+1, we have

(4.9) qk+1 ≥ 1 , αk+1‖Gk‖∞ ∈
[

2

3
, 1

]
.

We have here described a way of choosing the integers (qk)k∈{2,...,T} before making a simulation
of the branching process. The arguments given are purely heuristic. Other ways of calibrating
(qk)k∈{2,...,T} are possible, the only important thing is that these integers should be fixed before
running the exact simulation algorithm described below.

We need that in practice, the number of particles in the branching process remains stable in
time. The next Lemma tells us that if we can perfectly tune the parameters, the number of
particles remain stable.

Lemma 4.1. For the branching process described above, if (αk+1, qk+1, (pk+1,i)i∈[qk+1])k∈[T−1]

satisfy Equation (4.6) for all k and if the law fk+1 is described by Equation (4.1), then

E(Nk) = n1 ,

for all k in [T].

Proof. As in Section 6.1, we use the notation

m(x1, . . . , xN) =
1

N

N∑
i=1

δxi

for empirical measures. We want to prove the result by recurrence on k.
It is true for k = 1.
Let us suppose it is true in k ≥ 1. We have,

E(Nk+1) = E

(∑
iii∈Sk

Niii
k+1

)
= E

(
Nkm(Xiii

k, iii ∈ Sk)(Gk)m1,k+1

)
.

And, by Equation (4.6),

E
(
Nkm(Xiii

k, iii ∈ Sk)(Gk)m1,k+1

)
− E(Nk) = E((Nk − n1)(m(Xiii

k, iii ∈ Sk)(Gk)− πk(Gk))m1,k+1)

+ n1E((m(Xiii
k, iii ∈ Sk)(Gk)− πk(Gk))m1,k+1) .

By Lemma 6.2,
E((m(Xiii

k, iii ∈ Sk)(Gk)− πk(Gk))m1,k+1) −→
n1→+∞

0 .

And we have
1

n1
E((Nk − n1)(m(Xiii

k, iii ∈ Sk)(Gk)− πk(Gk))m1,k+1)

≤ 1

n1
E((Nk − n1)2)1/2E((m(Xiii

k, iii ∈ Sk)(Gk)− πk(Gk))2m2
1,k+1)1/2 ,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 8

where
E((m(Xiii

k, iii ∈ Sk)(Gk)− πk(Gk))2m2
1,k+1)1/2 −→

n1→+∞
0

by Lemma 6.2, and

1

n1
E((Nk − n1)2)1/2 =

1

n1
E((
∑
iii∈S1

#{jjj ∈ Sk : iii ≺ jjj} − 1)2)

(see Remark 4.3) = E((#{jjj ∈ Sk : 1 ≺ jjj} − 1)2) ,

which does not depend on n1. So we get

E(Nk+1)

n1
= 1 .

�

We set, for all k ∈ [T],
σ1(k)2 = V(#{iii ∈ Sk : 1 ≺ iii}) .

We have for all k in [T],

σ(k)2
1 =

V (Nk)

n1

(this does not depend on n1, see Remark 4.3). We set for all k ∈ [T − 1],

(4.10) m2,k+1 =

qk+1∑
j=1

αk+1pk+1,jj
2 ,

(we recall that m1,k+1 is defined in Equation (4.5)).

Lemma 4.2. Under the same assumptions as in Lemma 4.1, we have the recurrence relation, for
all k ∈ [T − 1]

σ1(k + 1)2 = σ1(k)2 + πk(Gk)m2,k+1 + πk(G2
k)m2

1,k+1 − 1 .

Proof. We have σ2
1 = 0. And for all k ∈ [T − 1],

E(N2
k+1) = E

(∑
iii∈Sk

Niii
k+1

)2

= E

∑
iii∈Sk

(Niii
k+1)2 +

∑
iii, jjj ∈ Sk
iii 6= jjj

Niii
k+1N

jjj
k+1

= E

∑
iii∈Sk

Gk(Xiii
k)m2,k+1 +

∑
iii, jjj ∈ Sk
iii 6= jjj

Gk(Xiii
k)Gk(Xjjj

k)m2
1,k+1

 .

We have (by Lemma 6.3)

E

(∑
iii∈Sk

Gk(Xiii
k)m2,k+1

)
= E

(
n1

∑
1≺iii∈Sk

Gk(Xiii
k)m2,k+1

)
= n1πk(Gk)m2,k+1 ,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 9

E

∑

iii, jjj ∈ Sk
iii 6= jjj

Gk(Xiii
k)Gk(Xjjj

k)m2
1,k+1

− n2
1 =

E

∑

iii, jjj ∈ Sk
iii 6= jjj

(Gk(Xiii
k)Gk(Xjjj

k)m2
1,k+1 − 1)

+ E(Nk(Nk − 1))− n2
1 =

(Nktakes its values in N)

n1(n1 − 1)E

 ∑
1≺iii∈Sk

∑
2≺jjj∈Sk

(Gk(Xiii
k)Gk(Xjjj

k)m2
1,k+1 − 1)

+ n1E

∑

1 ≺ iii, jjj ∈ Sk
iii 6= jjj

(Gk(Xiii
k)2m2

1,k+1 − 1)

+ n1σ
2
k =

(Lemma 6.3 and Remark 4.3)

0 + n1(πk(G2
k)m2

1,k+1 − 1) + n1σ
2
k .

So
σ1(k + 1)2 = σ1(k)2 + πk(Gk)m2,k+1 + πk(G2

k)m2
1,k+1 − 1 .

�

4.2. Representation of the Markov transition. Suppose we have a trajectory (x1, . . . , xT) ∈
E1 × · · · × ET . We want to sample a random variable of law Q((x1, . . . , xT), .). In practice, we
do not have to make a simulation of the random permutations appearing in the Markov transition
Q because the indexes are not used in the computation of the acceptance ratio in Equation (3.1).
We can simply run a simulation of the positions of the particles and forget about their indexes.
Having said this, we change the way we index the particles.

We take functions (mk)1≤k≤T , (ϕk)k≤2≤T , (ϕ̂k)2≤k≤T such that m1 : [0, 1] → E1 for all k ∈
{2, . . . , T}, n ∈ N∗, mk : Ek−1 × [0, 1]→ Ek, ϕk : R+ × [0, 1]→ N, ϕ̂k : R+ × [0, 1]→ N and for a
random variable U of uniform law on [0, 1],

m1(U) is of law M1 ,

and for any k ∈ [T − 1], x ∈ Ek, g ∈ R+, j ∈ N,

(4.11) mk+1(x, U) is of law Mk+1(x, .) ,

P(ϕk+1(Gk(x), U) = j) = fk+1(Gk(x), j) ,

P(ϕ̂k+1(Gk(x), U) = j) = f̂k+1(Gk(x), i) .

For k ∈ [T − 1], x ∈ Ek, u ∈ [0, 1] 7→ ϕk+1(Gk(x), u) is the pseudo-inverse of the cumu-
lative distribution function of the random variable of law fk+1(Gk+1(x), .), and u ∈ [0, 1] 7→
ϕ̂k+1(Gk(x), u) is the pseudo-inverse of the cumulative distribution function of the random vari-
able of law f̂k+1(Gk+1(x), .).

Suppose now we are given a random variable Θ = (Uiii, U
′
iii , Viii, V

′
iii ,W1,W2)k∈N∗,iii∈(N∗)k made of

a family of i.i.d. random variables of uniform law on [0, 1]. We denote by O the space in which
Θ takes its value. The space O is in bijection with [0, 1]N. The set [0, 1]N is equipped with the

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 10

Cartesian product of the Lebesgue tribe on [0, 1] and so this bijection induces a tribe on O. Using
these variables and the functions above, we can build a random variable of law Q((x1, . . . , xT), .).
We start with a recursive construction of the conditional forest.

• We set BBB = (1, 1, . . . , 1) ∈ NT . We set XBBB(1)
1 = x1. We set Xi

1 = m1(Ui) for i ∈
{2, . . . , n1}. We set S1 = [n1].
• Suppose we have Sk ⊂ (N∗)k of cardinality Nk , containing BBB(k), and particles (Xiii

k)iii∈Sk .
For all iii ∈ Sk\BBB(k), we set Niii

k+1 = ϕk+1(Gk(Xiii
k), Viii), and for j ∈ [Niii

k], we set X(iii,j)
k+1 =

mk+1(Xiii
k, U(iii,j)). We set NBBB(k)

k+1 = ϕ̂k+1(Gk(X
BBB(k)
k), Viii), X

BBB(k+1)
k+1 = xk+1, and for j ∈

{2, . . . , NBBB(k)
k+1 }, we set X

(BBB(k),j)
k+1 = mk+1(X

BBB(k)
k , U(BBB(k),j)). We set Sk+1 = ∪iii∈Sk ∪j∈[Niiik+1]

(iii, j). We set Nk+1 = #Sk+1.
We now introduce an assumption about the existence of a dominating potential.

Hypothesis 1. At each time-step k ∈ [T − 1], there exists a dominating potential G̃k : Nk ×Ek ×
O → R such that, for all x ∈ Ek, iii ∈ Nk, Θ ∈ O, Gk(x) ≤ G̃k(iii, x,Θ) ≤ ‖Gk‖∞.

For further use, using the same random variables as the ones we used above, we can build a
bigger conditioner forest, again recursively.

• We take the same BBB as above. For i ∈ [n1], we set X̃i
1 = Xi

1. We set S̃1 = S1.
• Suppose we have S̃k ⊂ (N∗)k of cardinality Ñk , containing BBB(k), and particles (X̃iii

k)iii∈Sk .
For all iii ∈ S̃k\BBB(k), we set

(4.12) Ñiii
k+1 =

{
ϕk+1(G̃k(iii, X̃iii

k), Viii,Θ) if iii is a descendant of BBB(1), BBB(2), . . . or BBB(k),
ϕk+1(Gk(X̃iii

k), Viii) otherwise,

and for j ∈ [Ñiii
k], we set X̃(iii,j)

k+1 = mk+1(X̃iii
k, U(iii,j)). We set

Ñ
BBB(k)
k+1 = ϕ̂k+1(G̃k(BBB(k), X̃

BBB(k)
k ,Θ), VBBB(k)) ,

X̃
BBB(k+1)
k+1 = xk+1, and for j ∈ {2, . . . , ÑBBB(k)

k+1 }, we set X̃(BBB(k),j)
k+1 = mk+1(X̃

BBB(k)
k , U(BBB(k),j)).

We set S̃k+1 = ∪iii∈S̃k ∪j∈[Niiik+1] (iii, j). We set Ñk+1 = #S̃k+1. The bigger potentials G̃k
are used only on BBB(1), BBB(2), . . . and their descendance. We use the potentials Gk on the
other particles.

One can show recursively on k that for all k ∈ [T], Sk ⊂ S̃k, for all iii ∈ Sk, Xiii
k = X̃iii

k, N
iii
k+1 ≤ Ñiii

k+1

(almost surely in ω). We then build a proposal forest in a similar way, recursively on k.

• We set S1 = [n1]. For iii ∈ S1, We set X
iii

1 = m1(U ′iii).

• Suppose we have Sk ⊂ (N∗)k of cardinality Nk and particles (X
iii

k)iii∈Sk . For all iii ∈ Sk, we
set N

iii

k+1 = ϕk+1(Gk(X
iii

k), V ′iii), and for j ∈ [N
iii

k], we set X
(iii,j)

k+1 = mk+1(X
iii

k, U
′
(iii,j)). We

set Sk+1 = ∪iii∈Sk ∪j∈[N
iii
k+1]

(iii, j). We set Nk+1 = #Sk+1.

Then we order ST alphanumerically: ST = {iii1, . . . , iiiNT }. We set

BBB?T = iiir if W1 ∈
[
r − 1

NT

,
r

NT

)
, r ∈ [NT] .

We do not need to defineBBB∗T in the case NT = 0. The accept/reject step then goes in the following
way:

if W2 ≤ min

(
1,
NT

NT

)
, move to (X

BBB?(1)

1 , . . . , X
BBB?(T)

T) ,

otherwise, stay in (x1, . . . , xT). We will sometimes insist on the dependence of the variables on Θ,
x1, . . . , xT by writing ÑT = ÑT (Θ, (x1, . . . , xT)), NT = NT (Θ), W2 = W2(Θ), . . .

Remark 4.3. For each of the branching processes in this Section, for all k, q ∈ [T], iii ∈ (N∗)k, jjj in
(N∗)q, if iii is not an ancestor of jjj and jjj is not an ancestor of iii, then, conditionally on (Xiii

k, X
jjj
q) (resp.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 11

(X̃iii
k, X̃

jjj
q), (X

iii

k, X
jjj

q)), the descendants of Xiii
j (resp. X̃iii

k, X
iii

k) are independent of the descendants

of Xjjj
q (resp. X̃jjj

q , X
jjj

q). In the same way, when we sample a conditional forest (resp. a bigger
conditional forest) conditionally to (x1, . . . , xT), for all k ∈ [T − 1], the descendants of XBBB(k)

k

(resp. X̃BBB(k)
k) with indexes iii /∈ {BBB(k + 1), . . . ,BBB(T)} depend only on Θ and xk.

4.3. Backward coupling. Suppose we are given i.i.d. random variables (Θ0,Θ1,Θ2, . . .) having
the same law as Θ (all of them are defined on a probability space (Ω,F ,P). Any of these random
variables is sufficient to perform a simulation of the Markov transition Q. The following result is
a consequence of Theorem 3.1 of [FT98] (the original result can be found in [PW96]).

Theorem 4.4. Suppose we have a function

F : (θ, x) ∈ O × (E1 × · · · × ET) 7→ Fθ(x) ∈ E1 × · · · × ET ,
such that, for all x in E1 × · · · × ET ,

θ 7→ Fθ(x)

is measurable and FΘ(x) is of law Q(x, .). If τ is a stopping time with respect to the filtration
(σ(Θ0, . . . ,Θn))n≥0 such that for all (x1, . . . , xT), (x′1, . . . , x

′
T) in E1 × · · · × ET ,

FΘ0
◦ FΘ1

◦ · · · ◦ FΘτ (x1, . . . , xT) = FΘ0
◦ FΘ1

◦ · · · ◦ FΘτ (x′1, . . . , x
′
T) ,

then, for any (x1, . . . , xT) in E1 × · · · × ET ,
FΘ0
◦ FΘ1

◦ · · · ◦ FΘτ (x1, . . . , xT) is of law π .

Figure 4.1. Backward coupling

In Figure 4.1, we draw an illustration of the above Theorem. The vertical axis represents the
trajectory space E1 × · · · × ET . For a realisation of (Θ0,Θ1, . . .), τ is equal to 4. For various
points ξ(−1) in E1×· · ·×ET , we draw the trajectories ξ(0) = FΘ4

(ξ(−1)), . . . , ξ(4) = FΘ0
(ξ(3)).

By definition of τ , the endpoint ξ(4) does not depend on ξ(−1).
We suppose we have dominating potentials G̃k, k ∈ [T − 1] as in Subsection 4.2 above. We

write for all n, Θn = (Un,iii, U
′
n,iii, V

′
n,iii, V n,iii,Wn,1,Wn,2)k∈N∗,iii∈(N∗)k . In our simulations, we use the

following stopping time

(4.13) τ = min

{
n : Wn,2 ≤ min

(
1,

NT (Θn)

ÑT (Θn, (x1, . . . , xT))

)
, ∀(x1, . . . , xT) ∈ E1 × · · · × ET

}

= min

{
n : Wn,2 ≤ min

(
1,

NT (Θn)

sup(x1,...,xT)∈E1×···×ET ÑT (Θn, (x1, . . . , xT))

)}

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 12

Algorithm 1 Exact simulation
for n in N repeat until n = τ

draw Θn, and store it
test whether n = τ or not

pick any trajectory (x1, . . . , xT) ∈ E1 × · · · × ET
set ξ(−1) = (x1, . . . , xT)
for n = 0 to τ repeat

ξ(n) = FΘτ−n(ξ(n− 1))
return ξ(τ)

This stopping time satisfies the assumptions of the above Theorem. Algorithm 1 is thus an exact
simulation of the law π. At this point, this algorithm is merely theoretical. The following two
remarks will make it implementable, at least in some cases.

• We need to be able to compute sup{ÑT (Θ(ω), (x1, . . . , xT)), (x1, . . . , xT) ∈ E1×· · ·×ET }
for a fixed ω. The easiest case is where E1, E2, . . . , ET are finite. We will see below
how to reduce the problem to this case in cases where E1, E2 . . . are not finite. If E1 is
finite, we can look for x1 ∈ E1 maximizing the descendants of X̃1

1 at time T (using Θ(ω)

to make the simulation), and so on. As we said in Remark 4.3, once X̃1
1 , . . . , X̃

(1,...,1)
T are

fixed, their descendants are independent, this is what makes the use of branching processes
interesting.

• In Algorithm 1, we first sample Θ0(ω),Θ1(ω), . . . until τ . And then we need the same
realisations of the variables (Θ0(ω), Θ1(ω), . . .) to compute ξ(0), . . . , ξ(τ). The object
Θ0(ω) is an infinite collection of numbers so it is impossible to store. We set E(ω) to be the
subset of indexes iii ∈ ∪n∈[T](N∗)n such that Un,iii(ω) or Vn,iii(ω) is used when computing
sup(x1,...,xT)∈E1×···×ET ÑT (Θn(ω), (x1, . . . , xT)). We remark that, for all n, we do not
need to store the whole Θn(ω); having stored the number of descendants at time T of
X̃2

1 (ω), . . . , X̃n1
1 (ω) (these are the starting points in the building of the “bigger conditional

forest above”), NT (Θn(ω)), (X
BBB?(1)

1 , . . . , X
BBB?(T)

T)(ω) (this is the coloured trajectory in the
proposal above) and

(4.14) {(Uiii(ω), Viii(ω),W2(ω))iii∈(N∗)n,n∈[T] : iii(1) = 1, iii ∈ E(ω)}

is enough to compute FΘn(ω)(ξ) for any ξ in E1 × · · · ×ET . The collection of numbers in
(4.14) contains the number which might be needed when we compute the descendance of
X1

1 (ω), X1
2 (ω), . . . , X1

T−1(ω) in what is called above the “bigger conditional forest”, and we
do not need any other numbers. Another point is that we can code the simulation in such
a way that we sample the variables in (4.14) in the alphanumerical order of their indexes
iii at each time step. So, instead of storing these variables, we can store random seeds. For
example, instead of storing U (1,1,1)(ω), U (1,1,2)(ω), U (1,1,3)(ω), . . . , we can store a single
random seed1.

We are now able to explain the purpose of Subsection 4.1. It is clear that when simulating a
branching process, whether it is a conditional forest or a proposal forest, we do not want the
number of particles to grow up. Such a growth would be exponential in T , which would be very
bad for the complexity of our algorithm. On the other hand, if our branching processes become
extinct before time T , then NT (Θn) = 0, leading to τ 6= n, and thus the first loop of Algorithm
1 could go on for a very long time. Again, this would be very bad for the complexity of our
algorithm.

1We recall here that when the user asks for random variables U(1,1,1)(ω), U(1,1,2)(ω), U(1,1,3)(ω), . . . , a computer
will return numbers picked in a non-random list. So instead of storing theses random variables, we can store only
the starting point in the list (the so-called “random seed”).

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 13

5. Examples

5.1. Self-avoiding random walks in Z2. There exists an algorithm for simulating self-avoiding
random walks in Z2 with approximatively the desired law (this law is described below). It is a
MCMC (Monte-Carlo Markov Chain) algorithm. See [Ken02] and the references therein.

5.1.1. Description of the model. We take E1 = Z2, E2 = Z2 × Z2, . . . , ET = (Z2)T and for all
n ∈ [T], (z1, . . . , zn) ∈ (Z2)n,

(5.1) Gn(z1, . . . , zn) =

{
1 if zi 6= zj for all i, j ∈ [n], i 6= j,
0 otherwise.

We take M1 = δ(0,0) (the Dirac mass at the origin of Z2). For all n ∈ [T − 1], (z1, . . . , zn) ∈ (Z2)n,
we take

(5.2) Mn+1((z1, . . . , zn), (z1, . . . , zn, zn + (0, 1)) = Mn+1((z1, . . . , zn), (z1, . . . , zn, zn + (0,−1))

= Mn+1((z1, . . . , zn), (z1, . . . , zn, zn+(1, 0)) = Mn+1((z1, . . . , zn), (z1, . . . , zn, zn+(−1, 0)) =
1

4
.

Then the marginal of π on ET−1 is the uniform law on the set of paths (z1, z2, . . . , zT−1) ∈ Z2

such that z1 = (0, 0), |zi − zi+1| = 1 for all i (| . . . | being the Euclidean norm), for i, j ∈ [T − 1]
with i 6= j, zi 6= zj (the path does not intersect with itself, one also says that it is self-avoiding).

5.1.2. Stopping time. We set BBB = (1, 1, . . . , 1) ∈ NT . For k ∈ [T], iii ∈ Nk, q ∈ [k] such that
iii(q) = BBB(q) and iii(q + 1) 6= BBB(q + 1), we set, for all x = (z1, . . . , zk) ∈ Ek, Θ ∈ O, G̃k(iii, x,Θ) =
Gk−q(zq, zq+1, . . . , zk) in other words

G̃k(iii, x) =

{
1 if (zq, . . . , zk) is self-avoiding,
0 otherwise

(as G̃k does not depend on Θ in this example, we replace G̃k(iii, x,Θ) by G̃k(iii, x)). We do not need
to define G̃ in the remaining cases. As we said in Subsection 4.3, we sample variables Θ0, Θ1, . . .
and we look for the stopping time τ defined in (4.13). For fixed n, Θn, and k ∈ [T − 1], xk ∈ Ek,
if we sample a bigger conditional forest with X̃BBB(k)

k = xk, we introduce the following notation:

ÑT (Θn, xk) = #{iii ∈ S̃T (Θn), iii 6= BBB(T), iii(k + 1) 6= 1,BBB(k) ≺ iii} .

We do not need the values X̃BBB(q)
q for q 6= k to compute the above quantity. Due to the form of

the potentials G̃., the set {iii ∈ S̃T (Θn), iii 6= BBB(T),BBB(k) ≺ iii} depends only on Θn, and

for all xk ∈(Z2)k, ÑT (Θn, xk) = ÑT (Θn, ((0, 1), . . . , (0, k))) .

We set ˜̃NT (Θn, k) = ÑT (Θn, ((0, 1), . . . , (0, k))). Now we have, for all (x1, . . . , xT) ∈ E1×· · ·×ET ,

(5.3) ÑT (Θn, (x1, . . . , xT)) =
˜̃
NT (Θn) := #{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii}+ 1 +

T−1∑
k=1

˜̃
NT (Θn, k) .

This equation means that the supremum in (4.13) is easy to find. And so, by Remark 4.3,

τ = min

{
n ≥ 0 : Wn,2 ≤ min

(
1,
NT (Θn)˜̃
NT (Θn)

)}
.

5.1.3. Complexity of the algorithm: a case study. We take here the following law for the simulation
of the number of children

for all k, fk+1(0, 0) = 0 , fk+1(1, 1) = pk+1 , fk+1(1, 2) = 1− pk+1 ,

for some sequences (pk)2≤k≤T taking values in (0, 1). We now look at a branching process in E1,
E2, . . . ,ET based on the potential defined in (5.1), the transitions defined in (5.2) and the above
reproduction law. A sensible way of choosing the constants (pk)’s is to choose them such that
a branching process starting with n1 particles will have a random number Nk of descendants of

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 14

Figure 5.1. Self-avoiding random walk in Z2.

T 100 200 300 350 400

C(T) 14.90 28.45 19.89 23.28 30.48

Table 1. C(T) for the self-avoiding random walk

the same order of magnitude as n1 (this requires some pre-processing). These numbers Nk are
random but the law of large numbers makes them not too fluctuant. It turns out that a good
tuning is to have the (pk)’s almost constant. By doing so, we are able to draw a trajectory with
law π by a matter of minutes if T ≤ 1000 and by a matter of one hour if T ≤ 5000 (see Figure 5.1).
Here, we ran a program in C. We used parallelization to make it faster (with the OpenMP library).
The program uses around five cores simultaneously. Laptop computers are multi core nowadays,
so the limiting factor is not the number of cores but the management of the memory. Indeed, the
genealogies we build in our algorithm can take a lot of space, if the code is not written properly.
An basic calculation shows that n1 should be chosen as

n1(T) = sup

(
16σ1(T)2

µ1(T)
,
µ2(T)

µ1(T)

)
,

where µ1(T), µ2(T) are expectations, σ2
1(T) is a variance, these terms being defined in Section 6.2

(see Equations (6.4), (6.9)). The quantity µ1(T) is constant (equal to 1) and σ2
1(T) is expected to

be polynomial in T . So we write n1(T) = C0 +C(T)×T , with C0 a constant and C(T) depending
on T . We estimate C(T) by Monte-Carlo for T ∈ {100, 200, 300, 350, 400} (see the Appendix for
details, we use 1000 samples for each expectation and variance we have to estimate). We can then
compare T and C(T) (see Table 1). A simple least square regression in log-log scale gives a slope
of 0.27. So it seems sensible to take n1 proportional to T or T 3/2.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 15

Figure 5.2. Log-log graph of complexity versus time in the case of the self-
avoiding random walk.

We then want to estimate the average number of particles at each generation when we run a
simulation of a bigger conditional forest, assuming, we take n1 = T 3/2. For a fixed T , the average
complexity of drawing one sample of a bigger conditional forest is the sum on all generations of the
average number of particles at each generation times the number of the generation (this is the cost
of computing the potential). With this choice of dependency between n1 and T , this complexity
is the average complexity of our algorithm (see Remark 6.4).

Using a Monte-Carlo method with 1000 samples for each expectation we have to estimate, we
are able to draw in Figure 5.2 the log of the expected complexity against log(T) (T ∈ [400]) with
n1 = T 3/2. We draw a linear regression on the same graph. The estimated slope is 3.85. So the
complexity seems to be polynomial in T .

5.2. Filter in R3.

5.2.1. Description of the model. We are given the following signal/state ((Xn)n≥1) and observa-
tions ((Yn)n≥1) in R3: {

Xn+1 = AXn + Vn+1 , ∀n ≥ 1 ,
Yn = Xn +Wn , ∀n ≥ 1 ,

with X1 following a law M1 and (Vn)n≥2 independent of (Wn)n≥1, the Vn’s are i.i.d. with a law of
density f and the Wn’s are i.i.d. with a law of density g (with respect to the Lebesgue measure).
The coefficient A is a 3 × 3 real matrice. We suppose we have functions F and G such that, for
all U ∈ [0, 1], F (U) is a random variable in R3 of law of density f , G(U) is a random variable in
R3 of law of density g.

We are interested in L(X1, . . . , XT |Y1, . . . , YT−1) for some T ∈ N∗. From now on, we will
suppose that the sequence Y1, Y2, . . . is fixed. In particular, all expectations will be conditional
to Y1:T−1. We set, for all k ∈ N∗, Gk(x) = g(Yk − x). We denote by M2 = M3 = · · · =
M the transition kernel of the Markov chain (Xn)n≥1. We set E1 = E2 = · · · = R3. Then
L(X1, . . . , XT |Y1, . . . , YT−1) coincides with π defined in (1.1). We make the following hypotheses.

Hypothesis 2. The matrix A is invertible. For all x, y ∈ R3, |Ax− Ay| ≤ α|x− y| (|. . . | is the
Euclidean norm) with α ∈ [0, 1).

Hypothesis 3. We have g(x) −→
|x|→+∞

0.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 16

5.2.2. Computing the stopping time. We take mk introduced in (4.11) to be, for all x ∈ R3,
U ∈ [0, 1],

mk(x, U) = Ax+ F (U) .

We fix δ > 0. For x = (x1,x2,x3) ∈ R3, we set

Lδ(x) =
[
δ
⌊x1

δ

⌋
, δ
⌊x1

δ

⌋
+ δ
)
×
[
δ
⌊x2

δ

⌋
, δ
⌊x2

δ

⌋
+ δ
)
×
[
δ
⌊x3

δ

⌋
, δ
⌊x3

δ

⌋
+ δ
)
.

We set BBB = (1, 1, . . . , 1) ∈ NT . We suppose we are given a random variable Θ as in Subsection
4.2. We consider k ∈ [T], x ∈ R3, iii ∈ Nk such that there exists q ∈ [k] satisfying iii(q) = BBB(q),
iii(q + 1) 6= BBB(q + 1). There exists one and only one sequence (xq, xq+1, . . . , xk) such that

xq+1 = mq+1(xq, Uiii(q+1)) ,

xq+2 = mq+2(xq+1, Uiii(q+2)) ,

. . .

x = xk = mk(xk−1, Uiii) .

For y ∈ R3, we introduce:

mq,q+1(y) = mq+1(y, Uiii(q+1)) ,

mq,q+2(y) = mq+2(mq,q+1(y), Uiii(q+2)) ,

. . .

mq,k(y) = mk(mq,k−1(y), Uiii) .

We set

(5.4) G̃k(iii, x,Θ) = sup
y∈Lδ(xq)

Gk(mq,k(y)) .

This implies that Gk(x) ≤ G̃k(iii, x,Θ). The idea here is to bound the potential Gk(x) by its
supremum on a subset of R3 containing x. Due to Hypothesis 2, the diameter of {mq,k(y) : y ∈
Lδ(xq)} in (5.4) is bounded by (δ

√
3)k−q. Under the additional assumption that g is continuous,

it will make that Gk(x) is not too far from G̃k(iii, x,Θ) in the above bound. And so, the number
of descendants of X̃BBB(k)

k should not explode when T − k becomes big. These are only heuristics
and we will study the complexity of the algorithm based on these G̃. below. For the sake of
completeness, we define, for k in [T] for x in Ek, iii in Nk such that there exists no q in [k] such
that iii(q) = BBB(q),

G̃k(iii, x,Θ) = Gk(x) .

As we said in Subsection 4.3 and in the previous example, we sample variables Θ0, Θ1, . . . and
we look for the stopping time τ defined in (4.13). For fixed n, Θn and k ∈ [T − 1], xk ∈ R3, we
sample a bigger conditional forest with X̃BBB(k)

k = xk (this bigger conditional forest is based on the
dominating potentials G̃k, as in Section 4.3). We introduce the following notation

ÑT (Θn, k, xk) = #{iii ∈ S̃T (Θn), iii 6= BBB(T),BBB(k) ≺ iii} .

We do not need the values X̃BBB(q)
q , q 6= k to compute the above quantity.

Let us look at Figure 5.3. We have a realisation of a variable of a branching process using
potentials (G̃k)k∈[T−1] (built with some variable Θ). The coloured trajectory is coloured in red.
We have here

ÑT (Θ, 1, X̃
BBB(1)
T) = 0 , ÑT (Θ, 2, X̃

BBB(2)
T) = 4 , ÑT (Θ, 3, X̃

BBB(3)
T) = 0 , ÑT (Θ, 4, X̃

BBB(4)
T) = 1 .

We define

(5.5) ˜̃
NT (Θn, k) = sup

xk∈R3

ÑT (Θn, k, xk) .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 17

Figure 5.3. Bigger conditional forest

We define ˜̃NT (Θn) by ˜̃
NT (Θn) := sup

(x1,...,xT)∈(R3)T
ÑT (Θn, (x1, . . . , xT)) ,

it satisfies

(5.6) ˜̃
NT (Θn) = #{i ∈ S̃T (Θn), @k : BBB(k) ≺ iii}+ 1 +

T−1∑
k=1

˜̃
NT (Θn, k) .

For fixed n, Θn and k ∈ [T − 1], suppose xk, x′k ∈ R3 are such that Lδ(xk) = Lδ(x
′
k) then

the descendants of X̃BBB(k)
k in the bigger conditional forest are the same whether X̃BBB(k)

k = xk or
X̃
BBB(k)
k = x′k (the bigger conditional forest is built with the dominating potential G̃k). Suppose we

have Θn = (Un,iii, U
′
n,iii, Vn,iii, V

′
n,iii,Wn,1,Wn,2)iii∈Nn,n≥1, as in Section 4.3. The number of children of

X̃
BBB(k)
k is ÑBBB(k)

k+1 = ϕ̂k+1(G̃k(BBB(k), X̃
BBB(k)
k ,Θ), Vn,BBB(k)), which is equal to zero if |X̃BBB(k)

k − Yk| is big
enough under Hypothesis 3. So, the number of operations needed to compute ÑT (Θn, k) is finite
for all k, Θn; and E(ÑT (Θ, k)) is finite for all k. This implies that E(ÑT (Θ, k)) is finite for all k.
So, once we are given Θ0, Θ1, . . . the stopping time τ can be computed in finite time.

5.2.3. Complexity of the algorithm. As explained in Section 6.2, the complexity of the algorithm
depends on constants µ2,k (k ∈ [T − 1]) chosen such that µ2, k ≥ 1/4 and

(5.7) P(
˜̃
NT (Θ, k) ≥ 4µ2,k) ≤ 1

4T
for all k ∈ [T − 1].

We suppose we are in the case of the Kalman filter. We suppose that the filters (πk)k≥1 have all
the same variance (which is the case if the Markov chain (Yk, πk)k∈[T] is stationnary). The case
where the filters do not have the same variances can be treated with the same ideas, but with
more complicated calculations.

Hypothesis 4. The random variables (Vn) are of law N (0, σ2Id). The random variables (Wn)
are of law N (0, s2Id). The matrix A satisfies A = a × Id (a ∈ (−1, 1)). The law M1 is chosen
such that for all k ≥ 1, πk is a Gaussian with covariance matrix σ2

∞Id.

We set mπ
k = E(Xk|Y1, . . . , Yk−1) for all k. We have, by a basic computation,

(5.8) Yk −mπ
k ∼ N (0, (σ2

∞ + s2)Id) , ∀k ,

with

σ2
∞ =

1

2

(
−s2(1− a2) + σ2 +

√
(s2(1− a2)− σ2)2 + 4σ2s2

)
,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 18

and the (Yk −mπ
k)k∈[T] are independent. We suppose that

δ =
Cδ
T 2
∧ 1 .

for some constant Cδ. We introduce ε ∈ [0, 2/(
√

3(e− 1))] such that

ε =
Cε
T
,

for some constant Cε.

Hypothesis 5. We suppose we are in the sub-case of Equation (4.2) and that the constants
(αk)2≤k≤T , (qk)2≤k≤T are chosen such that

αk+1(qk+1 + 1)

2
πk(Gk) = 1, for all k in [T − 1] ,

with

αk+1 =
2

πk(Gk)

⌈
2‖Gk‖∞
πk(Gk)

⌉−1

,

qk+1 =

⌈
2‖Gk‖∞
πk(Gk)

⌉
− 1 .

Under the above Hypothesis, we have

(5.9) qk+1 ≥ 1 , αk+1‖Gk‖∞ ∈
[

2

3
, 1

]
.

Proposition 5.1. Under Hypothesis 4, 5, we can find constants µ2,k such that, when T → +∞,

(µ2,k)k∈[T−1] satisfies Equation (5.7),

1

T γ′

T−1∑
k=1

µ2,k+1

law
−→

T→+∞
0 .

for some γ′ > 0.

Before going into the proof of this Proposition, we need to prove an auxiliary Lemma. For all
k ∈ {2, . . . , T−1}, we set Zk to be a random variable of law πk. We define, for all k ∈ {2, . . . , T−1},
Θ, x,

iii0 = (1, 1, . . . , 1, 2) ∈ Nk ,

N̆T (Θ, k, x) = E(#{iii ∈ S̃T (Θ), iii0 ≺ iii}|X̃iii0
k = x) .

Lemma 5.2. There exists n such that

sup
k∈[T−1]

E(N̆T (Θ, k, Zk)) = O(1) , a.s.

Proof. Let k ∈ [T − 1]. We recall that, if X̃iii0
k = Zk, then its number of children is

ϕ(G̃k(BBB(k), Zk,Θ), Viii0)

and the positions of these children are (mk+1(Zk, U(iii0,i)))1≤i≤ϕ(G̃k(iii0,Zk,Θ),Viii0). We have, for all
k ∈ [T − 2],

E(N̆T (Θ, k, Zk)1|Zk−Yk|>s2ε/δ)

= E(

ϕ(G̃k(iii0,Zk,Θ),Viii0)∑
i=1

N̆T (Θ, k + 1,mk+1(Zk, U(iii0,i)))1|Zk−Yk|>s2ε/δ)

= E(ϕ(G̃k(iii0, Zk,Θ), Viii0)N̆T (Θ, k + 1,mk+1(Zk, U(iii0,1)))1|Zk−Yk|>s2ε/δ)

because (X̃
(iii0,i)
k+1)1≤i≤ϕ(G̃k(iii0,Zk,Θ),Viii0) are i.i.d. conditionally on Zk, ϕ(G̃k(iii0, Zk,Θ), Viii0). So

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 19

(5.10) E(N̆T (Θ, k, Zk)1|Zk−Yk|>s2ε/δ) ≤ E(ϕ(G̃k(iii0, Zk,Θ), Viii0)

 T∏
j=k+2

qj

1|Zk−Yk|>s2ε/δ)

= E

αk+1
(qk+1 + 1)

2
G̃k(iii0, Zk,Θ)

 T∏
j=k+2

qj

1|Zk−Yk|>s2ε/δ

≤ 1

πk(Gk)
sup

z:|z−Yk|≥ s
2ε
δ

G̃k(iii0, z,Θ)

 T∏
j=k+2

qj

≤ 1

πk(Gk) (2πs2)
3/2

exp

(
− 1

2s2

(
s2ε

δ
−
√

3δ

)2

+

) T∏
j=k+2

qj

 .

For x such that |x−Yk| ≤ s2ε/δ, we have, for all y ∈ Lδ(x) (〈., .〉 is the standard scalar product)

−|y − Yk|
2

2s2
= −|y − x|

2

2s2
− |x− Yk|

2

2s2
− 〈y − x, x− Yk〉

2s2

≤ −|x− Yk|
2

2s2
+

√
3δ(s2ε/δ)

2s2

= −|x− Yk|
2

2s2
+

√
3ε

2
.

And so (as ε
√

3/2 ≤ 1)

Gk(y) ≤ Gk(x) exp(
√

3ε/2) ≤ Gk(x)

(
1 +

√
3(e1 − e0)ε

2

)
,

G̃k(x) ≤ Gk(x)(1 + ε′) .

We set ε′ =
√

3(e1 − e0)ε/2 (we have ε′ ∈ [0, 1]).
For Zk such that |Zk − Yk| ≤ s2ε/δ, we introduce new variables.
• If αk+1Gk(Zk)× (1 + ε′) ≤ 1, we set

Zik+1 = mk+1(Zk, U(BBB(k),i)), for i ∈ {1, . . . , ϕk+1(αk+1Gk(Zk)(1 + ε′), Viii0)} ,
˘̆
Nk+1 = ϕk+1(αk+1Gk(Zk)(1 + ε′), Viii0).

• If αk+1Gk(Zk)× (1 + ε′) > 1, we set

α′(Zk) = 2− αk+1Gk(Zk)(1 + ε′) .

As αk+1Gk(z) ≤ 1 for all z, we have

α′(Zk) ∈ [0, 1] ,

We define a function ϕ̌k+1 such that

ϕ̌k+1(αk+1Gk(Zk)(1 + ε′), Viii0) =

i if Viii0 ∈
[
i−1
qk+1

, i−1
qk+1

+ α′(Zk)
qk+1

)
,

2i if Viii0 ∈
[
i−1
qk+1

+ α′(Zk)
qk+1

, i
qk+1

)
.

And we set

Zik+1 = mk+1(Zk, U(iii0,i)), for i ∈ {1, . . . , ϕ̌k+1(αk+1Gk(Zk)(1 + ε′), Viii0)} ,
˘̆
Nk+1 = ϕ̌k+1(αk+1Gk(Zk)(1 + ε′), Viii0).

We have
qk+1∑
i=1

i× α′(Zk)

qk+1
+ 2i× 1− α′(Zk)

qk+1
=

(qk+1 + 1)

2
(α′(Zk) + 2(1− α′(Zk)))

=
(qk+1 + 1)

2
αk+1Gk(Zk)(1 + ε′) .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 20

We have the inequality

ϕk+1(G̃k(iii0, Zk,Θ), Viii0)1|Zk−Yk|≤s2ε/δ ≤
˘̆
Nk+1, a.s.

So

(5.11) E(N̆T (Θ, k, Zk)1|Zk−Yk|≤s2ε/δ) ≤ E(1|Zk−Yk|≤s2ε/δ

˘̆
Nk+1∑
i=1

N̆T (Θ, k + 1, Zik+1))

= E(1|Zk−Yk|≤s2ε/δ
˘̆
Nk+1N̆T (Θ, k + 1, Z1

k+1))

=

∫
R3

∫
R3

1|z−Yk|≤s2ε/δ1αk+1Gk(z)(1+ε′)≤1

(
qk+1∑
i=1

i× αk+1Gk(z)(1 + ε′)

qk+1

)
× E(N̆T (Θ, k + 1, z′))πk(dz)Q(z, dz′)

+

∫
R3

∫
R3

1|z−Yk|≤s2ε/δ1αk+1Gk(z)(1+ε′)>1

(
qk+1∑
i=1

i× α′(z)

qk+1
+ 2i× (1− α′(z))

qk+1

)
× E(N̆T (Θ, k + 1, z′))πk(dz)Q(z, dz′)

=

∫
R3

∫
R3

1|z−Yk|≤s2ε/δ
αk+1(qk+1 + 1)

2
Gk(z)(1 + ε′)E(N̆T (Θ, k + 1, z′))πk(dz)Q(z, dz′)

=

∫
R3

∫
R3

1|z−Yk|≤s2ε/δ
1

πk(Gk)
Gk(z)(1 + ε′)E(N̆T (Θ, k + 1, z′))πk(dz)Q(z, dz′)

≤ (1 + ε′)E(N̆T (Θ, k + 1, Zk+1)) .

From Equations (5.10) and (5.11), we get

E(N̆T (Θ, k, Zk)) ≤ 1

πk(Gk)

e
− 1

2s2

(
s2ε
δ −
√

3δ
)2

+

(2πs2)3/2

T∏
i=k+2

qi + (1 + ε′)E(N̆T (Θ, k + 1, Zk+1)

≤ e
− 1

2s2

(
s2ε
δ −
√

3δ
)2

+ ×
T∏

i=k+1

qi + (1 + ε′)E(N̆T (Θ, k + 1, Zk+1) .

As N̆T (Θ, T, ZT) = 1, we get by recurrence, for all k,

E(N̆T (Θ, k, Zk)) ≤ e
− 1

2s2

(
s2ε
δ −
√

3δ
)2

+

(
T∑

i=k+1

(1 + ε′)i−(k+1)qiqi+1 . . . qT

)
+ (1 + ε′)T−k .

For all k,

qk ≤
2‖G‖∞

πk−1(Gk−1)
,

and (using Lemma 6.6)

log

(
1

πk(Gk)

)
=
|Yk −mk|2

2s2

(
1/(2σ2

∞)

1/(2s2) + 1/(2σ2
∞)

)
− 3

2
log

(
s2 + σ2

∞
2π

)
.

Which implies there exists a random variable K such that

∀T ,
T∑
i=2

log(qi) ≤ KT , a.s.

So, for all k, we have a.s.

E(N̆T (Θ, k, Zk)) ≤ e
− 1

2s2

(
s2ε
δ −
√

3δ
)2

+T
((1 + ε′)2T + (q2q3 . . . qT)2)

2
+ (1 + ε′)T

≤ e
− 1

2s2

(
s2ε
δ −
√

3δ
)2

+T ((1 + ε′)2T + e2KT) + (1 + ε′)T

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 21

(for T large enough) ≤ exp

−1

2s2

(
s2Cε
T

(
Cδ
T 2
∧ 1

)−1

−
√

3

(
Cδ
T 2
∧ 1

))2

+

× T

(
exp

(√
3(e− 1)Cε

)
+ e2KT

)
+ exp

(√
3(e− 1)Cε

)
= O(1)

�

Proof of Proposition 5.1. We fix k ∈ [T − 1]. Let xk ∈ R. We set

xjk+1 = mk+1(xk, U(BBB(k),j)) for j ∈ {2, . . . qk+1} .

We have

ÑT (Θ, k, xk) ≤
qk+1∑
j=2

N̆T (Θ, k + 1, xjk+1) .

Let δ > 0. We fix j in {2, . . . , qk+1}. We have, for any x ∈ R3 such that V(BBB(k),j) >

αk+2G̃k((BBB(k), j), x,Θ),

E(N̆T (Θ, k + 1, Zk+1)|Θ) ≥ δ3 × inf
y∈Lδ(x)

πk+1(y)× N̆T (Θ, k + 1, x) .

So

sup
x
N̆T (Θ, k + 1, x) ≤ E(N̆T (Θ, k + 1, Zk+1)|Θ)

δ3 × inf{πk+1(y), y ∈ Lδ(x), x : V(BBB(k),j) > αk+2G̃k+1((BBB(k), j), x,Θ)}

≤ E(N̆T (Θ, k + 1, Zk+1)|Θ)

δ3 × inf{πk+1(y), y ∈ Lδ(x), x : V(BBB(k),j) > αk+2Gk+1(x)}
.

We set
A = E(N̆T (Θ, k + 1, Zk+1)|Θ) ,

B = δ3 inf{πk+1(y), y ∈ Lδ(x), x : V(BBB(k),j) > αk+2Gk+1(x)} .
We are looking for a constant µ2,k+1 such that,

P
(

sup
x
N̆T (Θ, k + 1, x) ≥ 4µ2,k+1

qk+1

)
≤ 1

4T
.

For this, it is sufficient to have (see Lemma 6.5)

P
(

1

B
≥ µ2,k+1

2qk+1TE(A)

)
≤ 1

8T
.

By Lemma 5.2, we know that there exists almost surely a random variable Cf depending on
(Yk)k≥1 such that for all T , k,

E(A) ≤ Cf .
So we are looking for µ2,k+1 such that

(5.12) P
(

1

B
≥ µ2,k+1

2CfTqk+1

)
≤ 1

8T
.

We have

δ3 inf{πk+1(y), y ∈ Lδ(x), x : V(BBB(k),j) > αk+2Gk+1(x)}

≥ δ3

(2πσ2
∞)3/2

exp

(
− 1

2σ2
∞

(δ
√

3 + |mπ
k+1 − Yk+1|+R)2

)
,

where R ≥ 0 is such that

V(BBB(k),j) = αk+2Gk+1(R(1, 1, 1) + Yk+1) .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 22

So

αk+2

exp
(
− 1

2s2R
2
)

(2πs2)3/2
≥ V(BBB(k),j) .

So

R ≤

√
−2s2 log

(
(2πs2)3/2

(
V(BBB(k),j)

αk+2

))
(as αk+2 ≤ 1/‖Gk+1‖∞) ≤

√
−2s2 log

(
V(BBB(k),j)

)
(5.13)

We have mπ
k+1 − Yk+1 ∼ N (0; (σ2

∞ + s2)Id3) . So, to have Equation (5.12), is is sufficient to have

P

(
δ
√

3 + |mπ
k+1 − Yk+1|+R ≥

√
2σ2
∞ log

(
δ3

(2πσ2
∞)3/2

µ2,k+1

2CfTqk+1

))
≤ 1

8T
,

which is implied by (with Z of density r ∈ R 7→ 1R+(r)e−r
2/2(σ2

∞+s2)(2π(σ2
∞ + s2))−3/24πr2)

(5.14)

P
(
Z ≥ 1

2

(√
2σ2
∞ log

(
δ3

(2πσ2
∞)3/2

µ2,k+1

2CfTqk+1

)
− δ
√

3

))
≤ 1

16T ,

P
(
R ≥ 1

2

(√
2σ2
∞ log

(
δ3

(2πσ2
∞)3/2

µ2,k+1

2CfTqk+1

)
− δ
√

3

))
≤ 1

16T .

We have for all x > 0 (using integration by parts)

P(Z ≥ x) ≤
√

2

π

(
x√

σ2
∞ + s2

+

√
σ2
∞ + s2

x

)
e−x

2/(2(σ2
∞+s2))

(if x ≥ 2s) ≤
√

2

π

(
x√

σ2
∞ + s2

+ 1

)
e−x

2/(2(σ2
∞+s2))

≤
√

2

π
(e−x

2/(4(σ2
∞+s2)) + e−x

2/(2(σ2
∞+s2)))

≤
√

2

π
× 2e−x

2/(4(σ2
∞+s2)) .

So, to have the first line of Equation (5.14), it is sufficient to have

1

2

(√
2σ2
∞ log

(
δ3

(2πσ2
∞)3/2

µ2,k+1

2CfTqk+1

)
− δ
√

3

)
≥ 2
√
σ2
∞ + s2∨

√
(−4(σ2

∞ + s2)) log

(√
π

2
× 1

32T

)
,

that is

(5.15) µ2,k+1 ≥
2CfTqk+1(2πσ2

∞)3/2

δ3

× exp

 1

2σ2
∞

2

2
√
σ2
∞ + s2 ∨

√√√√(−4(σ2
∞ + s2)) log

(√
2

π
× 1

32T

)+ δ
√

3

2
 .

By Equation (5.13), the second line of Equation (5.14) is implied by

P

V(BBB(k),j) ≤ exp
− 1

2s2

(
1
2

(√
2σ2
∞ log

(
δ3

(2πσ2∞)3/2

µ2,k+1
2CfTqk+1

)
−δ
√

3

))2
 ≤ 1

16T
,

which is equivalent to

exp
− 1

2s2

(
1
2

(√
2σ2
∞ log

(
δ3

(2πσ2∞)3/2

µ2,k+1
2CfTqk+1

)
−δ
√

3

))2

≤ 1

16T
,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 23

which is implied by

(5.16) µ2,k+1 ≥
2CfTqk+1(2πσ2

∞)3/2

δ3
exp

 1

2σ2
∞

(
δ
√

3 + 2

(
−2s2 log

(
1

16T

)) 1
2

)2
 .

We take µ2,k+1 to be the supremum of the right-hand sides of Equations (5.15), (5.16). And so
there exists C(σ, s) (a constant depending on σ and s) such that

µ2,k+1 ≤
C(σ, s)Cfqk+1

δ3
T γ ,

with

γ = 1 +
4(σ2
∞ + s2)

σ2
∞

∨ 2s2

σ2
∞

= 5 +
4s2

σ2
∞
.(5.17)

So
T∑
k=2

µ2,k ≤
C(σ, s)Cf

δ3
T γ
∑T
k=2 qk .

Under Hypothesis 5, we have for all k in [T − 1],

qk+1 ≤
2‖Gk‖∞
πk(Gk)

.

By Lemma 6.6, we have that

1

πk(Gk)
=

(2πσ2
∞)3/2(2πs2)3/2

(2πσ2
∞s

2/(σ2
∞ + s2))3/2

e
|Yk−mπk |

2 1
2s2

(
1/(2σ2∞)

1/(2s2)+1/(2σ2∞)

)
.

Let us set

Y ′ = e
|Yk−mπk |

2 1
2s2

(
1/(2σ2∞)

1/(2s2)+1/(2σ2∞)

)
.

It satisfies

P(Y ′ ≥ x) ∼
x→+∞

2
√

log(x)

x
√
π

.

So, by Hypothesis 5 and adapting the Generalized Central-Limit Theorem of [UZ99] (p. 62),

1

T γ+ι

T−1∑
k=1

µ2,k+1
law−→

T→+∞
0 ,

for all ι > 0. �

Proposition 5.3. Under Hypothesis 4, 5, if we choose n1(T) satisfying Equations (6.4) and (6.9)
then

1

T γ′

(
T−1∑
k=1

µ2,k + n1T

)
−→

T→+∞
0 ,

with the same γ′as in Proposition 5.1.

By Remark 6.4, we can than say that the expectation of the complexity of the algorithm grows
at most like a polynom in T . Remember that we are talkin here of the expectation conditional to
the observations Y1, Y2, . . .

Proof. By Lemma 4.2, we have, by recurrence,

σ1(T)2 ≤
T−1∑
k=1

[πk(Gk)m2,k+1 + πk(G2
k)m2

1,k+1 − 1] + 1 .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 24

For all k ∈ [T − 1],

m1,k+1 =
αk+1(qk+1 + 1)

2
=

1

πk(Gk)
,

and

m2,k+1 =

qk+1∑
i=1

αk+1i
2

qk+1

=
αk+1(qk+1 + 1)(2qk+1 + 1)

6

=
2qk+1 + 6

3πk(Gk)

(using Equation (5.9)) ≤ 2(3πk(Gk)−1‖Gk‖∞ − 1) + 1

3πk(Gk)

≤ 2‖Gk‖∞
πk(Gk)2

.

By Lemma 6.6, (∝ meaning “proportional to”)

πk(G2
k)m2

1,k+1 ∝ exp

(
|Yk −mπ

k |2
(

1

s2
× (−1/(2σ2

∞))

1/s2 + 1/(2σ2
∞)

+
2

2s2
× 1/(2σ2

∞)

1/(2s2) + 1/(2σ2
∞)

))
= exp

(
|Yk −mπ

k |2
1

s2

(−s2(s2 + σ2
∞) + s2(2σ2

∞ + s2)

(2σ2
∞ + s2)(s2 + σ2

∞)

)
= exp

(
|Yk −mπ

k |2
σ2
∞

2σ2
∞ + s2

× 1

s2 + σ2
∞

)
.

As the variable (Yk −mπ
k)k≥1 are independent and of law N (0, (σ2

∞ + s2)Id3), we get that

1

T

T−1∑
k=1

πk(G2
k)m2

1,k+1

converges almost surely when T goes to infinity.
As we have seen at the end of the proof of Proposition 5.1,

1

T γ+ι

T−1∑
k=1

πk(Gk)m2,k+1
law−→

T→+∞
0

for all ι > 0. The constant γ, defined in Equation (5.17) is bigger than 1. So

σ1(T)2

T γ+ι

law−→
T→+∞

0 , ∀ι > 0 .

We have supposed that n1(T) satisfies Equation (6.4) and (6.9). The expectation of the complexity
of the algorithm is then given by Equation (6.10) (in Remark 6.4). As µ1(T) = T by Lemma 4.1,
we get the result. �

5.2.4. Complexity of the algorithm: a case study. We suppose A = 0.5× Id3, the (Vn)’s follow the
law N (0, (0.2)2Id3), the (Wn)′s follow the law N (0, (0.5)2Id3), δ = 0.1. We take here the laws
of the number of children of an individual to be the same as in Subsection 4.1, Equation (4.2).
We made a simulation of a sequence (Yk)1≤k≤T and stored it. Then we calibrated the constants
(αk+1, qk+1)k∈[T−1] (using Equations (4.7), (4.8)). In particular, these constants do not satisfy
Hypothesis 5 but are supposed to be not far off.

Here the codes were written in python and are thus relatively slow to execute. Nevertheless, it
takes a few minutes to sample a trajectory of length 50. Using Section 6.2, we decide to take

n1(T) = sup

(
16σ1(T)2

µ1(T)
,
µ2(T)

µ1(T)

)
.

From looking at Proposition 5.3, we hope that n1 = C(T)× T , with C(T) growing as a polynom
in T . We estimate C(T) = n1(T)/T for T ∈ {1, 2, . . . , 20} using Monte-Carlo (for each T , we used

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 25

T 5 10 15 20
C(T) 165.6 466.4 634.1 766.5
Table 2. C(T) in a filtering case

10000 samples for the estimation of µ1(T), σ1(T)2 defined in the Appendix, we used 100 samples
for the estimation of each E(ÑT (Θ, k)) appearing in the definition of µ2(T). We can then compare
T and C(T) see Table 2 for T ∈ {5, 10, 15, 20}). A simple least square regression in log-log scale
gives a slope of 1.21. So it seems sensible to take n1(T) proportional to T or T 3/2.

We now want to estimate the complexity of the whole algorithm. Due to Remark 6.4, this
complexity is of the same order of the complexity of sampling a branching process and finding
ÑT (Θ, k) for each k. Let us fix k. When we compute ÑT (Θ, k), we need to compute ÑT (Θ, xk)
for a finite number of xk in a ball around Yk (see equation (5.5)). This number is, in expectation,
proportional to δ−3. Taking n1 =

⌊
T 3/2

⌋
, the complexity of the algorithm for a fixed T is of order

less than T 3/2µ1(T)+δ−3µ2(T). We use the above estimates of µ1(T) , µ2(T) for T ∈ {1, 2, . . . , 20}.
We compare T 3/2µ1(T) and µ2(T) to T . A least square regression in log-log scale gives us a slope
less than 2 in both cases. This means the complexity, as a function of T , grows like T 2. We
know that the coefficient of proportionality between the complexity and T 2 includes δ−3, so the
algorithm is dimension dependent (it will be δ−d in dimension d).

6. Appendix

6.1. Convergence of branching process. In this Section, we are interested in the branching
process defined in Section 2.1. We suppose the following.

Hypothesis 6. For all k ≥ 1, g ∈ [0, ‖Gk‖∞],

fk+1(g, 0) = 1− αk+1g ,

with αk+1 ∈ (0; 1/‖Gk‖∞]. For all k ≥ 1, there exists qk+1 ∈ N∗, (pk+1,j)j∈[qk+1] ∈ Rqk+1

+ , such
that, for all j in [qk+1], for all g in [0, ‖Gk‖∞],

fk+1(g, j) = αk+1pk+1,jg .

We define m1,k+1 (for all k ≥ 1) as in Equation (4.5).
Lemma 6.2 below shows that its empirical measure at time k converges to πk (defined in

Equation (4.3)).
We present here some results concerning the propagation of chaos for systems of particles. We

use the results and notations of [DPR09]. Similar results can be found in [BPS91] (around p. 177).
For q and N in N∗ , we define

[N][q] = {applications from [q] to [N]} ,

〈q,N〉 =

{
{injections from [q] to [N]} if q ≤ N ,

∅ otherwise .
For any sets E and F , we write

{injections from E to F} = {a : E ↪→ F} .
For an empirical measure

m(x1, . . . , xN) =
1

N

N∑
i=1

δxi

(where x1, x2, . . . , xN in some set E), we define measures on Eq (for q ∈ N∗, N ∈ N) by their
action on a test function ϕ,

m(x1, . . . , xN)⊗q(ϕ) =

{
1
Nq

∑
a∈[N][q] ϕ(xa(1), . . . , xa(q)) if N > 0 .

0 if N = 0 .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 26

m(x1, . . . , xN)�q(ϕ) =

{
(N−q)!
N !

∑
a∈〈q,N〉 ϕ(xa(1), . . . , xa(q)) if q ≤ N ,

0 otherwise.

The definition of m(. . .)⊗q above is consistent with the usual tensor product of measures. For
functions φ1, . . . , φq, we define

φ1 ⊗ · · · ⊗ φq(x1, . . . , xq) = φ1(x1)φ2(x2) . . . φq(xq) .

We recall that for a sequence (Xk)k≥0 of random variables in R, and x in R,

Xk
P−→

k→+∞
x ⇔ Xk

law−→
k→+∞

x .

Lemma 6.1. Suppose that (N ′k)k≥1 are a random variables taking values in N such that

N ′k
P−→

k→+∞
+∞ .

Suppose we have random variables (Xi
k)i,k≥1 taking values in a measurable space (E, E). Suppose

π is a probability measure on (E, E). The two following points are equivalent.
(1) For all bounded measurable ϕ,

1

N ′k

N ′k∑
i=1

ϕ(Xi
k)

law−→
k→+∞

π(ϕ) (constant random variable) .

(2) For all q ∈ N∗, φ1, . . . , φq bounded measurable from E to R+,

E(m(X1
k , . . . , X

N ′k
k)�q(φ1 ⊗ · · · ⊗ φq)) −→

k→+∞
π⊗q(φ1 ⊗ · · · ⊗ φq) .

The variables N ′k takes values in N. For k ∈ N∗ and ω ∈ Ω such that N ′k(ω) = 0, we set, by
convention,

1

N ′k

N ′k∑
i=1

ϕ(Xi
k) = 0 .

Proof. (1)⇒(2) We suppose we have (1). Corollary 4.3, p. 789 in [DPR09] tells us that for any q,
n in N∗ such that q ≤ n and any x1, . . . , xn in E,

m(x1, . . . , xn)�q = m(x1, . . . , xn)⊗q +
1

n
mq(x1, . . . , xn) ,

where mq is a signed measurable such that ‖mq‖TV ≤ Bq, with a constant Bq independent of n.
So, for any q ∈ N∗, φ1, . . . , φq bounded measurable from E to R+,

E(m(X1
k , . . . , X

Nk
k)�q(φ1 ⊗ · · · ⊗ φq)) = E(m(X1

k , . . . , X
Nk
k)⊗q(φ1 ⊗ · · · ⊗ φq)

+
1

Nk
mq(X

1
k , . . . , X

Nk
k)(φ1 ⊗ · · · ⊗ φq))

for some bounded measure mq. We have

E(m(X1
k , . . . , X

Nk
k)⊗q(φ1 ⊗ · · · ⊗ φq)) = E(

q∏
i=1

m(X1
k , . . . , X

Nk
k)(φi)) −→

k→+∞
π⊗q(φ1 ⊗ · · · ⊗ φq) .

So we have (2).
(2)⇒(1) We suppose we have (2). For any bounded measurable ϕ on E, we set

ϕ : x 7→ ϕ(x)− π(ϕ) .

We have

E((m(X1
k , . . . , X

Nk
k)− π(ϕ))2) = E

 1

N2
k

∑
1≤i≤Nk

∑
1≤j≤Nk,j 6=i

ϕ(Xi
k)ϕ(Xj

k)

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 27

+E

 1

N2
k

∑
1≤i≤Nk

ϕ(Xi
k)2

 .

We have

E

 1

N2
k

∑
1≤i≤Nk

ϕ(Xi
k)2

 −→
k→+∞

0 ,

and

E

 1

N2
k

∑
1≤i≤Nk

∑
1≤j≤Nk,j 6=i

ϕ(Xi
k)ϕ(Xj

k)

 = E
(
Nk(Nk − 1)

N2
k

m(X1
k , . . . , X

Nk
k)�2(ϕ,ϕ)

)
−→
k→+∞

0 .

So we have (1). �

Lemma 6.2. Suppose that πk(Gk) > 0 for all k in [T − 1], then (under Hypothesis 6) for all k in
[T], all bounded measurable ϕ on Ek,

(6.1) Nk
P−→

n1→+∞
+∞ ,

(6.2)
1

Nk

∑
iii∈Sk

ϕ(Xiii
k)

law−→
n1→+∞

πk(ϕ) (constant random variable) .

Proof. We prove it by recurrence. We use Lemma 6.1 many times in the following.
The number of particles at time 1 is N1 = n1. The particles X1

1 , . . . , X
n1
1 are i.i.d. of law M1

(remember that S1 = [n1]). So the law of large number gives us, for any bounded measurable ϕ
on E1,

1

n1

n1∑
i=1

ϕ(Xi
n1

)
a.s.−→

n1→+∞
M1(ϕ) = π1(ϕ) .

Suppose that Equations (6.1) and (6.2) are true for all j in [k] (k < T). We have, for all
bounded measurable ϕ,

(6.3)
1

Nk

∑
iii∈Sk

ϕ(Xiii
k)

law−→
n1→+∞

πk(ϕ) , Nk
P−→

n1→+∞
+∞ .

Let us set Fk = σ(Sk, (X
iii
k)iii∈Sk). For all iii in Sk, we have

E(Niii
k+1|Fk) ≤ P(Niii

k+1 ≥ 1|Fk)× qk+1 .

For any M in N∗,

1Nk≥MP

(∑
iii∈Sk

Niii
k+1 ≤M |Fk

)
≤ inf

1,
∑

S⊂Sk,#S=(Nk−M)

P(Niii
k+1 = 0 , ∀i ∈ S|Fk)

 ,

and ∑
S⊂Sk,#S=Nk−M

P(Niii
k+1 = 0 , ∀i ∈ S|Fk) ≤

∑
S⊂Sk,#S=(Nk−M)

∏
iii∈S

(
1−

E(Niii
k+1|Fk)

qk+1

)

≤
∑

S⊂Sk,#S=(Nk−M)

exp

(
−
∑
iii∈S

E(Niii
k+1|Fk)

qk+1

)

≤
(

Nk
Nk −M

)
exp

(
−Nk ×

1

Nk

∑
iii∈Sk

m1,k+1Gk(Xiii
k) +M

)
.

So

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 28

P (Nk+1 ≤M) ≤ P(Nk ≤M)

+ E

(
inf

(
1,

(
Nk

Nk −M

)
exp

(
−Nk ×

1

Nk

∑
iii∈Sk

m1,k+1Gk(Xiii
k) +M

)))
.

Using (6.3), we see that

Nk+1
P−→

n1→+∞
+∞ .

For any iii ∈ Sk, knowing Xiii
k, N

iii
k+1 is of law f(Gk(Xiii

k), .) and is independent of all Xjjj
k, N

jjj
k+1

for jjj 6= iii. For any q ∈ N∗, φ1, . . . , φq bounded measurable, from N× Ek to R+,

E
(
m((Niii

k+1, X
iii
k)iii∈Sk)�q(φ1 ⊗ · · · ⊗ φq)

)
= E

1Nk≥q
(Nk − q)!
Nk!

∑
a:[q]↪→Sk

φ1(N
a(1)
k+1 , X

a(1)
k) . . . φq(N

a(q)
k+1 , X

a(q)
k)

= E

1Nk≥q
(Nk − q)!
Nk!

∑
a:[q]↪→Sk

φ1(X
a(1)
k) . . . φq(X

a(q)
k)

= E(m((Xiii

k)iii∈Sk)�q(φ1, . . . , φq)) −→
n1→+∞

q∏
j=1

πk(φj) ,

where

φi(x) =

qk+1∑
r=1

αk+1pk+1,rφi(r, x) , ∀x ∈ Ek,∀i ∈ [q] .

So, for any bounded measurable ϕ from Ek to R+,
1

Nk

∑
iii∈Sk

Niii
k+1ϕ(Xiii

k)
law−→

n1→+∞
πk(Gkϕ)×m1,k+1 .

So

1Nk+1 6=0
1

Nk+1

∑
iii∈Sk

Niii
k+1ϕ(Xiii

k) = 1Nk+1 6=0
Nk∑

iii∈Sk N
iii
k+1

× 1

Nk

∑
iii∈Sk

Niii
k+1ϕ(Xiii

k)

law−→
n1→+∞

πk(Gkϕ)

πk(Gk)
.

Let us set

π̂k(ϕ) =
πk(Gkϕ)

πk(Gk)
,

for all jjj ∈ Sk+1 , X̂
jjj
k+1 = X

jjj(k)
k .

We have
1

Nk+1

∑
jjj∈Sk+1

ϕ(X̂jjj
k+1)

law−→
n1→+∞

π̂k(ϕ) .

Knowing (X̂jjj
k+1)jjj∈Sk+1

, the (Xjjj
k+1)jjj∈Sk+1

are independent and for all jjj ∈ Sk+1,

Xjjj
k+1 ∼Mk+1(X̂

jjj(k)
k , .) .

So, for any q ∈ N∗, φ1, . . . , φq bounded measurable, from N× Ek to R+,

E
(
m((Xjjj

k+1)jjj∈Sk+1
)�q(φ1 ⊗ · · · ⊗ φq)

)
= E

(
m((X̂

jjj(k)
k)jjj∈Sk+1

)�q(Mk+1φ1 ⊗ · · · ⊗Mk+1φq)
)

−→
n1→+∞

π̂kMk+1 ⊗ · · · ⊗ π̂kMk+1(φ1 ⊗ · · · ⊗ φq)

= πk+1 ⊗ · · · ⊗ πk+1(φ1 ⊗ · · · ⊗ φq) ,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 29

where we use the notations

Mk+1φ1(x) =

∫
y∈Ek+1

Mk+1(x, dy)φ1(y) , ∀x ∈ Ek ,

π̂kMk+1(dy) =

∫
x∈Ek

π̂k(x)Mk+1(x, dy) (measure on Ek+1).

This finishes the proof. �

For all k ∈ [T], we define B1(Ek) to be the set of measurable functions ϕ : Ek → R such that
‖ϕ‖∞ ≤ 1.

Lemma 6.3. We suppose here that the parameters (αk+1, qk+1)k∈[T−1] are chosen such that Equa-
tion (4.6) is true for all k in [T − 1]. Then, for all ϕ in B1(Ek), for all k in [T],

E

 ∑
jjj∈Sk : 1≺jjj

ϕ(Xjjj
k)

 = πk(ϕ) .

Proof. We take k in [T] and ϕ in B1(Ek). We set

Dk,n1
(ϕ) =

∣∣∣∣∣ 1

Nk

∑
iii∈Sk

ϕ(Xiii
k)− πk(ϕ)

∣∣∣∣∣ .
We have, for all ε > 0,∣∣∣∣∣∣E

 1

n1

∑
jjj∈Sk

ϕ(Xjjj
k)

− E
(
Nk
n1
πk(ϕ)

)∣∣∣∣∣∣ ≤ E
(
Nk
n1
ε

)
+ E

(
Nk
n1
× 21[ε,+∞)(Dk,n1

(ϕ))

)

(by Lemma 4.1) = ε+ E
(
Nk
n1
× 21[ε,+∞)(Dk,n1

(ϕ))

)
(using Remark 4.3) = ε+ E(#{iii ∈ Sk : 1 ≺ iii} × 21[ε,+∞)(Dk,n1

(ϕ))) .

As Dk,n1
(ϕ) converges to 0 in probability when n1 converges to +∞ (Lemma 6.2), we can find

extract a subsequence, indexed by (u(n1))n1≥1, such that

1[ε,+∞)(Dk,u(n1)(ϕ))
a.s.−→

n1→+∞
0 .

As #{iii ∈ Sk : 1 ≺ iii} does not depend on n1, we get (by dominated convergence)

ε+ E(#{iii ∈ Sk : 1 ≺ iii} × 21[ε,+∞)(Dk,u(n1)(ϕ))) −→
n1→+∞

ε .

We have (by Lemma 4.1 and Remark 4.3)

E
(
Nk
n1
πk(ϕ)

)
= πk(ϕ) ,

E

 1

n1

∑
jjj∈Sk

ϕ(Xjjj
k)

 = E

 ∑
jjj∈Sk : 1≺jjj

ϕ(Xjjj
k)

 .

So, for any ε > 0, ∣∣∣∣∣∣E
 ∑
jjj∈Sk : 1≺jjj

ϕ(Xjjj
k)

− πk(ϕ)

∣∣∣∣∣∣ ≤ ε .
�

6.2. Number of particles.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 30

6.2.1. Choice of n1. We show here how to choose n1 as a function of T . It applies to both the
examples of Section 5.1 and 5.2. We set

∀k ∈ [T] , µ1(k) = E(#{iii ∈ Sk : 1 ≺ iii}) ,

∀k ∈ [T] , σ1(k)2 = V(#{iii ∈ Sk : 1 ≺ iii})
(the definition of σ1 coincides with the one given in Section 2.1). We suppose we have constants

µ2,k ≥ 1/4 such that ∀k ∈ [T − 1] , P(
˜̃
NT (Θ, k) ≥ 4µ2,k) ≤ 1

4T
.

When the following expectation is finite, one can simply take, for all k,

µ2,k = T × E(
˜̃
NT (Θ, k)) .

We then choose n1 such that

(6.4) n1 − 1 ≥ 16σ1(T)2

µ1(T)
.

It implies that (remember that, for any n1, NT (Θ) is a sum of n1 i.i.d. variables of mean µ1(T)
and variance σ2

1(T))

P
(
NT (Θ) ≤ n1µ1(T)

2

)
= P

(
NT (Θ)− n1µ1(T) ≤ −n1µ1(T)

2

)
≤ 4σ2

1(T)

n1µ2
1(T)

≤ 1

4
,(6.5)

and (remember that #{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii} is a sum of n1 − 1 i.i.d. variables)

P
(

#{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii} ≥ 2µ1(T)(n1 − 1)
)
≤ σ2

1(T)

(n1 − 1)µ2
1(T)

≤ 1

4
.(6.6)

We have

(6.7) P

(
T−1∑
k=1

˜̃
NT (Θ, k) ≥ 4

T−1∑
k=1

µ2,k

)
≤ 1

4
.

We set

(6.8) µ2 = 1 +

T−1∑
k=1

µ2,k ,

we write µ2(T) instead of µ2 when we want to stress the dependency in T . We choose n1 such
that it also satisfies

(6.9) n1µ1(T) ≥ µ2(T) .

So, NT (Θ) ≥ n1µ1(T)
2 and #{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii} ≤ 2µ1(T)(n1−1) and 1+

∑T−1
k=1

˜̃
NT (Θ, k) ≤

1 + 4
∑T−1
k=1 µ2,k implies (recall Equations (5.3), (5.6))

NT (Θ)˜̃
NT (Θ)

≥

(
n1µ1(T)

2

)
2µ1(T)(n1 − 1) + 1 + 4

∑T−1
k=1 µ2,k

≥ 1

12
.

We have

P
(
NT (Θ) ≥ n1µ1(T)

2
,#{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii} ≤ 2µ1(T)(n1 − 1) ,

T−1∑
k=1

˜̃
NT (Θ, k) ≤ 4

T−1∑
k=1

µ2,k

)

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 31

≥ 1− P
(
NT (Θ) ≤ n1µ1(T)

2

)
− P

(
#{iii ∈ S̃T (Θn),@k : BBB(k) ≺ iii} ≥ 2µ1(T)(n1 − 1)

)
− P

(
T−1∑
k=1

˜̃
NT (Θ, k) ≥ 4

T−1∑
k=1

µ2,k

)
,

and using (using (6.5), (6.6), (6.7)), we see this last quantity is bigger than 1
4 . So

P

(
NT (Θ)˜̃
NT (Θ)

≥ 1

12

)
≥ 1

4
.

Remark 6.4. This means that the expected number of steps in the “repeat” loop of Algorithm 1 is
bounded independently of T , provided n1 satisfies (6.4) and (6.9). Due to the way the parameters
are chosen in Section 4.1, the complexity of our algorithm is of order

(6.10)
T−1∑
k=1

µ2,k + n1T

in expectation.

6.3. Technical Lemmas.

Lemma 6.5. Let A, B be random variables in R+, R+∗ respectively, such that A is L1. For all
M , µ in R+∗, we have

P
(
A

B
≥ 4µ

)
≤ P

(
1

B
≥ 4µ

ME(A)

)
+

1

M
.

Proof. We have

P
(
A

B
< 4µ

)
≥ P

(
A

B
< 4µ , A ≤ME(A)

)
≥ P

(
ME(A)

B
< 4µ , A ≤ME(A)

)
≥ 1− P

(
ME(A)

B
≥ 4µ

)
− P (A ≥ME(A)) ,

so

P
(
A

B
≥ 4µ

)
≤ P

(
1

B
≥ 4µ

ME(A)

)
+ P (A ≥ME(A)) ≤ P

(
1

B
≥ 4µ

ME(A)

)
+

1

M
.

�

Lemma 6.6. For the example of Section 5.2 and under the same assumptions as in Proposition
5.1, we have, for all k ≥ 2,

πk(Gk) =
(2πσ2

∞s
2/(σ2

∞ + s2))3/2

(2πσ2
∞)3/2(2πs2)3/2

e
|Yk−mk|2 1

2s2

(
1/(2s2)

1/(2s2)+1/(2σ2∞)
−1

)
.

Proof. We compute

πk(Gk) =

∫
R3

e−|x|
2/(2σ2

∞)

(2πσ2
∞)3/2

e−|x−(Yk−mk)|2/(2s2)

(2πs2)3/2
dx

=
1

(2πσ2
∞)3/2(2πs2)3/2

∫
R3

e
−
(

1
2σ2∞

+ 1
2s2

)∣∣∣∣x−(Yk−mk) 1
2s2

(
1

2σ2∞
+ 1

2s2

)−1∣∣∣∣2

× e
|Yk−mk|2 1

2s2

(
1/(2s2)

1/(2s2)+1/(2σ2∞)
−1

)
dx

=
(2πσ2

∞s
2/(σ2

∞ + s2))3/2

(2πσ2
∞)3/2(2πs2)3/2

e
|Yk−mk|2 1

2s2

(
1/(2s2)

1/(2s2)+1/(2σ2∞)
−1

)
.

�

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 32

Acknowledgements

Arnaud Doucet’s research was supported by the Engineering and Physical Sciences Research
Council (grant EP/K000276/1, EP/K009850/1) and by the Air Force Office of Scientific Re-
search/Asian Office of Aerospace Research and Development (AFOSR/AOARD) (grant AOARD-
144042). Sylvain Rubenthaler’s research benefited from a sabbatical in PIMS Vancouver (CNRS,
UMI 3069) funded by the CNRS and from a month long professorship position in the Institute of
Statistical Mathematics, Tokyo.

References

[ADH10] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein, Particle Markov chain Monte Carlo meth-
ods, J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010), no. 3, 269–342. MR 2758115

[BPS91] D. L. Burkholder, É. Pardoux, and A. Sznitman, École d’Été de Probabilités de Saint-Flour XIX—1989,
Lecture Notes in Mathematics, vol. 1464, Springer-Verlag, Berlin, 1991, Papers from the school held in
Saint-Flour, August 16–September 2, 1989, Edited by P. L. Hennequin. MR 1108182

[CT02] J. N. Corcoran and R. L. Tweedie, Perfect sampling from independent Metropolis-Hastings chains, J.
Statist. Plann. Inference 104 (2002), no. 2, 297–314. MR 1906013

[DPR09] Pierre Del Moral, Frédéric Patras, and Sylvain Rubenthaler, Tree based functional expansions for
Feynman-Kac particle models, Ann. Appl. Probab. 19 (2009), no. 2, 778–825. MR 2521888

[FT98] S. G. Foss and R. L. Tweedie, Perfect simulation and backward coupling, Comm. Statist. Stochastic
Models 14 (1998), no. 1-2, 187–203, Special issue in honor of Marcel F. Neuts. MR 1617572 (99f:60123)

[Ken02] Tom Kennedy, A faster implementation of the pivot algorithm for self-avoiding walks, J. Statist. Phys.
106 (2002), no. 3-4, 407–429. MR 1884540

[Ken05] Wilfrid Kendall, Notes on perfect simulation, Markov chain Monte Carlo, Lect. Notes Ser. Inst. Math.
Sci. Natl. Univ. Singap., vol. 7, World Sci. Publ., Hackensack, NJ, 2005, pp. 93–146. MR 2226849

[PW96] James Gary Propp and David Bruce Wilson, Exact sampling with coupled Markov chains and applications
to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and
Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223–252. MR 1611693 (99k:60176)

[UZ99] Vladimir V. Uchaikin and Vladimir M. Zolotarev, Chance and stability, Modern Probability and Statistics,
VSP, Utrecht, 1999, Stable distributions and their applications, With a foreword by V. Yu. Korolev and
Zolotarev. MR 1745764

C. Andrieu, Department of Mathematics, University of Bristol, University Walk, Bristol BS8
1TW, United Kingdom.

E-mail address: c.andrieu@bris.ac.uk

N. Chopin, C.R.E.S.T., Timbre J350 3, Avenue Pierre Larousse, 92240 MALAKOFF, France.
E-mail address: Nicolas.Chopin@ensae.fr

A. Doucet, Department of Statistics, 1 South Parks Road Oxford, OX1 3TG, United Kingdom.
E-mail address: doucet@stats.ox.ac.uk

S. Rubenthaler, Laboratoire J. A. Dieudonné, Université Nice Sophia Antipolis, Parc Valrose,
06108 Nice cedex 2, France.

E-mail address: rubentha@unice.fr

