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Perfect simulation for the Feynman-Kac law on the path
space

Christophe Andrieu∗, Nicolas Chopin †, Arnaud Doucet‡, Sylvain Rubenthaler§

1st October 2012

Abstract

This paper describes an algorithm of interest. This is a preliminary version and we intend
on writing a better descripition of it and getting bounds for its complexity.

1 Introduction
We are given a transition kernel M (on a space E), M1 a probability measure on E and potentials
(Gk)k≥1 (Gk : E → R+). We want to draw samples according to the law (on paths of length P )

π(f) =
E(f(X1, . . . , XP )

∏P−1
i=1 Gi(Xi)

E(
∏P−1
i=1 Gi(Xi)

where (Xk) is Markov with initial lawM1 and transitionM . For all n ∈ N, we note [n] = {1, . . . , n}.

2 Densities of branching processes

2.1 Description of a branching system
We start with N1 particles (i.i.d. with law M1, N1 is a fixed number). If we have Ni particules at
time n, the system evolves in the following manner:

• The number of childern of Xi
n (the i-th particle at time n) is a random variable Ain+1 with

law fn+1 such that : P(Ain+1 = j) = fn+1(Gn(Xi
n), j) (here, fn is a law with a parameter

Gn(Xi
n), we will define this law later). The variables Ain+1 (1 ≤ i ≤ Nn) are independent.

We than have Nn+1 =
∑Nn

i=1A
i
n+1

• We draw σn+1 uniformly in SNn+1
(the Nn+1-th symmetric group).

• We set ∀j ∈ [Nn], Bjn+1 = {A1
n+1 + · · · + Aj−1

n+1, . . . , A
1
n+1 + · · · + Aj−1

n+1 + Ajn+1}. If i ∈
σn+1(Bjn+1), we draw Xi

n+1 ∼M(Xj
n, .).

Such a system has a density on the space

{(n2, . . . , np, x
i
n, A

i
n, σn) : n2, . . . , nP ∈ N,
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xin ∈ E(1 ≤ n ≤ P, 1 ≤ i ≤ nn), Ain ∈ N(2 ≤ n ≤ P, 1 ≤ i ≤ nn), σn ∈ SNn
(2 ≤ n ≤ P )} .

This density is equal to :

q0(N2, . . . , NP , (A
i
n)2≤n≤P,1≤i≤Nn , (x

i
n)1≤n≤P,1≤i≤Nn , (σn)2≤n≤P )

=

N1∏
i=1

M1(xi1)

P∏
n=2

Nn−1∏
i=1

fn(Gn−1(xin−1), Ain)
1

Nn!

∏
j∈σn(Bi

n)

M(xin−1, x
j
n) .

The random permutations σN ease the writing of the formulas but have no deep signification.

2.2 Proposal density
We take the above branching system and we draw a path by drawing a number i uniformly in
{1, . . . , NP } and taking the path of the ancestors of Xi

P . The branching system plus this trajectory
live in the following space

{(n2, . . . , nP , x
i
n, A

i
n, σn, bi) : n2, . . . , nP ∈ N,

xin ∈ E(1 ≤ n ≤ P, 1 ≤ i ≤ nn), Ain ∈ N(2 ≤ n ≤ P, 1 ≤ i ≤ ni),
σn ∈ SNn(2 ≤ n ≤ P ), bi ∈ [Ni](1 ≤ i ≤ n)} , (2.1)

and have the following density :

q(N2, . . . , NP , (A
i
n)2≤n≤P,1≤i≤Nn

, (xin)1≤n≤P,1≤i≤Nn
, (σn)2≤n≤P , (bk)1≤k≤P )

=
1

NP
q0(N2, . . . , NP , (A

i
n)2≤n≤P,1≤i≤Nn , (x

i
n)1≤n≤P,1≤i≤Nn , (σn)2≤n≤P ) .

2.3 Target law
We draw a trajectory (y1, . . . , yP ) with the law π then a branching system conditioned on con-
taining the trajectory (y1, . . . , yP ). The order of operations is as followed

• Draw (y1, . . . , yP ) with law π(.).

• We draw b1 uniformly in [N1], we set xb11 = y1. We draw (xi1)1≤i≤N1,i6=b1 i.i.d. variables of
law M1.

• If we have the (n− 1)-th generation, we draw A
bn−1
n with law f(Gn−1(x

bn−1

n−1 ), .) conditioned
to be in N∗ (we call this law f̂(Gn−1(x

bn−1

n−1 ), .)). For i ∈ Nn−1, i 6= bn−1, we draw Ain ∼
fn(Gn−1(x

bn−1

n−1 ), .). We set Nn =
∑Nn−1

i=1 Ain. Weaw σn uniformly in SNn
. We set bn =

σn(A1
n + · · · + A

bn−1−1
n + 1), xbnn = yn. For j ∈ [Nn], if j 6= bn and j ∈ σn(Bin) (Bin =

{A1
n + · · ·+Ai−1

n + 1, . . . , A1
n + · · ·+Ain}), we draw xjn ∼M(xin−1, .).

We get a variable in the following space

{(n2, . . . , nP , x
i
n, A

i
n, σn, bi) : n2, . . . , nP ∈ N∗, xin ∈ E(1 ≤ n ≤ P, 1 ≤ i ≤ nn),

Ain ∈ N(1 ≤ n ≤ P, 1 ≤ i ≤ nn), σn ∈ SNn
(2 ≤ n ≤ P ), bi ∈ [Ni](1 ≤ i ≤ n)} ,

with the following density:

π̂(N2, . . . , NP , (A
i
n)2≤n≤P,1≤i≤Nn

, (xin)1≤n≤P,1≤i≤Nn
, (σn)2≤n≤P , (bk)1≤k≤P ))

= π(xb11 , . . . , x
bP
P )

1

N1

∏
1≤i≤N1,i6=b1

M1(xi1)
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P∏
n=2

f̂n(Gn−1(x
bn−1

n−1 ), Abn−1
n )

∏
1≤i≤Nn−1,i6=bn−1

fn(Gn−1(xin−1), Ain)

× 1

Nn!

∏
1≤i≤Nn−1

∏
j∈σn(Bi

n),,j 6=bn

M(xin−1, x
j
n)

 . (2.2)

Notice that: (∀z, k) f̂n(g, k) = fn(g,k)
1−fn(g,0) ( xbn−1

n−1 is conditioned on having at least one children).

2.4 Ratio of the densities
We write the ratio π̂/q and we get:

π̂(N2, . . . , NP , (A
i
n)1≤n≤P−1,1≤i≤Nn

, (xin)1≤n≤P,1≤i≤Nn
, (σn)2≤n≤P , (bk)1≤k≤P ))

q(N2, . . . , NP , (Ain)1≤n≤P−1,1≤i≤Nn , (x
i
n)1≤n≤P,1≤i≤Nn , (σn)2≤n≤P , (bk)1≤k≤P ))

= π(xb11 , . . . , x
bP
P )× NP

N1
× 1

M1(xb11 )
∏P
n=2M(x

bn−1

n−1 , x
bn
n )
×

P∏
n=2

f̂n(Gn−1(x
bn−1

n−1 ), A
bn−1
n )

fn(Gn−1(x
bn−1

n−1 ), A
bn−1
n )

.

Let us take fn such that for all g, i (i 6= 0), f̂n(g,i)
fn(g,i) = βn

g for some comstant βn. This means that
1− fn(g, 0) = g

βn
. We then get:

π̂(. . . )

q(. . . )
=
NP

∏P
i=2 βi

N1Z
,

with Z = E(
∏P−1
n=1 Gn(Xn)) ((Xn)n≥1 is a Markov chain with initial law M1 and kernel transition

M).

3 Perfect simulation algorithm

3.1 Stability of the branching process
We want the branchin process to be stable. So we need that

1

Nn−1

Nn−1∑
i=1

+∞∑
j=1

jfn(Gn−1(xin−1), j) be of order 1 (∀n). (3.1)

Let us take: βn ≥ ‖Gn‖∞ (∀n), and (for some kn), fn(g, 0) = 1 − g
βn

, fn(g, i) = g
knβn

pour

1 ≤ i ≤ kn. We then get
∑kn
i=1 i× fn(g, i) = (kn+1)g

2βn
. So it is sensible to fix kn such that

βn =
kn + 1

2
× 1

N

N∑
i=1

Gn−1(xin−1) (3.2)

where (xin−1) is a sequential Monte-Carlo system with N particles, this has to be computed
beforehand. Simulations show that this procedure indeed gives you stable branching processes.

3.2 Markovian transition
We know want to use a backward coupling algorithm (as in [FT98, PW96]). The integer N1 is
fixed. We take (z1, . . . , zP ) ∈ EP .
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• We drawN2, . . . , NP , (Xi
n)1≤n≤P,1≤i≤Nn,i6=Bn

, (Ain)1≤n≤P,1≤i≤nn
, (Sn ∈ SNn

)2≤n≤P , (Bk)1≤k≤P
with the density

π̂(. . . , z1, . . . , zP , . . . )

π(z1, . . . , zP )
(3.3)

(z1, . . . zP in place of xb11 , . . . , x
bP
P in equation (2.2)). This amounts to drawing a genealogy

conditionned to contain (z1, . . . , zP ). Let us set ∀n ∈ {1, . . . , P}, XBn
n = zn. Let X be the

variable containing all the Nn, Xi
n, A

i
n, Sn, Bn.

• We drawN2, . . . , NP (Xi
n)1≤n≤P,1≤i≤Nn

, (Ain)1≤n≤P,1≤i≤Nn
, (Sn ∈ SNn

)2≤n≤P , (Bk)1≤k≤P

with density q(.). We denote by X the corresponding variable.

• With probability inf
(

1, π̂(X )q(X )

π̂(X )q(X )

)
, we set (Z1, . . . , ZP ) = (XB1

1 , . . . , XP
BP ), and with the

complementary probability, we set (Z1, . . . , ZP ) = (z1, . . . , zP ).

The transformation of (z1, . . . , zP ) into (Z1, . . . , ZP ) is a Metropolis Markov kernel (on EP ) for
which π is invariant (much in the spirit of [ADH10]). Recall that

π̂(X )q(X )

π̂(X )q(X )
=
NP

NP
. (3.4)

3.3 Backward coupling
We are given i.i.d. variables (U0, U−1, U−2, . . . ). Any U−i is sufficient to make a simulation
of the Markovian transition above. We introduce a function F parametrizing this transition
(we can write the transition in the following manner: (Z1, . . . , ZP ) = FU (z1, . . . , zP )). By
Theorem 3.1 of [FT98], if T is a stopping time, relatively to the filtration (σ(U0, . . . , U−i))i≥0,
such that ∀(z(1)

1 , . . . , z
(1)
P ), (z

(2)
1 , . . . , z

(2)
P ) ∈ EP , FU−T

◦ · · · ◦ FU0
(z

(1)
1 , . . . , z

(1)
P ) = FU−T

◦ · · · ◦
FU0

(z
(2)
1 , . . . , z

(2)
P ), then FU−T

◦ · · · ◦ FU0
(z

(1)
1 , . . . , z

(1)
P ) is exactly of law π.

We now look for a lower bound of (3.4) for a trajectory (z1, . . . , zP ) ∈ EP and i ∈ N, U−i fixed.
We add the following hypothesis.
Hypothesis 1. There exists a function f : R → R such that: for all x1 ∈ E, i ∈ N, U−i fixed,
(x1, . . . , xP ) trajectory drawn with transitions M using the variables U−i (which we will denote
by xj+1 = MU−i(xj), ∀j ∈ {2, . . . , P}), for all Sε > 0, ∀j ∈ {2, . . . , P}, diam(M

◦(j−1)
U−i

(Bε(x1))) ≤
f◦(j−1)(ε).
Example 3.1. If the transition M is (for some constants a, b) :

M(x, dy) =
1√

2πb2
exp

(
− (y − ax)2

2b2

)
,

then we can take f(x) = ax.
We now want to bound the number of descendants generated by the trajectory (z1, . . . , zP )

during the conditional drawing using the variables U−i. Let us precise how we do this conditional
drawing (z1, . . . , zP ). We fix ∀n, βn = ‖Gn‖∞ and kn satisfying (3.2). For g ∈ [0; ‖G‖∞], we
set u 7→ F−1

n,g(u) to be pseudo-inverse of the cumulative distribution function of the law fn(g, .)

and we set u 7→ F̂−1
n,g(u) to be the pseudo-inverse of the cumulative distribution function of the

law f̂n(g, .). We are given a family (Vu,Wu)u∈(N∗)[n],n≥1 (random variables indexed by infinite
sequences of N∗) of independent variables of law U([0; 1]). We are given (σn,N )n,N≥1 independent
variables such that ∀n,N , σn,N is uniform in SN . Suppose there exists M ′ : E × [0; 1]→ E such
that if U ∼ U([0; 1]), x ∈ E then M ′(x, U) ∼M(x, dy). Suppose there exists M ′1 : [0; 1]→ R tsuch
that if U ∼ U([0; 1]), then M ′1(U) ∼M1(dx). The simulation goes as follows.

• We set Xi
1 = M ′1(V(i)) ((i) is a sequence of length 1 taking value i) for all i ∈ [N1]\{1}, and

X1
1 = z1. We define Ψ1 : [N1]→ (N∗)[1] by Ψ1(i) = (i).
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• Suppose we have made the simulation up to time n < P and we have a function Ψn : [Nn]→
(N∗)[Nn] (describing the genealogy of the particles, Ψn(i) is the complete ancestral line of
particle i).

– For i ∈ [Nn]\{1}, we set Ain+1 = F−1
n,Gn(Xn

i )(WΨn(i));

– and if i = 1, then X1
n = zn,

and we set Ain+1 = F̂−1
n+1,Gn(zn)(WΨn(i)). We set Nn+1 =

∑Nn

i=1A
i
n+1.

– For j ∈ [Nn+1]\{1}, if A1
n+1 + · · ·+Ai−1

n+1 < j ≤ A1
n+1 + · · ·+Ain+1, we set Ψn+1(j) =

(Ψn(i), j − (A1
n+1 + · · ·+Ai−1

n+1)), Xj
n+1 = M ′(Xi

n, VΨn(j)),

– and if j = 1, we set Xj
n+1 = zn+1, Ψn+1(j) = (1, 1, . . . , 1).

• We then set X
i

1 = X
σ1,N1

(i)
1 (1 ≤ i ≤ N1), B1 = σ−1

1,N1
(1) (beware, Bi and Bij have different

meanings). We then proceed by recurrence. If we have (X
i

j)1≤j≤n,1≤i≤Nn , (A
i

j)2≤j≤n,1≤i≤Nj−1 ,

(σj)2≤j≤n, B1, . . . , Bn with X
i

j = X
σj,Nj

(i)

j (∀j ∈ [n], i ∈ [Nj ]) then:

We set A
i

n+1 = A
σn,Nn (i)
n+1 , Bin+1 = {A1

n+1 + · · · + Ai−1
n+1 + 1, . . . , A1

n+1 + · · · + Ain+1},
σn+1 = σ−1

n+1,Nn+1
, B

i

n+1 = σn+1(B
σn,Nn (i)
n+1 ), X

i

n+1 = X
σn+1,Nn+1

(i)

n+1 , (∀i . . . ). We have

– if i ∈ B
q

n = σ−1
n+1,Nn+1

(B
σn,Nn (q)
n+1 ) and i 6= Bn+1 := σ−1

n+1,Nn+1
(1), σn+1,Nn+1

(i) ∈

B
σn,Nn (q)
n+1 ,X

σn+1,Nn+1
(i)

n+1 = M ′(X
σn,Nn (q)
n , VΨn(σn,Nn (q))), thenX

i

n+1 = M ′(X
q

n, VΨn(σn,Nn (q)))

– and in the case i = Bn+1, X
Bn+1

n+1 = X1
n+1 = zn+1.

And we have

– if Bn+1 /∈ B
i

n+1, then #B
i

n+1 = #B
σn,Nn (i)
n+1 = A

σn,Nn (i)
n+1 = F−1

n,Gn(X
i
n)

(WΨn(σn,Nn(i))),

– if Bn+1 ∈ B
i

n+1,then #B
i

n+1 = F̂−1

n,Gn(X
i
n)

(WΨn(σn,Nn(i))).

This procedure draw (X
i

n, A
i

n, Bn, σn) with the density (3.3) (in pratice, one can get rid of the
simulation of the permutations since they have no influence on the trajectories we are interested
in). We will note (Xi

n, A
i
n, Bn, σn, n ∈ . . . ) = Φ((zi)i∈[P ], (Vu,Wu)u∈(N∗)[n],n≥1 , (Gn)1≤n≤P ).

Lemma 3.2. If in the procedure above, we replace Ain+1 = F̂−1
n+1,Gn(zn)(WΨn(i)) (in the case

Ψn(i) = (N1, 1, . . . , 1)) by Ãin+1 = F̂−1
n+1,Hn(zn)(WΨn(i)) for some function Hn ≥ Gn, then we get

a different system, which we will note with ,̃

(X̃i
n, Ã

i
n, B̃n, σ̃n, n ∈ . . . ) = Φ((zi)i∈[P ], (Vu,Wu)u∈(N∗)[n],n≥1 , (Hn)1≤n≤P )) ,

such that ∀n, {Xi
n, 1 ≤ n ≤ Nn} ⊂ {X̃i

n, 1 ≤ n ≤ Ñn}. moreover, the descendants of z1, . . . , zP at
time P are independent variables.

Let δ > 0. For all n ∈ [P ], let us take H1 = G1, . . . ,Hn−1 = Gn−1, and for k ≥ n,

Hk(x) =

{
sup|y−zk|<f◦(k−n)(δ)Gn(y) if |x− zk| ≤ f◦(k−n)(δ)

Gn(y) otherwise ,

and let us note with ˜ the corresponding system,

meaning (X̃i
n, Ã

i
n, B̃n, σ̃n, n ∈ . . . ) = Φ((zi)i∈[P ], (Vu,Wu)u∈(N∗)[n],n≥1 , (Hn)1≤n≤P )) .
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Let z′1, . . . , z′P be such that z′i ∈ Bδ(zi), ∀i. We have

(Xi
n, A

i
n, Bn, σn, n ∈ . . . ) = Φ((z′i)i∈[P ], (Vu,Wu)u∈(N∗)[n],n≥1 , (Gn)1≤n≤P ) .

Using the Lemma above and Hypothesis 1, we have NP ≤ ÑP . Let Φ′ be such that

NP = Φ′((zi)i∈[P ], (Vu,Wu)u∈(N∗)[n],n≥1 , (Hn)1≤n≤P )) .

3.4 Examples
3.4.1 Gaussian example

We draw sequences (Xn)n∈[P ], (Yn)n∈[P ] such that: X1 ∼ N (0, 1), Xn+1 = aXn+bVn+1(a ∈]0; 1[),
Yn = Xn + cWn with i.i.d. variables Vn,Wn of law N (0, 1). We set

Gn(x) =
1√

2πc2
exp

(
− 1

2c2
(x− Yn)2

)
,

M1(dx) = 1√
2π
e−x

2/2dx, M(x, dy) = 1√
2πb2

exp
(
− (y−ax)2

2b2

)
dy. We want to bound. at time P ,

the particles descending from a fixed trajectory. The descendants of different zn are independant
so we look, for all n, at which is the zn spawning the most descendants at time P . Using the
result above, we slice E in balls of size δ. If z′n is in a ball of size δ containing zn, the number of
descendants of z′n at time P computed with potentials G. is bounded by the number of descendants
of zn at time P computed with potentials H.. The potentials Gn going to 0 at ±∞, we do not
have to explore the whole of R, as soon as zn is far enough from Yn so that it has 0 children under
potential Hn, we can stop the exploration.

Remark 3.1. With δ = 0 (or δ very small), if we look at the number of descendants at time P
of an individual at time n and we maximise in the position of the individual, we will finite some
finite quantity (not exploding when P − n → +∞. For the maximisation step, we have to take
δ > 0 and then this maximum explodes (slowly). So, there a balance to find between δ small
(maximisation step takes a lot of time) and δ big (explosion in the number of particles). A rule of
thumb, coming from the experience, is that the population do not explode as long as the number
of children per individual is of order 2, 3.

3.4.2 Directed polymers

Let (Xn)n≥1 be a symmetric simple random walk in Z with X1 = 0. We are given i.i.d. variables
(ξn,i)n≥1,i∈Z with Bernoulli law of parameter p > 0. We set (random) potentials : Vn(i) =
exp(−βξn,i) (β > 0) and we are interested in the following law (quenched, meaning the ξn,i are
fixed) :

π1:n(f) =
Eξ(f(X1:n)

∏n
k=1 Vk(Xk))

Eξ(
∏n
k=1 Vk(Xk))

.

This kind of model is described in [BTV08]. If we take the expectation over all the variable:
E(max de la traj. sous π1:n) behaves as nζ with ζ 6= 1/2.

Using our algorithm, we can simulate trajectories under the law π1:P (for fixed ξ, P ∈ N∗).
The research of the ancestors having the biggest number of descendants at time P makes that the
computational cost is P 2. Here is the drawing of E(max . . . ) as a function of n in a log-log scale
(the blue line has gradient 2/3, the green line has gradient 1/2):
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Figure 3.1: gradient estimation (least square)=0,63

.
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