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Abstract

Polarised neutron diffraction experiments conducted at 4.2 K on Cs3CoCl5

crystals have been analysed by using a 4-dimensional model Hilbert space made of ab

initio n-electron wave functions of the CoCl2−4 molecular ion. Two spin-orbit mixing

coefficients and several configuration interaction coefficients have been optimized by

fitting calculated magnetic structure factors to experimental ones, to obtain the best

ensemble density operator that is representable in the model space. A goodness of

fit, χ2, less then 1 has been obtained for the first time for the two experimental

data sets available. In the present article, the optimized density operators are used

to calculate the magnetic field densities that are the genuine observables probed in

neutron diffraction experiments. Density maps of such observables are presented for

the first time and numerical details are provided. The respective contributions of

spin density and orbital current to the magnetic field density are analyzed.



1 Introduction

A molecule with a non zero spin density, such as an open-shell molecule in a magnetic field,

produces a magnetic field density in space. If in addition there is a significant spin-orbit

coupling in the system, a non zero orbital current density also contributes to the molecular

magnetic field density. Such a density is a bona fide, gauge invariant observable, that deserves

special attention because it is the genuine observable (and not the spin density) probed in

experiments such as polarized neutron diffraction experiments [1].

The purpose of this article is to calculate magnetic field densities and to analyze the respec-

tive contributions of the spin density and the orbital current density of CoCl2−4 molecular ions

embedded in tricaesium cobalt (II) pentachloride, Cs3CoCl5, crystals. An extensive bibliog-

raphy on this system has been provided in previous publication [1,2]. More recent theoretical

studies show that it is still the topics of active research [3,4]. In fact, we will limit ourselves

to the paramagnetic contribution to the orbital current, the diamagnetic one having been

found negligible in our previous studies [1,2], hence we will avoid the delicate problem of

gauge invariance, see [5,6] and therein.

Accurate density operators for the CoCl2−4 molecular ions embedded in Cs3CoCl5 crystals

have been derived [1] from polarised neutron diffraction (PND) experiments [7]. Two data

sets were collected from PND experiments. The first one, hereafter referred to as the “c-data

set”, was obtained with an applied magnetic field of 4.6 T along the c-axis of the cristal,

which has the I4/mcm space group symmetry. This axis corresponds to the main symmetry

axis (hereafter regarded as the z-axis) of the CoCl2−4 molecular ions, which have D2d point

group symmetry in the cristal. The second data set, called the “a-data set”, was obtained

with an applied magnetic field of 1.49 T along the cristal a-axis, which is perpendicular

to the c-axis. Correspondingly, two density operators were derived, both of them achieving

a goodness of fit, χ2, less then 1 for the difference between calculated and experimental

magnetic structure factors.
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In the present study, we use these two density operators to compute magnetic field den-

sities. As far as we are aware, such observables have not been calculated before. So, no

benchmark calculation was available. Therefore, for debugging purposes, the calculations

were performed with two independent approaches which use different formulas and different

computer codes to calculate magnetic field densities in direct space representation. (Note

that in previous works, we have calculated magnetic density points in reciprocal space for

the sake of comparison with experimental structure factors.) The first one is based on an-

alytical expressions employing the first confluent hypergeometric function [8]. It has been

implemented as a Mathematica code [9] and is summarized in Appendix C. The other one

is based on Rys-quadrature and will be detailed in the next section and Appendix B. It has

been implemented in the computer code TONTO [10], and after checking its results against

the first method, it has been used to produce the density maps discussed in Section 3. Our

findings will be summarized in conclusion.

2 Numerical calculation of magnetic field integrals

Notation: the components x, y, z of three-dimensional vectors, ~v, will be denoted as su-

perscript with greek letters, (vα)α∈{x,y,z} . The elements of higher-order tensors such as the

Krönecker symbol, δαβ, (seen as the identity tensor of rank 2), or the Levi-Civita antisym-

metric tensor of rank 3, εαβγ, will be indexed with subscripts. When using the latter tensors,

Einstein implicit summation convention will be used for repeated indices.

2.1 General expressions of the magnetic field integrals

The magnetic field at point ~r in 3D-space, ~B[~r], coming from a current density, ~J [~r], is:

~B[~r] =
µ0

4π
~∇×

∫ ~J [~r′]

‖~r′ − ~r‖
d~r′. (1)

The integral can be denoted as ~A[~r] as it plays the part of a vector potential. The quantity
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µ0 is the permeability of free space, in atomic units
µ0

4π
=

1

c2
= α2, c speed of light, α ' 1

137
fine structure constant.

The electronic current density of a molecule is composed of an “orbital” part and a “spin”

part [11]:

~J [~r] = ~Jo[~r] + ~Js[~r]. (2)

In terms of an orbital basis set, (χk)k, the α-component of the spin current density, ~Js[~r] =

geµe~∇ × ~S[~r], (ge, gyromagnetic factor of the electron, µe = −1
2

au, Bohr magneton), is

expressed as,

Jαs [~r] = geµeεαβγ
∂Sγ[~r]

∂rβ
= geµeεαβγ

∑
k1,µ;k2,ν

[
∂χ∗k1

[~r]

∂rβ
χk2 [~r] + χ∗k1

[~r]
∂χk2 [~r]

∂rβ

]
〈Sγ〉µ,νD(1)

k2,ν;k1,µ

(3)

where 〈Sγ〉µ,ν denotes the matrix element of the spin operator γ-component, and D
(1)
k2,ν;k1,µ

,

the one-electron reduced density matrix.

The paramagnetic contribution to the orbital current density is expressed as:

Jαo [~r] =
∑
k1,k2

〈Jαo [~r]〉k1,k2D
(1)
k2,k1

(4)

where the current density matrix element is,

〈Jαo [~r]〉k1,k2 =
i

2

[
χ∗k1

[~r]
∂χk2 [~r]

∂rα
−
∂χ∗k1

[~r]

∂rα
χk2 [~r]

]
(5)

and the matrix, D
(1)
k2,k1

, is the one-electron reduced density matrix traced over spin variables,
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D
(1)
k2,k1

=
∑
µ

D
(1)
k2,µ;k1,µ

. (6)

Correspondingly, the magnetic field is comprised of two different origins,

~B[~r] = ~Bo[~r] + ~Bs[~r], (7)

with,

~Bo[~r] =
1

c2
~∇×

∫
R3

~Jo[~r′]

‖~r′ − ~r‖
d~r′, (8)

~Bs[~r] =
1

c2
~∇×

∫
R3

~Jo[~r′]

‖~r′ − ~r‖
d~r′. (9)

However, the computation of both contributions boils down to evaluating the same function,

Iα,βk1,k2
[~r] :=

∂

∂rβ

∫
R3
χ∗k1

[~r′]
∂χk2 [~r′]

∂r′α
· 1

‖~r′ − ~r‖
d~r′, (10)

since,

Bα
o [~r] =

εαγβ
c2

∂

∂rγ

∫
R3

Jβo [~r′]

‖~r′ − ~r‖
d~r′

=
εαγβ
c2

∑
k1,k2

D
(1)
k2,k1
· ∂

∂rγ

∫
R3

〈Jβo [~r′]〉k1,k2

‖~r′ − ~r‖
d~r′

=
εαγβ
c2

∑
k1,k2

D
(1)
k2,k1
· i

2
·
[
Iβ,γk1,k2

[~r]−
(
Iβ,γk2,k1

[~r]
)∗]

=
εαβγ
c2

∑
k1 6=k2

Im
[
D

(1)
k2,k1

Iβ,γk1,k2
[~r]
]

(11)

(introducing in the last step, the imaginary part Im[z] of a complex number z, and using

εαβγ = −εαγβ), and,
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Bα
s [~r] =

−geµe
c2

εαβγεβκλ
∂

∂rγ

∫
R3

∂Sλ[~r′]
∂r′κ

‖~r′ − ~r‖
d~r′

=
−geµe
c2

εαβγεβκλ
∑

k1,µ;k2,ν

D
(1)
k2,ν;k1,µ

[
Iκ,γk1,k2

[~r] +
(
Iκ,γk2,k1

[~r]
)∗]
〈Sλ〉µ,ν

=
−2geµe
c2

(δαλδγκ − δακδγλ)
∑

k1,µ;k2,ν

Re
[
D

(1)
k2,ν;k1,µ

Iκ,γk1,k2
[~r]〈Sλ〉µ,ν

]
=
ge
c2

∑
k1,µ;k2,ν

γ 6=α

(
Re

[
D

(1)
k2,ν;k1,µ

Iγ,γk1,k2
[~r]〈Sα〉µ,ν

]
−Re

[
D

(1)
k2,ν;k1,µ

Iα,γk1,k2
[~r]〈Sγ〉µ,ν

])
(12)

(introducing the real part, Re[z], of a complex number, z, using the identity εαβγεβκλ =

δαλδγκ − δακδγλ and replacing the Bohr magneton by its value in atomic units). Note that

the restriction γ 6= α in the summation is not necessary, for the term γ = α would be zero

anyway.

If the orbital basis functions are real, the Iα,βk1,k2
[~r] are also real, and can be extracted from

the real or imaginary parts in Eqs.(11) and (12),

Bα
o [~r] =

εαβγ
c2

∑
k1 6=k2

Im
[
D

(1)
k2,k1

]
Iβ,γk1,k2

[~r], (13)

Bα
s [~r] =

ge
c2

∑
k1,µ;k2,ν

γ 6=α

(
Re

[
D

(1)
k2,ν;k1,µ

〈Sα〉µ,ν
]
Iγ,γk1,k2

[~r]−Re
[
D

(1)
k2,ν;k1,µ

〈Sγ〉µ,ν
]
Iα,γk1,k2

[~r]
)
. (14)

Recall that the spin matrices can be represented as one half of the Pauli matrices, the above

equations give for the z-components,

Bz
o [~r] =

1

c2

∑
k1 6=k2

Im
[
D

(1)
k2,k1

] (
Ix,yk1,k2

[~r]− Iy,xk1,k2
[~r]
)
, (15)

Bz
s [~r] =

ge
2c2

∑
k1,k2

Re
[
D

(1)

k2,+
1
2

;k1,+
1
2

−D(1)

k2,− 1
2

;k1,− 1
2

] (
Ix,xk1,k2

[~r] + Iy,yk1,k2
[~r]
)

−Re
[
D

(1)

k2,− 1
2

;k1,+
1
2

+D
(1)

k2,+
1
2

;k1,− 1
2

]
Iz,xk1,k2

[~r]

−Im
[
D

(1)

k2,− 1
2

;k1,+
1
2

−D(1)

k2,+
1
2

;k1,− 1
2

]
Iz,yk1,k2

[~r], (16)
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or for the x-components,

Bx
o [~r] =

1

c2

∑
k1 6=k2

Im
[
D

(1)
k2,k1

] (
Iy,zk1,k2

[~r]− Iz,yk1,k2
[~r]
)
, (17)

Bx
s [~r] =

ge
2c2

∑
k1,k2

Re
[
D

(1)

k2,+
1
2

;k1,− 1
2

+D
(1)

k2,− 1
2

;k1,+
1
2

] (
Iz,zk1,k2

[~r] + Iy,yk1,k2
[~r]
)

−Im
[
D

(1)

k2,− 1
2

;k1,+
1
2

−D(1)

k2,+
1
2

;k1,− 1
2

]
Ix,yk1,k2

[~r]

−Re
[
D

(1)

k2,+
1
2

;k1,+
1
2

−D(1)

k2,− 1
2

;k1,− 1
2

]
Ix,zk1,k2

[~r]. (18)

In the following section we work out some simplifications of the calculation of the Iα,βk1,k2
[~r]

integrals when the orbitals are gaussian functions.

2.2 Case of Gaussian basis functions

We now consider primitive Gaussian basis functions, (“Gaussians” in short) of the form,

χk[~r] =
∏

α∈{x,y,z}
(rα −Rα

k )L
α
k Exp[−ζk (rα −Rα

k )2]. (19)

A partial derivative of such a Gaussian function is just a linear combination of two different

Gaussians, with the same exponential part but different prefactors,

∂χk[~r]

∂rα
=

(
Lαk

rα −Rα
k

− 2ζk (rα −Rα
k )

)
χk[~r] (20)

Let us define a function f of two integer triplets ~Mi := (Mx
i ,M

y
i ,M

z
i ), i ∈ {1, 2} and three

vectors of R3, ~Ri := (Rx
i , R

y
i , R

z
i ), i ∈ {1, 2}, ~r := (rx, ry, rz), by:

f
[
~R1, ~M1, ~R2, ~M2, ~r

]
:=

∏
α∈{x,y,z}
i∈{1,2}

(rα −Rα
i )M

α
i (21)

(eq.(7) of [8] with a misprint corrected). Denoting by ~eα the unit vector of R3 in direction

α, the integrals, Iα,βk1,k2
[~r], can be expressed as,
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Iα,βk1,k2
[~r] =

∂

∂rβ

∫
R3

(
Lαk2

f
[
~Rk1 , ~Lk1 , ~Rk2 , ~Lk2 − ~eα, ~r′

]
− 2ζk2f

[
~Rk1 , ~Lk1 , ~Rk2 , ~Lk2 + ~eα, ~r′

])
·Exp

[
−ζk1‖~r′ − ~Rk1‖2 − ζk2‖~r′ − ~Rk2‖2

]
· 1

‖~r′ − ~r‖
d~r′, (22)

Using the identity,

Exp
[
−ζ1‖~r − ~R1‖2 − ζ2‖~r − ~R2‖2

]
= Exp

[
−ζ1ζ2

ζ1 + ζ2
‖ ~R2 − ~R1‖2

]
Exp

− (ζ1 + ζ2)

∥∥∥∥∥~r − ζ1
~R1 + ζ2

~R2

ζ1 + ζ2

∥∥∥∥∥
2


(23)

and introducing the function

gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
:=

∂

∂rβ

∫
R3

f
[
~R1, ~M1, ~R2, ~M2, ~r′

]
× Exp

[
−(ζ1 + ζ2)

∥∥∥∥~r′ − ζ1 ~R1 + ζ2 ~R2

ζ1 + ζ2

∥∥∥∥2
]

d~r′

‖~r − ~r′‖
, (24)

we have

Iα,βk1,k2
[~r] = Exp

[
−ζ1ζ2

ζ1 + ζ2
‖ ~R2 − ~R1‖2

](
Lαk2

gβ
[
~R1, ~L1, ~R2, ~L2 − ~eα, ζ1, ζ2, ~r

]
−2ζk2g

β
[
~R1, ~L1, ~R2, ~L2 + ~eα, ζ1, ζ2, ~r

])
. (25)

So, to obtain Iα,βk1,k2
[~r], it suffices to compute the function, gβ

[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
, for

non-negative integer triplets, (Mx
i ,M

y
i ,M

z
i ), i ∈ {1, 2}, as in [8]. In fact, that is just the

derivative of a “Coulomb potential” type of integral with Gaussian basis functions, which

is easy to evaluate numerically according to known techniques such as Rys quadrature [14].

In Appendix B, we demonstrate that these integrals are actually amenable to an exact

calculation with Rys quadrature method, and provide details on how to derive practical

formulas using a double quadrature method.

3 Application to CoCl2−4

The formulas of the previous section and Appendix B have been implemented in the code

TONTO [10] and applied to the density operators optimized in [1] for CoCl2−4 in Cs3CoCl5

crystals in order to calculate the current and spin density magnetic field at different grid

points. The numerical accuracy of the formulas has been checked thoroughly against ana-
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lytical formulas, see ref. [8] and Appendix C. The results are displayed in Figs. 1 and 2 and

are analyzed below.

We have concentrated our attention on the components of the magnetic field that have been

probed in PND experiments and so have served to optimize our density operators. That is to

say, the z-component in connection with the c-data set and the x-component in connection

with the a-data set. The 2D grids represented in this study correspond to the so-called “small

angle plane” and “large angle plane” used in previous studies, that is to say, they are planes

containing the cobalt atom and two chlorines forming a ĈlCoCl angle of either 107.22°or

110.61°. However, other planes have been used for plots not represented in this article. These

plots will be commented on in the text.

Note first that comparing spike height can be misleading. For example, in Fig. 1, the maxi-

mum value of the z-component of Bspin in the small angle plane that is about 0.000341 au,

with that of Borb, equal to about 0.000197, one find a very large ratio, that is Borb would

appear to be more than 50% of Bspin. In fact if one integrates over all 2D-grid points one

find a ratio of about 30%. We anticipate that integrating over 3D-space and not just a single

plane, would give an orbital versus spin bulk ratio, Borb
Bspin

, of the order of 20%, that is similar

to the orbital versus spin contribution found for the g-value obtained in ESR experiments

[13] of 2.42, this number being also very close to the g-value obtained from our optimized

density matrix for the c-data set [1], g = 2.46.

Let us start with the magnetic field z-component of the density operator optimized with

the c-data set. In Fig. 1, the upper panels show that the orbital current magnetic field z-

component is essentially centered on the cobalt atom, slightly stretched along the z-direction

that is along the CoCl2−4 tetrahedron elongation. This is easily rationalized from the orbital

current density, displayed on Fig. 3 or in [1]. There is no trace of the chlorine contributions to

the orbital magnetic field at this scale, whereas the spin density magnetic field z-component

displays some small features at their locations at the same scale. In fact, the top of the

chlorine spin magnetic field feature is about 15 times higher than that of the orbital one.

The orbital current around the chlorine centers appear to be somewhat quenched in the
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CoCl2−4 molecular ion.

In contrast with the orbital magnetic field, the spin magnetic field (4 lower panels of Fig.

1) displays very different features in the small and large angle planes. Although the spin

densities look similar in the two planes with four spikes in the interaxis areas (see Fig. 4),

only for the large angle plane does the spin magnetic field show 4 spikes. This has to do with

the special rôle of the z-axis with respect to the z-component of the magnetic field. In fact,

the same feature is observed for the Bx component in the (x, y = −z)-plane in the case of

the a-data set (plot not shown in the article). Also, contrary to the orbital contribution, the

spin one has significant negative features, in particular in the small angle plane. They are

however much smaller than the positive ones, as can be seen by comparing the scales of the

middle and lower panels.

Let us now examine the magnetic field x-component of the density operator optimized with

the a-data set. The scales of the drawings in Fig. 2 are enlarged 10 times with respect to the

scales of Fig. 1. The smaller magnetic field obtained for the a-data density operator reflects

the smaller magnetization of the system due to a smaller applied magnetic field and a less

effective splitting of the degenerate electronic energy levels, see Fig.3 of [1]. The ratio Borb
Bspin

is remarkably small. It shows that even the orbital current around Co is quenched when the

applied magnetic field is perpendicular to the main symmetry axis. As a matter of fact, the

current density in the lower panel of Fig. 3 has not the circular distribution exhibited in the

upper panel.

The small and large angle planes are fairly equivalent for the x-component of the magnetic

field. Both ressemble the x-component of the spin density (see Fig. 4) which has four spikes

around the cobalt center, the two spikes on the chlorine side being significantly larger then

the two others. This can only be related to the bonding interaction between the cobalt central

nucleus and the chlorine nuclei. The dissymmetry also exists for the c-data density operator

but is less noticeable due to its smaller relative amplitude with respect to spike heights (6

times larger for the c-data spin density).

Finally, we note that there is a negative feature in the spin magnetic field x-component
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despite the fact that the spin density x-component is negative everywhere (in other words,

there is no spin polarization). The same was observed for the c-data spin magnetic field

z-component, except that, here, the negative feature has a shape similar to the large angle

plane lower picture of Fig. 1, but a relative magnitude recalling that of the small angle

plane lower picture of Fig. 1. In fact, the 3D shape of the magnetic field is rather complex

and difficult to apprehend. For example, in the xy-plane (picture not presented here), the

c-data spin magnetic field z-component displays two positive spikes almost symmetrical to

two negative spikes. The orbital magnetic field in the same plane shows a single spike similar

to those of Fig. 1 but not distorted, that is with a round base shape.

4 Conclusion

We have presented an effective numerical procedure to compute the magnetic field produced

at a given point in space by a molecular orbital current or spin density. The formulas have

been implemented in the TONTO computer code, a copyleft quantum chemistry freeware

[10]. As far as we are aware this observable was not investigated before.

We have studied some selected part of the orbital current and spin density magnetic fields of

the CoCl2−4 molecular ions embedded in Cs3CoCl5 crystals in an external magnetic field. The

two contributions are quite different. The orbital one is found more sensitive to the direction

of the applied magnetic field than the spin one. Conversely, the spin contribution is found

more sensitive to presence of chlorine atoms. Indeed, it can even reveal chemical bonding.

We hope that the present study will trigger interest in this observable, whose calculation has

now been made available to the community for any molecular density matrix expressed in

terms of a Gaussian atomic basis set.
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Appendix A: Paramagnetic current and spin density of CoCl2−4

The induced molecular magnetic field densities for CoCl2−4 presented in this article arise from

the spin densities and orbital current densities depicted in [1]. Here, they are reproduced from

different viewpoints. This is useful to better grasp they shape in 3D-space and makes the

article more self-contained.

Only the orbital current around the cobalt nucleus is significant as can be seen from the

orbital contribution to the magnetic field. So in Fig. 3, we have only displayed the currents

in cubes of length 2 a.u. centered on the Co atom, with a view from the top of applied

magnetic field axis. In the case of the c-data set we clearly see that the current follows

circles around Co in the xy-plane, hence the round shaped peak of the orbital contribution

to the molecular magnetic field (top of Fig. 1). In contrast, for the a-data set there are pairs

of small circles superposed to large circles (bottom picture). Hence, the elongated shape of

the peak of the orbital magnetic field (top of Fig. 2) which is actually splitted in two at the

tip.

Note that, the spin density y-component plots were wrong in [1] due to a misprint in a

computer code. They are corrected in Fig. 5. Note also, the abuse of notation for the so-

called “large angle plane” passing through Co, Cl1 and Cl2 of Fig.1 in [1], since the axis

labelled “x = −z” is in fact approximately “x = −.95952071× z” because of the distorsion

of the tetrahedron.

(insert Fig. 5 here)

Appendix B: Calculation of Coulomb field integrals using Rys Polynomials

In this appendix, we explain our implementation of a Rys and Gauss-Hermite double quadra-

ture method, for the calculation of the function, gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
, given in Eq.

(36).

12



Let us first consider its integral part,

h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~r] :=

∫
R3
f
[
~R1, ~M1, ~R2, ~M2, ~r′

]
·
Exp

[
−(ζ1 + ζ2)

∥∥∥~r′ − ζ1 ~R1+ζ2 ~R2

ζ1+ζ2

∥∥∥2
]

‖~r′ − ~r‖
d~r′, (26)

that is just a “Coulomb potential” type of integral with Gaussian basis functions, which is

easy to evaluate numerically according to known techniques such as Gaussian quadratures.

More precisely, as a first step, we employ exactly the same algebra used p.13 of Ref. [8] to

transform gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
. That is to say, we Laplace transform 1

‖~r′−~r‖
,

1

‖~r − ~r′‖
=

1√
π

∫ +∞

0
Exp

[
−v‖~r − ~r′‖2

] dv√
v

(27)

make use again of the identity of Eq.(23) and perform three changes of variables to obtain,

h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~s] :=

1√
π(ζ1 + ζ2)

∫ 1

0

dν√
ν
Exp

[
−ν‖~s‖2

] ∫
R3

d~s′ Exp
[
−‖~s′‖2

]
·

f

[
ζ2(~R1 − ~R2)

ζ1 + ζ2
− ν~s√

ζ1 + ζ2
, ~M1,

ζ1(~R2 − ~R1)

ζ1 + ζ2
− ν~s√

ζ1 + ζ2
, ~M2,

√
1− ν
ζ1 + ζ2

~s′

]
, (28)

where ~s :=
√
ζ1 + ζ2~r − ζ1 ~R1+ζ2 ~R2√

ζ1+ζ2
. (Note that, as in [8], we have assumed that the two

integrals could be swapped.) The second integral on ~s′ can be calculated by Gauss-Hermite

quadrature, whereas the first one suggests the change of variable, ν → t2, in order to use the

method of Rys polynomials [15–17]:

h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~s] :=

2√
π(ζ1 + ζ2)

∫ 1

0
dt Exp

[
−t2‖~s‖2

] ∫
R3

d~s′ Exp
[
−‖~s′‖2

]
·

f

[
ζ2(~R1 − ~R2)

ζ1 + ζ2
− t2~s√

ζ1 + ζ2
, ~M1,

ζ1(~R2 − ~R1)

ζ1 + ζ2
− t2~s√

ζ1 + ζ2
, ~M2,

√
1− t2
ζ1 + ζ2

~s′

]
, (29)

So, as a second step, we use Rys quadrature [16] to calculate the first integral in Eq. (29).

Note that we do have a polynomial in t2, as required to obtain an exact Rys quadrature,

since only even degrees in the ~s′-components give non zero contribution after integration

on ~s′-components. The minimum number of quadrature points or “roots” to have an exact

quadrature is the smallest integer larger than half the degree of the polynomial in factor of

13



the Gaussian functions, that is to say, in the present case:

nRys
roots =


∑
α
Mα

k1
+Mα

k2

2

 (30)

(“ceiling” integer value of 1
2

∑
α
Mα

k1
+Mα

k2
).

So, we can rewrite exactly Eq. (29) as a discretized Rys sum (switching back to the ~r

variable):

h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~r] :=

2
√
π(ζ1 + ζ2)

∑
k

wRys
k

[~r]

∫
R3

d~s′ Exp
[
−‖~s′‖2

]
·

f

[
~R1 −

ζ1 ~R1 + ζ2 ~R2 + (ζ1 + ζ2)uk[~r]~r

(ζ1 + ζ2)(1 + uk[~r])
, ~M1, ~R2 −

ζ1 ~R1 + ζ2 ~R2 + (ζ1 + ζ2)uk[~r]~r

(ζ1 + ζ2)(1 + uk[~r])
, ~M2,

~s′√
(ζ1 + ζ2)(1 + uk[~r])

]
, (31)

where the uk[~r]’s are related to the roots of the Rys polynomials, the tk[‖~s‖2]’s, by, uk[~r] =

(tk[‖~s‖2])
2

1−(tk[‖~s‖2])2 , see Ref. [16], and the wRys
k [~r]’s are the Rys “weights”.

Next, for every uk[~r] value, we still need to evaluate the integrals,

Nα
~R1, ~M1,ζ1, ~R2, ~M2,ζ2,uk[~r]

[~r] :=

∫
R
ds′α Exp

[
−s′α

]
·

fα

[
Rα1 −

ζ1Rα1 + ζ2Rα2 + (ζ1 + ζ2)uk[~r]rα

(ζ1 + ζ2)(1 + uk[~r])
,Mα

1 , R
α
2 −

ζ1Rα1 + ζ2Rα2 + (ζ1 + ζ2)uk[~r]rα

(ζ1 + ζ2)(1 + uk[~r])
,Mα

2 ,
s′α√

(ζ1 + ζ2)(1 + uk[~r])

]
,

(32)

where the function fα denotes the factor of the function f corresponding to α-components,

fα [Rα
1 ,M

α
1 , R

α
2 ,M

α
2 , r

α] :=
∏

i∈{1,2}
(rα −Rα

i )M
α
i . (33)

In the last step to obtain the h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~r] function, we use exact Gauss-Hermite

quadratures for these integrals and replace them by the discrete sums:

Nα
~R1, ~M1,ζ1, ~R2, ~M2,ζ2,uk[~r]

[~r] =
∑
l

wG-H
l [Mα

1 +Mα
2 ] ·

fα

[
Rα1 −

ζ1Rα1 + ζ2Rα2 + (ζ1 + ζ2)uk[~r]rα

(ζ1 + ζ2)(1 + uk[~r])
,Mα

1 , R
α
2 −

ζ1Rα1 + ζ2Rα2 + (ζ1 + ζ2)uk[~r]rα

(ζ1 + ζ2)(1 + uk[~r])
,Mα

2 ,
s′αl [Mα

1 +Mα
2 ]√

(ζ1 + ζ2)(1 + uk[~r])

]
,

(34)
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where the Gauss-Hermite roots, s′αl [Mα
1 + Mα

2 ], and weights, wG-H
l [Mα

1 + Mα
2 ], depends on

the minimal number of quadrature points required to have an exact result, that is to say,

upon the degree of the polynomial in s′α, hence their dependence upon Mα
1 + Mα

2 . In fact,

the number of points required is

nG-H
roots =

⌈
Mα

k1
+Mα

k2

2

⌉
. (35)

Routines to calculate these weights and roots are widely available, see for example [18].

Let us return to the calculation of the function gβ,

gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
=
∂h~R1, ~M1,ζ1, ~R2, ~M2,ζ2

[~r]

∂rβ
. (36)

It can be regarded as a “Coulomb field” integral type, since it is a derivative of a “Coulomb

potential” integral. Looking back at Eq.(26), we see that only 1

‖~r′−~r‖
needs to be differentiated,

and assuming that derivation permutes with the Laplace transform, Eq. (27), we get:

∂‖~r − ~r′‖−1

∂rβ
=

1√
π

∫ +∞

0
−2v(rβ − r′β)Exp

[
−v‖~r − ~r′‖2

]
dv. (37)

So, there is only an additional factor of −2v(rβ − r′β) to take into account with respect to

the calculation of h~R1, ~M1,ζ1, ~R2, ~M2,ζ2
[~r]. After the successive changes of variables, this factor

becomes −2(ζ1 + ζ2)t2
(
rβ − ζ1R

β
1 +ζ2R

β
2

ζ1+ζ2
− s′β√

(ζ1+ζ2)(1−t2)

)
. This seems to introduce a factor

1√
1−t2 , however, as we have already stated, only even powers of s′β give non zero contributions

to the integral over s′β, and all other factors s′β in fβ comes with a factor
√

1− t2, see Eq.

(29). So, again the function to integrate over t will be a polynomial in t2 amenable to exact

Rys quadrature. The only thing to pay attention to is that its degree is increased by one

with respect to the case of Coulomb potential integrals, hence the required number of roots

will have to be increased accordingly. (Note however, that the above argument would not to

apply beyond Coulomb potential integral first derivatives.)

For each Rys quadrature point, the extra factor can be expressed as

−2(ζ1+ζ2)uk[~r]
(
rβ − s′β

l
[Mβ

1 +Mβ
2 ]√

(ζ1+ζ2)(1+uk[~r])
− ζ1R

β
1 +ζ2R

β
2 +(ζ1+ζ2)uk[~r]rβ

(ζ1+ζ2)(1+uk[~r])

)
. This factor is to be inserted

in the sum of Eq. (34) for α = β, giving the new function,

15



F
β
~R1,

~M1,ζ1,
~R2,

~M2,ζ2,uk[~r]
[~r] := −2(ζ1 + ζ2)uk[~r]

∑
l

w
G-H
l [M

β
1

+M
β
2

]

(
r
β −

s
′β
l

[M
β
1

+M
β
2

]√
(ζ1 + ζ2)(1 + uk[~r])

−
ζ1R

β
1

+ ζ2R
β
2

+ (ζ1 + ζ2)uk[~r]rβ

(ζ1 + ζ2)(1 + uk[~r])

)

fβ

[
R
β
1
−
ζ1R

β
1

+ ζ2R
β
2

+ (ζ1 + ζ2)uk[~r]rβ

(ζ1 + ζ2)(1 + uk[~r])
,M

β
1
, R
β
2
−
ζ1R

β
1

+ ζ2R
β
2

+ (ζ1 + ζ2)uk[~r]rβ

(ζ1 + ζ2)(1 + uk[~r])
,M

β
2
,

s
′β
l

[M
β
1

+M
β
2

]√
(ζ1 + ζ2)(1 + uk[~r])

]
, (38)

the other two sums, for α 6= β, remaining unchanged. So, the function gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
is obtained by multiplying these three Gauss-Hermite sums for every Rys quadrature point,

and then, by computing the Rys sum,

gβ
[
~R1, ~M1, ~R2, ~M2, ζ1, ζ2, ~r

]
=

2√
π(ζ1 + ζ2)

∑
k

wRys
k [~r]F β~R1, ~M1,ζ1, ~R2, ~M2,ζ2,uk[~r]

[~r]
∏
α 6=β

Nα
~R1, ~M1,ζ1, ~R2, ~M2,ζ2,uk[~r]

[~r]. (39)

Appendix C: Analytical calculation of magnetic field integrals

We provide here the analytical formulas against which our numerical calculations of magnetic

field density have been checked. They correct some misprints and slight errors of [8] already

noted in [19].

The orbital paramagnetic current, ~Jo[~r] produced by the complex combination of primitive

Gaussian atomic orbitals

b1

∏
α∈{x,y,z}

(rα −Rα
1 )L

α
1 Exp

[
−ζ1(rα −Rα

1 )2
]

+ ib2

∏
α∈{x,y,z}

(rα −Rα
2 )L

α
2 Exp

[
−ζ2(rα −Rα

2 )2
]
,

(40)
(b1 and b2 are real coefficients) give rise to a molecular magnetic field, whose γ-component
is,

Bγo [~r] =
−µ0

4π
εαβγ

∂

∂rβ

∫
R3

d~r′

‖~r − ~r′‖
Jαo
[
~r′
]

=
−µ0

4π
εαβγb1b2Exp

[
−

ζ1ζ2

ζ1 + ζ2
‖~R1 − ~R2‖2

] (
Lα1 g

β
[
~R1, ~L1 − ~eα, ~R2, ~L2, ζ1, ζ2, ~r

]
− Lα2 g

β
[
~R1, ~L1, ~R2, ~L2 − ~eα, ζ1, ζ2, ~r

]
−2ζ1g

β
[
~R1, ~L1 + ~eα, ~R2, ~L2, ζ1, ζ2, ~r

]
+ 2ζ2g

β
[
~R1, ~L1, ~R2, ~L2 + ~eα, ζ1, ζ2, ~r

])
(41)

(correcting a sign error in Eq.(9) of [8], Eq.(8) being correct).
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After setting ~Si =
~Ri√
ζ1+ζ2

, i ∈ {1, 2}, ~s =
√
ζ1 + ζ2~r − ζ1

~S1 − ζ2
~S2 and some manipulations,

the gβ functions can be re-expressed as,

gβ
[
~S1, ~M1, ~S2, ~M2, ζ1, ζ2, ~s

]
=
(
π(ζ1 + ζ2)1+Σi,αM

α
i

)− 1
2

∑
~li+~mi+~ni=

~Mi
0≤lα

i
,mα
i
,nα
i

(+ζ2)Σαn
α
1 (−ζ1)Σαn

α
2 Γ

[
1 +
∑
i,α

lαi
2

]

(∏
α

δ
[2]
lα
1

+lα
2
,0

Γ

[
lα1 + lα2 + 1

2

]
(Sα2 − S

α
1 )n

α
1 +nα2

∏
i

Mα
i !

lαi !mαi !nαi !
(sα)m

α
i

)mβ1 +mβ2
sβ

Γ

[
1
2

+
∑
i,α

mαi

]
Γ

[
3
2

+
∑
i,α

mαi +
lα
i
2

]

Φ

[
1

2
+
∑
i,α

mαi ,
3

2
+
∑
i,α

mαi +
lαi
2

;−‖~s‖2
]
− 2sβ

Γ

[
3
2

+
∑
i,α

mαi

]
Γ

[
5
2

+
∑
i,α

mαi +
lα
i
2

]Φ

[
3

2
+
∑
i,α

mαi ,
5

2
+
∑
i,α

mαi +
lαi
2

;−‖~s‖2
]
(42)

where δ
[2]
i,j is the Kronecker symbol modulo 2, Γ[z] is the gamma function, and Φ[a, c; z] is

the confluent hypergeometric function also denoted by 1F1,

Φ[a, c; z] =
Γ[c]

Γ[a]Γ[c− a]

∫ 1

0
dννa−1(1− ν)c−a−1Exp[νz] (43)

which fulfills the property,

dΦ[a, c; z]

z
=
a

c
Φ[a+ 1, c+ 1; z], (44)

(the last two equations correct Eqs.(15) and (16) of [8]).

The expression Eq. (41) can be used to compute the expectation value of the magnetic field

density from an orbital current, 〈Bγ
o [r]〉D corresponding to a given density operator D. If

we rewrite the left-hand side of Eq. (41) as 〈Bγ
o [r]〉b1,b2, ~R1, ~R2,~L1,~L2,ζ1,ζ2

and denote by D(1) the

one-electron reduced density operator of D represented in some contracted Gaussian basis

set (φk :=
∑
j
bj,k

∏
α∈{x,y,z}

(rα −Rα
k )L

α
k Exp [−ζj,k(rα −Rα

1 )2])k, we have,

〈Bγ
o [r]〉D =

∑
k1<k2

µ=± 1
2

Im[D
(1)
k2,µ;k1,µ

]
∑
j1,j2

〈Bγ
o [r]〉bj1,k1

,bj1,k2
, ~Rk1

, ~Rk2
,~Lk1

,~Lk2
,ζj1,k1

,ζj2,k2
. (45)
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The matrix element between two real spin-orbitals, φ1,µ and φ2,ν , (µ,ν = ±1
2
), of the current

density associated to a spin density,

〈 ~Js[r]〉φ1,µ,φ2,ν = geµe∇× ~Sµ,ν(φ1φ2)[~r] (46)

involves the same quantities, φi
∂
∂rβ
φj, as the orbital current (see Eq.(3) of [8]), but combined

with a plus sign instead of a minus,

〈Jγs [r]〉φ1,µ,φ2,ν = +
g

2
εαβγS

α
µ,ν

(
φ1

∂

∂rβ
φ2 + φ2

∂

∂rβ
φ1

)
[~r], (47)

(which corrects a sign error in Eq.(19) of [8]). Note that a factor −1
2

arises from the Bohr
magneton in atomic units, the minus sign being eliminated by swapping two indices in the
Levi-Civita symbol.
As a consequence, the spin magnetic field density, whose matrix elements, for uncontracted
Gaussian functions φ1 and φ2, are expressed in terms of the same g-functions,

〈Bωs [~r]〉
b1,b2, ~R1, ~R2,~L1,~L2,ζ1,ζ2,µ,ν

=
−µ0

4π
εγδω

∂

∂rδ

∫
R3

d~r′

‖~r − ~r′‖
Jγs
[
~r′
]

=
−gµ0

8π
b1b2εαβγεγδωS

α
µ,νExp

[
−

ζ1ζ2

ζ1 + ζ2
‖~R1 − ~R2‖2

] (
Lβ1 g

δ
[
~R1, ~L1 − ~eβ , ~R2, ~L2, ζ1, ζ2, ~r

]
+ Lβ2 g

δ
[
~R1, ~L1, ~R2, ~L2 − ~eβ , ζ1, ζ2, ~r

]
−2ζ1g

δ
[
~R1, ~L1 + ~eβ , ~R2, ~L2, ζ1, ζ2, ~r

]
− 2ζ2g

δ
[
~R1, ~L1, ~R2, ~L2 + ~eβ , ζ1, ζ2, ~r

])
(48)

is, in some sense, dual to the orbital magnetic field density, as it “probes” the real part of

spin-diagonal density matrix elements instead of their imaginary part,

〈Bγ
s [r]〉D =

∑
k1,k2

µ,ν=± 1
2

D
(1)
k2,ν;k1,µ

∑
j1,j2

〈Bγ
s [r]〉bj1,k1

,bj1,k2
, ~Rk1

, ~Rk2
,~Lk1

,~Lk2
,ζj1,k1

,ζj2,k2
,µ,ν

=
∑
k1≤k2

µ,ν=± 1
2

2

1 + δk1,k2

Re
[
D

(1)
k2,ν;k1,µ

] ∑
j1,j2

〈Bγ
s [r]〉bj1,k1

,bj1,k2
, ~Rk1

, ~Rk2
,~Lk1

,~Lk2
,ζj1,k1

,ζj2,k2
,µ,ν (49)

Of course, in addition, it also involve the spin-non diagonal matrix elements because of the

presence of Sx and Sy in Eq.(48). So, it is important to study both the orbital and spin

magnetic densities, which support complementary informations about a molecular electronic

state.

Remark: In our notation, 〈Bγ
o [r]〉b1,b2, ~R1, ~R2,~L1,~L2,ζ1,ζ2

denotes the expectation value over the

complex Gaussian orbital of Eq.(40), whereas 〈Bγ
s [r]〉b1,b2, ~R1, ~R2,~L1,~L2,ζ1,ζ2,µ,ν

denotes the matrix

18



element between two real Gaussian spin-orbitals.
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Figures

Fig. 1. Component aligned with neutron polarization of the magnetic field density in the case of

an applied magnetic field along the Cs3CoCl5 crystal c-axis (all quantities are in atomic units).

Top two figures show the contribution due to the paramagnetic current of CoCl2−4 , the four figures

below them, that due to its spin density. The right-hand side figures correspond to the ClCoCl

large angle plane defined by Cl1, Co and Cl2 in Fig.1 of [1], the left-hand side figures to the small

angle plane defined by Cl2, Co and Cl3.
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Fig. 2. Component aligned with neutron polarization of the magnetic field density in the case of

an applied magnetic field along the Cs3CoCl5 crystal a-axis (all quantities are in atomic units).

Top two figures show the contribution due to the paramagnetic current of CoCl2−4 , the four figures

below them, that due to its spin density. The right-hand side figures correspond to the ClCoCl

large angle plane defined by Cl1, Co and Cl2 in Fig.1 of [1], the left-hand side figures to the small

angle plane defined by Cl2, Co and Cl3.
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(c-data optimized density operator)

(a-data optimized density operator)

Fig. 3. Paramagnetic current around the Co nucleus in atomic units. The cubes are centered on the

cobalt nucleus, their edges are 2 a.u. long. The currents are seen from above the applied magnetic

field axis.
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(c-data, ClCoCl small angle plane) (c-data, ClCoCl large angle plane)

(a-data, ClCoCl small angle plane) (a-data, ClCoCl large angle plane)

Fig. 4. Component aligned with neutron polarization of the spin density of CoCl2−4 in atomic units.

See Fig. 1 for the definition of the planes.
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(a-data, ClCoCl large angle plane) (c-data, ClCoCl large angle plane)

Fig. 5. y-component of the spin density of CoCl2−4 from optimized density operators. The figures

on the left-hand side correspond to the density operator optimized on the experimental a-data set

with an applied magnetic field along the Cs3CoCl5 crystal a-axis. The figures on the right-hand

side correspond to the density operator optimized on the experimental c-data set with an applied

magnetic field along the Cs3CoCl5 crystal c-axis. See Fig. 1 for the definition of the planes.
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