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Periodic solutions of o.d.e. systems with a lipchitz non

linearity

Bernard Rousselet∗

July 13, 2011

Abstract

In this report, we address differential systems with Lipschitz non linearities; this
study is motivated by the subject of vibrations of structures with unilateral springs or
non linear stress-strain law close to the linear case. We consider existence and solution
with fixed point methods; this method is constructive and provides a numerical algo-
rithm which is under study. We describe the method for a static case example and we
address periodic solutions of differential systems arising in the vibration of structures.

1 Introduction

This work stems from non destructive testing experiments reported in [VL04] and from the
experiments and the computations of a beam model of the dynamic of satellite solar arrays1

[HFR09],[Haz10]. In these two situations the structure is submitted to an harmonic force;
the behavior of the structure is locally non linear in particular due to unilateral elastic
contacts.

During these studies, it became clear that an in-depth understanding of the forced
dynamic behavior relies on the study of periodic solution of the free system; this can be
considered as an extension of the use of normal modes of a linear free system in order
to study the dynamics of the forced associated linear system as explained in [GR93] (in
English see [GR97]). Periodic solutions for non linear o.d.e. arising in structural dynamics
have been considered in [BB05, BGKM01, JR09, KPGV09, JPS04, ABBC06, Mik10] and
in many others.

In [JR10], the Lindstedt-Poincarré method was used in order to derive approximate
non linear normal modes (a periodic solution close to a linear normal mode) for small non
linearity.

At this point it is worth to recall a fundamental remark of Henri Poincarré in his report
”Sur le problème des trois corps et les équations de la dynamique”:

“Ce qui rend ces solutions périodiques aussi précieuses, c’est qu’elle sont,
pour ainsi dire, la seule brèche par où nous puissions pénétrer dans une place
jusqu’ici réputée inabordable” ([Poi99]).

In English

∗Université de Nice Sophia Antioplis , J.A.D. laboratory of mathematics and interactions, UMR CNRS
6621, Parc Valrose, 06108 Nice, France; br unice.fr

1with the support of Thales Alenia Space (Cannes, France)
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“What renders these periodic solutions so precious is that they are, so to speak,
the only breach through which we may try to penetrate a stronghold previously
reputed to be impregnable”

Although this remark is mainly devoted to celestial mechanic, it is also meaning-full for
vibration of structures.

In this report we study periodic solutions of non linear systems of ODE arising in
free vibrations of structures subjected to unilateral springs; the ideas and the methods
may be used for systems modeling other situations in particular when the non linearity
is only Lipschitz. We recall a simple modeling process in section 2. Then in section 3,
we start by presenting some ideas of quasi Newton type algorithm for solving equilibrium
of structures in the static case with some Lipschitz non linearities; for example, these
non linearities arise in cases where structures are subjected to unilateral springs; these
unilateral springs are often simplified models of structures like bumpers usually made of
viscoelastic materials like in [HFR09]; the same model will be addressed in the dynamic
case. We derive a constructive proof of existence of periodic solutions for a one degree of
freedom system in section 4; then the case of several degrees of freedom is addressed in
section 5.

Vibrations with non linearities have been considered from an experimental point of
view in [DGL+03, VL04, DET02, MCG02, ZFGC05]; asymptotic expansions and numerical
methods have been used in [RV04a, RV06, RV04b, RV05, VR05, RV06, Rou08, Rou10,
JR09, BR09, Bra, JR10, Bra10].

The work of Lyapunov [Lya49] is often cited as a basis for the existence of periodic
solutions which tends towards linear normal modes as amplitudes tend to zero; this result
uses the hypothesis of analycity of the function involved in the differential system. As we
address the case where the non linearity is only Lipschitz, this hypothesis of analyticity is
obviously violated.

Some general existence results, based on calculus of variations, for convex Hamiltonian
systems are presented in [Eke90]; the case of analytic functions in connexion with the use
of normal forms is considered in [JL91, TA06, IL10]. Energy pumping has been addressed
in several papers, for example in [SL10].

The case of vibration of structures with unilateral springs or more generally systems
modeled with Lipschitz non linearities are considered in some recent studies (experiments,
asymptotic expansions, numerical computations): [Haz, HR09a, HR09b, HR08, HFR09,
Haz10, JR09, JR10, JPS04, VLP08]. A study of dynamics of elastic shocks is in [ACR02].
The case of distributed systems modeled by partial differential equations has been ad-
dressed for example in [SP94]; general references for perturbation methods are among
many others [SV85, Nay81] for differential equations and [KC81] for partial differential
equations.

A review of periodic solutions of non autonomous ordinary differential equations may
be found in [Maw09] for details, see also [RM73].

In the static case, for example, a stability result concerning the obstacle problem for
a plate is considered in [PL08].

Non smooth optimization is an active field of research; we only cite some references
connected to this research: [DR09], [Kun08], [lei04] and the references therein.

Here we intend to use methods from non smooth optimization to prove existence of
periodic solutions ans to derive a numerical algorithm to find them; the precise description
and implementation of the algorithm will be addressed in a forthcoming paper.
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2 Equations from structural mechanics

Consider a spring-mass system with some weak broken springs which are acting only in
compression. Let u denote, the displacement of the masses, and γj the strain of the
springs; it is related to the displacement by γj = uj+1 − uj or in vector form with an
incident matrix B

γ = Bu

if we assume that the material is elastic linear, the stress-strain law is

σ = Eγ + ǫE′(γ + d)−

where ǫ is a small parameter; d denotes some backlash; in other words for some springs in
small compression or in traction, there is no induced stress.

In the static case, the force applied to each mass is denoted by Y and we have the
equilibrium equation

BTσ = Y

or more explicitely BTEγ + ǫBTE′(γ + d)− = Y or

BTEBu+ ǫBTE′(Bu+ d)− = Y (2.1)

Remark 2.1. • Obviously this system is quite general; many situations of structural
mechanics may be cast in this system by using finite elements. Moreover many other
physical systems can be modeled with such non linearities.

• To solve this system, the idea is to use some quasi Newton method taylored to
systems involving Lipschitz functions.

• The proof of convergence relies on a fixed point method.

The principle of the method may be found in the book of Dontchev-Rockafellar
[DR09] as a way of proving the existence of an inverse of a Lipschitz function f or
an implicit theorem for Lipschitz functions.

• Here the function f(X) is the left hand side and we want to solve f(X) = Y for
some values of Y ; note that here f is only a Lipschitz function; it is not continuously
differentiable!

Example with 5 masses and 4 springs on a straight line The incident matrix is

B =









1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1









As we have enforced no boundary condition, there is a rigid body movement: uj = c for
j = 1, . . . 5 gives the strain γ = 0; for example, we can enforce u0 = 0 (the mass 0 is
attached) and remove it from the degrees of freedom; so we get

B =









−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
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Figure 1: 5 masses and 6 springs broken at supports

In the case where the only broken spring is the second:

BTE′(Bu+ d)− =









−E′
2(u3 − u2 + d)−

E′
2(u3 − u2 + d)−

0
0









Example with weak broken springs at supports on a straight line We consider
the case where the springs are broken at both ends; then for n masses, we have n + 1
springs;

γ1 = u1, γj = uj − uj−1, γn+1 = −un (2.2)

For n = 5, we get (see figure 2)

B =

















1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1

















In the case of broken springs at both ends,

σ1 = E′
1(γ1 + d1)−, σj = Ejγj, for j = 2 . . . 5, σ6 = E′

6(γ6 + d6)− (2.3)

so that, the equilibrium equation are:

Ku+BTE′(Bu+ d)− = F (2.4)

with

K = BTEB, the rigidity matrix, and (2.5)

[BTE′(Bu+ d)−]1 = E′
1(u1 + d1)− (2.6)

[BTE′(Bu+ d)−]j = 0, for j = 2, . . . 4, [BTE′(Bu+ d)−]5 = E′
6(−u5 + d5)−

(2.7)
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K =













E2 −E2 0 0 0
−E2 E2 + E3 −E2 0 0
0 −E3 E3 + E4 −E4 0
0 0 −E4 E4 + E5 −E5

0 0 0 −E5 E5













Remark 2.2. 1. We notice that K is not invertible; see Remark 3.2

2. Obviously, we can easily extend this example to a bi or tridimensional array of
masses and springs, with unilateral springs or to non linear springs with lipschitz
non linearity..

3 From a classical Newton method to quasi Newton method

with a Lipschitz function

In this introductory section, we recall a constructive convergence proof of the Newton-
Raphson algorithm based on the fixed point method; then we extend the approach to a
quasi Newton method for a smooth function; finally, we extend it to a sum of a smooth
and a lipschitz function.

3.1 Newton and Quasi Newton methods in the smooth case

3.1.1 Newton method

When f is differentiable, in order to solve an equation f(x) = y, the idea is to approximate
f by its differential: we approach f(xk+1) by f(xk) + f ′(xk)(xk+1 − xk) so that xk+1 is
the solution of:

f(xk) + f ′(xk)(xk+1 − xk) = y

To prove the convergence, we consider the equation for the previous index

f(xk−1) + f ′(xk−1)(xk − xk−1) = y

and manipulating, we obtain

f ′(xk)(xk+1 − xk) = −[f(xk)− f(xk−1)− f ′(xk−1)(xk − xk−1)]

or
(xk+1 − xk) = −[f ′(xk)]

−1 [f(xk)− f(xk−1)− f ′(xk−1)(xk − xk−1)]

Now, it is clear that to show convergence of this sequence, we need mainly the
Assumptions

• ‖f ′(x)−1‖ ≤ c in a neighborhood of the solution;

• and an easy consequence of differentiability of f in a neighborhood of x̄

for any ǫ > 0, there exists δ such that for ‖xk − x̄‖ ≤ δ, ‖xk+1 − x̄‖ ≤ δ

‖f(xk)− f(xk−1)− f ′(xk−1)(xk − xk−1)‖ < ǫ‖xk − xk−1‖
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we choose ǫ = 1
2c and we obtain

‖(xk+1 − xk)‖ ≤
1

2
‖(xk − xk−1)‖

• which proves convergence (if the initial data is close enough to the solution itself
close enough to the given x̄).

• In this method, it is well known that the main trouble is the inequality

‖f ′(x)−1‖ ≤ c

if c is large, we have to start very close to the solution in order to converge; the “tan-
gent subspace” to the graph of f near the solution should not be “too horizontal”.
A way to circumvent this trouble is to embed the Newton method in a continuation
process.

3.1.2 Quasi Newton method

The idea of a quasi Newton method is to evaluate the derivative of f at a fixed point x̄.
Still considering the case where f is differentiable, instead of 3.1.1, we use

f(xk) + f ′(x̄)(xk+1 − xk) = y

in which the derivative of f is evaluated at the fixed point x̄. To prove convergence, we
consider the same equation for the previous index

f(xk−1) + f ′(x̄)(xk − xk−1) = y

manipulating, we get:

f ′(x̄)(xk+1 − xk) = −[f(xk)− f(xk−1)− f ′(x̄)(xk − xk−1)]

We use the same assumption on the inverse of the derivative f ′ and still with differentia-
bility in the neighborhood of x̄, we get for any ǫ > 0

‖f(xk)− f(xk−1)− f ′(x̄)(xk − xk−1)‖ < ǫ‖xk − xk−1‖

then, from

(xk+1 − xk) = −[f ′(x̄)]−1 [f(xk)− f(xk−1)− f ′(xk−1)(xk − xk−1)]

with the same assumptions, we still get

‖(xk+1 − xk)‖ ≤
1

2
‖(xk − xk−1)‖

which proves convergence (if the initial data is close enough to the solution itself close
enough to the given x̄).
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3.2 Quasi Newton method in a Lipschitz case

We use some notions introduced in Dontchev-Rockafellar [DR09].
We no longer assume that f is differentiable but that there exists a strict estimator

h of f at x̄:

Definition 3.1. 1. We recall that the Lipschitz modulus of e at x̄ is

lip(e, x̄) = lim sup
x,x′→x̄,x 6=x′

‖e(x)− e(x′)‖

‖x− x′‖

2. h is a strict estimator of f at x̄, when

f(x) = h(x) + e(x)

with the Lipschitz modulus of e satisfying

lip(e, x̄) ≤ µ < +∞

We assume that
ȳ = f(x̄)

Moreover, we assume that h is invertible around ȳ for x̄
and

lip(h−1, ȳ) ≤ κ (3.1)

Remark 3.1. It should be pointed out that it stems directly from the previous definition
that the assumption, the Lipschitz modulus at x̄ of a function be finite, implies that this
function is Lipschitz in a neighborhood of x̄.

3.2.1 Examples

• f(x) = (x)−, lip(f, x) = 1 for x ≤ 0 but lip(f, x) = 0 for x > 0

• e(x) = x− − αx with 0 ≤ α ≤ 1

lip(e, x) ≤ max(α, 1 − α)

• e = (Bu+ d)− − Λ(Bu+ d) where Λ is a diagonal matrix with 0 ≤ λj ≤ 1.

set dj(u) =
∑

Bjkuk + dj

as ej(u)− ej(u
′) = dj− − λjdj , we get

|ej(u)− ej(u
′)| ≤ max(Λj , 1− λj)|dj(u)− dj(u

′)| ≤ max(λj , 1− λj)‖B‖‖u− u′‖

lip(e, x) ≤ max
j

max(λj , 1− λj)‖B‖

consider now the case with

f(u) = BTEBu+ ǫBTE′(Bu+ d)− . (3.2)

It is the left hand side of our example from structural mechanics; as the first term is
linear, the function e is e = ǫ[(Bu+ d)− − Λ(Bu+ d)] and

lip(e, x) ≤ ǫmax
j

max(λj , 1− λj)‖B‖

7



h(u) = BTEBu+ ǫBTE′Λ(Bu+ d) (3.3)

is invertible when the rigidity matrix Kǫ = BTEB + ǫBTE′B is invertible and its
inverse is:

h−1(y) = K−1
ǫ [y −BTE′Λd]

and
lip(h−1, y) ≤ ‖K−1

ǫ ‖

So when Kǫ is invertible, for ǫ small enough,

lip(e, x)lip(h−1, y) < 1

this property is crucial for convergence but it should be pointed out that K0 = BTEB is
not required to be invertible.

3.2.2 Algorithm

Now the idea is to build a sequence to solve

f(x) = y

by using the strict estimator h:

h(xk+1) + e(xk+1) = y

to compute xk+1 solution of this equation is as difficult as the initial problem but it may
be approximated by replacing e(xk+1) by e(xk)

h(xk+1) + e(xk) = y

to prove convergence, we use the formula at the previous iteration

h(xk) + e(xk−1) = y (3.4)

we get
xk+1 = h−1(y − e(xk)) xk = h−1(y − e(xk−1))

and
xk+1 = xk + h−1(y − e(xk))− h−1(y − e(xk−1))

• with the assumption (3.1), we get that for e(xk) and e(xk−1) small enough and y
close enough to ȳ,

‖h−1[y − e(xk)]− h−1[y − e(xk−1)] ≤ λ‖ − e(xk) + e(xk−1)‖

• on the other hand, h being a strict estimator:

‖e(xk)− e(xk−1)‖ ≤ ν‖xk − xk−1‖

• moreover, we assume that µ κ < 1 so that for xk and xk−1 close enough to x̄, we
may assume that λ ν < 1
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• From 3.2.2, we get
‖xk+1 − xk‖ ≤ λ ν‖xk − xk−1‖

Usually, we have to show that if x0 is close enough to x̄, x1 lies in a ball in which
h−1 is Lipschitz; here it is obvious; it proves the geometric convergence when

λ ν < 1

We have obtained

Proposition 3.1. Consider the equation

f(x) = y (3.5)

Assume that
f(x) = h(x) + e(x)

with the Lipschitz modulus satisfying

lip(e, x̄) ≤ µ < +∞ lip(h−1, ȳ) ≤ κ < +∞

with µκ < 1, f(x̄) = ȳ and e(x̄) = 0
then the sequence

h(xk+1) + e(xk) = y

with x0 is given close to the solution, converges geometrically to the solution of (3.5) close
to x0.

This is the case for our example from structural mechanics when ǫ is small enough.

Continuation process This method may be embedded in a continuation process:

• Set a step size δǫ and an initial value of ǫ1 and a starting point x̃1:

• For l from 1 to L

• Use the non smooth quasi Newton method to find the solution x∗l of the equation
for ǫl with the starting point x̃l ;

• increase ǫl+1 = ǫl + δǫ and set x̃l+1 = x∗l

• end For

Extensions for differential equations are considered below; control problems are possible
extensions.

An example Consider the iterations (3.4) for the example of broken springs at both
ends (2), we get with (3.2) and (3.3):

Kuk+1 + ǫBTE′Λ(Buk+1 + d) = −ǫ
(

BTE′(Buk + d)− −BTE′Λ(Buk + d))
)

+ F (3.6)

We notice that the matrix of the left hand side is the sum of K and ǫBTE′ΛB; it is usually
invertible.
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Remark 3.2. Had we use the “natural” iterative method

Kuk+1 = −ǫBTE′Λ(Buk + d) + F (3.7)

we notice that the matrix K is not invertible so that this algorithm is not working at
all; in cases where the smallest eigenvalue of K is not zero but small as in problem arising
in large aerospace structures, the algorithm will converge for ǫ quite smaller than with the
previous algorithm (3.6)

It could be proved that the matrix is better conditioned with the “quasi Newton”
algorithm than with the natural algorithm.

4 Periodic solution of a one degree of freedom spring-mass

system with Lipschitz non linearity

4.1 The differential equation, periodic solution

We set
˙̃x =

dx̃

dt
(4.1)

and we consider a one d.o.f. spring-mass system with a linear and a weak linear unilateral
spring:

m¨̃x+ kx̃+ ǫk(x̃)− = 0 with x− =
x− |x|

2
(4.2)

or more generally a linear and a weak non linear spring

m¨̃x+ kx̃+ ǫkg(x̃) = 0 (4.3)

We set ω2 = k
m
, so this equation may be written

¨̃x+ ω2x̃+ ǫω2(x̃)− = 0 (4.4)

As we suspect that the frequency of a periodic solution depends on ǫ, we perform the
change of variable:

θ = ωǫt

with
1

ω2
ǫ

=
1− ǫη(ǫ)

ω2

Remark 4.1. This is a classical change of variable, e.g. see [Ver90]; it is used in the
method of strained coordinates also called Linsted-Poincarré; in particular, it has been
used in [JR10] to derive an asymptotic expansion for a quite similar system of differential
equations. Instead, here we use it to derive a constructive proof of existence of a periodic
solution; we are only looking for periodic solutions whereas in [JR10], we can obtain a
quasi periodic expansion.

and we set

x′ =
dx

dθ
(4.5)

If we set x(θ) = x̃(t), equation (4.4) may be written:

x” + (1− ǫη)x+ ǫ(1− ǫη)x− = 0 and in the general case (4.6)

x” + (1− ǫη)x+ ǫ(1− ǫη)g(x) = 0 (4.7)
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or
x” + x+ ǫf(x, η, ǫ) = 0 (4.8)

with

f(x, η, ǫ) = −ηx+ (1− ǫη)x− and in the general case (4.9)

f(x, η, ǫ) = −ηx+ (1− ǫη)g(x) (4.10)

As the solution of (4.8) is:

x = acos(θ) + bsin(θ)− ǫ

∫ θ

0
sin(θ − s)f(x(s), η, ǫ)ds (4.11)

or

x = acos(θ) + bsin(θ)− ǫr(θ, a, ǫ, η, b) (4.12)

we obtain the following lemma which may be considered as an extension to the Lipschitz
case of a classical result which, for example, may be found in [Ver90].

Lemma 4.1. Consider the solution x̃ of the Cauchy problem of equation (4.2) (resp. (4.3)
) and the solution x of the associated equation (4.8), (4.9) (resp. (4.10)) after change of
variable. For ǫ close to zero, x̃ is a solution of (4.2) (resp. (4.3) ) of period 2π/ωǫ if and
only if x is a solution of (4.8), (4.9) (resp. (4.10)) and

r(2π, a, ǫ, η, b) = 0 and
∂r(2π, a, ǫ, η, b)

∂θ
= 0 or equivalently F (p, y) = 0 (4.13)

with
p = (a, ǫ), y = (η, b) (4.14)

F1(p, y) =

∫ 2π

0
sin(s)f(x, η, ǫ)ds (4.15)

F2(p, y) =

∫ 2π

0
cos(s)f(x, η, ǫ)ds (4.16)

4.2 Computation of η(0)

Case x− We have
f(x, η, 0) = −ηx+ x−

and for b = 0,
f(x, η, 0) = −ηacos(θ) + (acos(θ))−

so

F1 =

∫ 2π

0
sin(s)(acos(s)))−ds (4.17)

F2 =

∫ 2π

0
−ηacos(s)2 + cos(s)(acos(s)))−ds (4.18)

we note that F1 is identically zero; we remark that

if a ≥ 0, (acos(s))− = a(cos(s))− and if a ≤ 0, (acos(s))− = a(cos(s))+ (4.19)
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in both cases, we get from F2

η(0) =
1

2

by using for example

| cos(s)| =
2

π
−

4

π

+∞
∑

k=1

(−1)k

4k2 − 1
cos(2ks), (4.20)

and by anticipating that η is a Lipschitz function of ǫ (see proposition 4.2 )

1

ω2
ǫ

=
1− ǫ/2 + o(ǫ)

ω2

and
x = acos(θ) + bsin(θ)− ǫr(θ, a, 0, η(0), 0) + o(ǫ)

This result might be obtained by direct inspection of the level curves of the energy as-
sociated to the differential equation, see [JR10]; but this approach may be extended to
systems of differential equations.

General case For simplicity, we consider b = 0, the equation F1(p, y) = 0 is identically
satisfied. The second equation yields:

η(0) =
1

aπ

∫ 2π

0
cos(s)g(acos(s))ds (4.21)

4.3 Perturbation of the solution x with respect to y = (η, b)

Lemma 4.2. Assume that x is solution of (4.8) (4.10) with f and g Lipschitz with respect
to all variables;

|g(x2)− g(x1)| ≤ k|x2 − x1| (4.22)

|f(x2, η2, ǫ2)− f(x1, η1, ǫ1)| ≤ k (|x2 − x1|+ |η2 − η1|+ |ǫ2 − ǫ1|) (4.23)

assume that the initial data are:

x(0) = aα, x
′(0) = ǫbα,

(

resp. x′(0) = bα
)

with α = 1, 2 (4.24)

then, x and F are Lipschitz with respect to y = (η, b) and p with a modulus of magnitude
ǫk
(

resp. k
)

(where k < +∞ ):

∀θ ∈ [0, 2π], ‖x2(θ)− x1(θ)‖ ≤ ǫk(|b2 − b1|+ |η2 − η1|) and (4.25)
[

resp. when the initial velocity is not of order ǫ (4.26)

∀θ ∈ [0, 2π], ‖x2(θ)− x1(θ)‖ ≤ k(|b2 − b1|+ |η2 − η1|)
]

, and (4.27)

∀θ ∈ [0, 2π], |g(x2(θ))− g(x1(θ))| ≤ ǫk(|b2 − b1|+ |η2 − η1|) (4.28)

but we have only (4.29)

|f(x(θ, y2), η2, ǫ)− f(x(θ, y1), η1, ǫ)| ≤ k (ǫ|b2 − b1|+ |η2 − h1|) (4.30)

‖F (p, y2)− F (p, y1)‖ ≤ k(|b2 − b1|+ |η2 − η1|) (4.31)
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Proof. The proof relies on the formula (4.11), we get:

x2(θ)− x1(θ) = ǫ(b2 − b1)sin(θ)− ǫ

∫ θ

0
sin(θ − s) [f(x2, η2, ǫ)− f(x1, η1, ǫ)] ds (4.32)

|x2(θ)− x1(θ)| ≤ ǫ [|b2 − b1|+ 2πk|η2 − η1|] + 2πǫk|x2 − x1| (4.33)

from which we get equation of (4.25) and we deduce from (4.23)

|g(x(θ, y2)− g(θ, y1)| ≤ ǫk(|b2 − b1|+ |η2 − η1|) (4.34)

which is (4.28);but we get only

|f(x(θ, y2), η2, ǫ)− f(x(θ, y1), η1, ǫ)| ≤ k (ǫ|b2 − b1|+ |η2 − h1|) (4.35)

we deduce equations (4.31).

4.4 A fixed point approximation method

Consider now the solution of (4.3) , with f given by (4.10); when g(acos(s)) is an even
function, a 2π periodic solution with b = 0 satisfies trivially F1 = 0; with lemma 4.2, we
obtain:

Proposition 4.1. For a a 2π periodic solution with b = 0 satisfies

η = (1− ǫη)F(a, ǫ, η) (4.36)

with

F(a, ǫ, η) =

∫ 2π
0 cos(s)g(x(s))ds
∫ 2π
0 cos(s)x(s)ds

(4.37)

and for ǫ small enough, this function satisfies

|F(a, ǫ, η2)−F(a, ǫ, η1) ≤ ǫk|η2 − η1| (4.38)

so that the following sequence

ηk+1 = (1− ǫηk)F(a, ǫ, ηk) (4.39)

converges and it proves the existence of a 2π periodic solution of (4.8) with (4.10), hence
the existence of a periodic solution of (4.3) with angular frequency (4.4).

4.5 Estimator problem

We consider another approach which should be better conditioned (see Remark 3.2 ) and
enable to consider arbitrary initial velocity whereas in the previous paragraph, the initial
velocity is zero.

Equations (4.13) may be considered as defining an implicit function

p 7−→ y (4.40)

As in previous subsection, this function F is not smooth and we are going to show that
the implicit function (4.40) may be defined with a fixed point of a contraction maping
following general lines of [DR09]. So we introduce a differential equation and a function
H that will be proved to be an estimator of F .
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Definition 4.1. Consider the differential equation

ξ” + ξ + ǫh(ξ, η, ǫ) = 0 (4.41)

with
h(x, η, ǫ) = −ηξ + (1− ǫη)αξ with 0 < α < 1 (4.42)

and we introduce the following function:

H1(p, y) =

∫ 2π

0
sin(s)h(ξ, η, ǫ)ds (4.43)

H2(p, y) =

∫ 2π

0
cos(s)h(ξ, η, ǫ)ds (4.44)

note that for ǫ = 0, h = f so that H = F .

Method: to solve
F (p, y) = 0

following the method introduced in paragraph 3.2, we use the sequence yk, defined by

H(p, yk+1) = −E(p, yk), where E(p, y) = F (p, y)−H(p, y) (4.45)

As H is a smooth map, we prove that H is invertible for ǫ small enough by using the
classical implicit function theorem (see e.g. .

Lemma 4.3. 1. The Jacobi matrix of

y −→ H(p, y)

with p = (a, ǫ) and y = (η, b) at ǫ = 0 and b = 0 is

[

0 (−η(0) + α)π
−aπ 0

]

2. so with α 6= η(0) = 1
2 and for ǫ small enough, the equation

H(p, y) + e = 0 (4.46)

has a solution y(p, e) which is differentiable and so locally Lipschitz with respect to
its variables p, e for e small and p close to (a, 0).

Proof. For ǫ = 0 and b = 0, we notice that

∂ξ

∂η
= 0,

∂ξ

∂b
= sin(θ),

so
∂h

∂η
= −acos(θ),

∂h

∂b
= (−η + α)sin(θ),

from which we deduce the first part of the lemma. The second part is deduced from the
classical implicit function theorem.
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Remark 4.2. With examples 3.2.1, when f is defined by (4.9) and h by (4.42) then f − h
satisfies the general inequality (4.47).

Lemma 4.4. Assume that x is solution of (4.8) (4.10) and ξ solution of (4.41), (4.42)
with the same initial conditions and with f and g Lipschitz with respect to all variables
and moreover that h is a strict estimator of f , i.e.:

For small ξ, |f(ξ, η, ǫ) − h(ξ, η, ǫ)| ≤ µ|ξ| (4.47)

then
|x(θ)− ξ(θ)| ≤ ǫµ c Sup

0≤s≤2π
(|ξ|) (4.48)

for θ ∈ [0, 2π]

Proof. Indeed, from (4.11) with x and a similar formula for ξ, both having the same initial
conditions, we get

x(θ)− ξ(θ) = ǫ

∫ θ

0
sin(θ − s)[f(x, η, ǫ)− h(ξ, η, ǫ)]ds (4.49)

and so (4.50)

x(θ)− ξ(θ) = ǫ

∫ θ

0
sin(θ − s)[f(x, η, ǫ)−f(ξ, η, ǫ) + f(ξ, η, ǫ)− h(ξ, η, ǫ)] (4.51)

with (4.47) and f Lipschitz, |x(θ)− ξ(θ)| ≤ ǫk

∫ θ

0
(|x− ξ|+ µ|ξ|)ds (4.52)

with Gronwall lemma (jl2), we get

|x(θ)− ξ(θ)| ≤ ǫµSup(|ξ|)e2πǫk (4.53)

for θ ∈ [0, 2π]

Lemma 4.5. Assume (4.47), then the function E(p,y)=F(p,y)-H(p,y), satisfies

lip(E, y) ≤ ǭµ < +∞ (4.54)

with p0 = (a, 0)T with a arbitrary, in other words, H is a strict estimator of F , uniformly
in p for ǫ ≤ ǭ (following [DR09]) .

Proof. To prove it, we use the short hand f̃ = f(x(θ, ỹ), η̃, ǫ), h̃ = h(ξ(θ, ỹ), η̃, ǫ) where
ỹ = (η̃, b̃) is close to y = (η, b). We have to estimate

E(p, ỹ)−E(p, y) = F (p, ỹ)− F (p, y)− (H(p, ỹ)−H(p, y)) (4.55)

where F is defined in (4.15),(4.16) and H in (4.43),(4.44), so the basic point is to consider:

f̃ − f − (h̃− h) =− η̃x̃+ (1− ǫη̃)g(x̃)

− (−ηx+ (1− ǫη)g(x))

−
(

−η̃ξ̃ + (1− ǫη̃)g(ξ̃)
)

+ (−ηξ + (1− ǫη)g(ξ))

(4.56)
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Then we split the right hand side into 3 expressions that we manipulate separately

|η(x− ξ)− η̃(x̃− ξ̃)| =|η(x− ξ − x̃+ ξ̃) + (η − η̃)(x̃− ξ̃)|

≤η
[

|x− x̃|+ |ξ̃ − ξ|+ |x̃− ξ̃||η − η̃|
]

with lemma 4.2 and 4.4

≤ǫc(1 + Sup|ξ|)|ỹ − y|

(4.57)

Similarly

|g(x̃)− g(x)− g(ξ̃) + g(ξ)| ≤ k
[

|x̃− x|+ |ξ̃ − ξ|
]

≤ ǫk|ỹ − y|
(4.58)

and

ǫ
[

−η̃g(x̃) + ηg(x) + η̃g(ξ̃)− ηg(ξ)
]

=

ǫ
[

(η − η̃)g(x) + η̃(g(x) − g(x̃))− (η − η̃)g(ξ) − η̃(g(ξ) − g(ξ̃)
)

]

≤ ǫ
[

(Sup|g(x)| + Sup|g(ξ)|)|η − η̃|+ Sup|η̃|(|g(x) − g(x̃)|+ |g(ξ)− g(ξ̃)|)
]

≤ ǫc|ỹ − y|

(4.59)

The last inequality is a consequence of lemma 4.2 and 4.4
So we have obtained

|f̃ − f − (h̃− h)| ≤ ǫµ|ỹ − y| (4.60)

uniformly with respect to p = (a, ǫ) from which the lemma is obtained using the definitions
of E(p, ỹ) and E(p, y) where F is defined in (4.15),(4.16) and H in (4.43),(4.44) .

Proposition 4.2. Equation (4.8), (4.9) (resp. (4.10) ) has a 2π periodic solution for ǫ
small enough and it may be computed with the iterative process (4.45); moreover, η, b are
Lipschitz function of a, ǫ and so

|x− acos(θ)− bsin(θ) + ǫr(θ, a, 0, η(0), 0)| ≤ kǫ2 (4.61)

Proof. The proof is now simple: write the iterative method (4.45) for k and k − 1

H(p, yk+1) = −E(p, yk) (4.62)

H(p, yk) = −E(p, yk−1) (4.63)

and by subtraction

H(p, yk+1)−H(p, yk) = E(p, yk−1)− E(p, yk) (4.64)

with previous lemma 4.3, there exists λ

‖yk+1 − yk‖ ≤ λ‖E(p, yk−1)− E(p, yk)‖ (4.65)

and as E is a strict estimator (lemma 4.5)

‖yk+1 − yk‖ ≤ ǫλµ‖yk − yk−1‖ (4.66)
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As for the static case we should prove that for p close to p0 and y0 close to the solution
obtained for ǫ = 0, y1 lies in a ball where y(p, e) defined in lemma 4.3 is Lipschitz.

The first part of the proposition is then proved by the fixed point theorem.
The fact that y is a Lipschitz function of p is derived with a somewhat classical argu-

ment. With lemma 4.3, we get from

H(p2, y2) + E(p2, y2) = 0, H(p1, y1) + E(p1, y1) = 0 (4.67)

|y2 − y1| ≤ λ|E(p2, y2)−E(p1, y1)| (4.68)

and with lemma 4.5
|y2 − y1| ≤ λ(k|p2 − p1|+ ǫµ|y2 − y1|) (4.69)

from which

|y2 − y1| ≤
λ

1− ǫµ
(k|p2 − p1|) (4.70)

Then, as r is Lipschitz with respect to p and y, we obtain the inequality (4.61)

5 Vibrations with several degrees of freedom

5.1 Differential equation model of a spring-mass system

In the dynamic case, equation (2.1) becomes:

Mü+BTEBu+ ǫBTE′(Bu+ d)− = 0 (5.1)

with

u̇ =
du

dt
(5.2)

Remark 5.1. Many other mechanical systems with unilateral properties can be cast into
this frame in particular when using finite elements see e.g.[JPS04]; the case of beams with
support on a unilateral spring is considered in H Hazim [Haz10]. As for one degree of
freedom, we can consider a more general case:

Mü+BTEBu+ ǫG(u) = 0 (5.3)

with G(u) a Lipschitz function; as an introduction we shall also consider the case of G(u)
a smooth function; it can model a non linear stress-strain law.

5.2 Eigenvectors, estimator system

In order to derive approximate periodic solutions, it is convenient to write the differential
system in an eigenvector basis; we denote K = BTEB the rigidity matrix and introduce
the matrix of generalized eigenvectors Φ = [Φ1, . . . ,Φj, . . . ,Φn] where Φk are generalized
eigenvectors associated to generalized eigenvalues ω2

k satisfying

−ω2
kMΦk +KΦk = 0 (5.4)

or in matrix form:
KΦ = Ω2MΦ
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with Ω2 the diagonal matrix of eigenvalues ; we assume

ΦTMΦ = I

consider the change of function
u = Φx̃

we obtain:
¨̃x+Ω2x̃+ ǫΦTBTE′(BΦx̃+ d)− = 0 (5.5)

and in the general case
¨̃x+Ω2x̃+ ǫΦTG(Φx̃) = 0 (5.6)

For unilateral spring, as γ 7−→ f(γ) = γ− is a concave, Lipschitz function, we can
use as strict estimator (in the sense of [DR09]) γ 7−→ h(γ) = Λγ with Λ = diag(λj),
0 < Λj < 1; if we set e = f − h, we have:

lip(e, 0) = max
j

max(λj , λj − 1)

so a reasonable estimator differential system is

ξ̈ +Ω2ξ + ǫΦTBTE′Λ(BΦξ + d) = 0 (5.7)

5.3 Periodic solutions

In the linear case when ǫ = 0, equation (5.1) has periodic solutions of the form:

uk = (υke
iωkt + υke

−iωkt)Φk (5.8)

where Φk are generalized eigenvectors defined in (5.4).

5.3.1 Orientation

We intend to prove that for ǫ small enough, there exists periodic solutions to equation
(5.1), or in the general case (5.3); the method is constructive and will enable to derive a
numerical scheme to approximate it; we use the equivalent system (5.5) or in the general
case (5.6) and we introduce the following notations:

p = (a1, ǫ)
T y = (η, b1, a2, b2, . . . , bn)

T (5.9)

Remark 5.2. Notice that a1 plays a particular role: we are going to consider a periodic
solution close to the harmonic solution of period 2π

ω1
of (5.5) with ǫ = 0; obviously, any

other harmonic solution could be chosen by using a permutation of indexes.

5.3.2 For unilateral springs

Following the lines of the 1 d.o.f. case, we introduce a change of variable suited to look
for periodic solutions close to the eigenmode of index 1. We set θ = ωǫt with

x(θ) = x̃(t),
1

ω2
ǫ

=
1− ǫη(ǫ)

ω1
2

and set x′ =
dx

dθ
(5.10)
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Equation (5.5) becomes

x”1 + x1 − ǫηx1 + ǫ
1− ǫη

ω2
1

ΦT
1 B

TE′(BΦx+ d)− = 0 (5.11)

xj” +
ω2
j

ω2
1

xj − ǫη
ω2
j

ω2
1

xj + ǫ
1− ǫη

ω2
1

ΦT
j B

TE′(BΦx+ d)− = 0, j = 2, . . . , n (5.12)

for the estimator differential system,

ξ1” + ξ1 − ǫηξ1 +
ǫ(1− ǫη)

ω2
1

ΦT
1 B

TEΦT
1 B

TΛ(BΦξ + d) = 0 (5.13)

ξj” +
ω2
j

ω2
1

ξj − ǫη
ω2
j

ω2
1

ξj +
ǫ(1− ǫη)

ω2
1

ΦT
j B

TEΛ(BΦξ + d) = 0, j = 2, . . . , n (5.14)

we set:

f1(x, η, ǫ) = −ηx1 +
1− ǫη

ω2
1

ΦT
1B

TE′(BΦx+ d)− (5.15)

fj(x, η, ǫ) = −η
ω2
j

ω2
1

xj +
1− ǫη

ω2
1

ΦT
j B

TE′(BΦx+ d)− = 0, j = 2, . . . , n (5.16)

so that the system may be written:

x”1 + x1 + ǫf1(x, η, ǫ) = 0 (5.17)

x”j +
ω2
j

ω2
1

xj + ǫfj(x, η, ǫ) = 0, j = 2, . . . , n (5.18)

similarly, we set:

h1(ξ, η, ǫ) = −ηξ1 +
1− ǫη

ω2
1

ΦT
1 B

TE′Λ(BΦξ + d) (5.19)

hj(ξ, η, ǫ) = −η
ω2
j

ω2
1

aξj +
1− ǫη

ω2
1

ΦT
j B

TE′Λ(BΦξ + d) = 0, j = 2, . . . , n (5.20)

and the “estimator” system is now:

ξ1” + ξ1 + ǫh1(ξ, η, ǫ) = 0 (5.21)

ξj” +
ω2
j

ω2
1

ξj + ǫhj(ξ, η, ǫ) = 0, j = 2, . . . , n (5.22)

5.3.3 General case

In the general case of equation (5.3), in the eigenvector basis (5.6), we still obtain equation
(5.17),(5.18), but with

f1(x, η, ǫ) = −ηx1 +
1− ǫη

ω2
1

ΦT
1 G(Φx) (5.23)

fj(x, η, ǫ) = −η
ω2
j

ω2
1

xj +
1− ǫη

ω2
1

ΦT
j G(Φx) = 0, j = 2, . . . , n (5.24)

in the non smooth case, we consider a strict estimator hj(x) of Φ
T
j G(Φx) and the estimator

system is written as previously in (5.21),(5.22)
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5.3.4 Condition of periodicity

Lemma 5.1. Consider the solution x̃ of the Cauchy problem of system (5.5) or (5.6) and
the solution x of the associated system (5.17), (5.18) after change of variable and with
initial conditions:

x1(0)− a1 = 0, ẋ1(0) − b1 = 0 (5.25)

...
... (5.26)

xn(0)− an = 0, ẋn(0)− bn = 0 (5.27)

(5.28)

For ǫ close to zero, x̃ is a solution of (5.5) of period 2π
ωǫ

with 1
ω2
ǫ
= 1−ǫη(ǫ)

ω1
2 if and only if

F (p, y) = 0 (5.29)

where (p, y) is defined in (5.9) and the function

F : R2 × R
2n 7→ R

2n (5.30)

is defined by:

F1(p, y) =

∫ 2π

0
sin(s)f1(x(s), η, ǫ)ds (5.31)

F2(p, y) =

∫ 2π

0
cos(s)f1(x(s), η, ǫ)ds (5.32)

F3(p, y) =x2(2π) − a2 (5.33)

... (5.34)

F2∗n−1(p, y) =xn(2π)− an (5.35)

F2∗n(p, y) =ẋn(2π)− bn (5.36)

(5.37)

Proof. The proof is similar to the proof of lemma 4.1

In the non smooth case, it will be proved that the following function H is a strict
estimator of F .

Definition 5.1. Consider the solution ξ of the Cauchy problem of system (5.7) in the
form (5.21), (5.22) with initial conditions:

ξ1(0)− a1 = 0, ξ̇1(0) − b1 = 0 (5.38)

...
... (5.39)

ξn(0)− an = 0, ξ̇n(0)− bn = 0 (5.40)

(5.41)
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the function H is defined by:

H1(p, y) =

∫ 2π

0
sin(s)h1(ξ(s), η, ǫ)ds (5.42)

H2(p, y) =

∫ 2π

0
cos(s)h1(ξ(s), η, ǫ)ds (5.43)

H3(p, y) =ξ2(2π)− a2 (5.44)

... (5.45)

H2∗n−1(p, y) =ξn(2π) − an (5.46)

H2∗n(p, y) =ξ̇n(2π) − bn (5.47)

5.4 The smooth case

As indicated in the introduction, the analytic case is well known; here we just assume
some differentiability; this type of result may be derived by other methods;we emphasize
that this approach is constructive in particular if we approximate x with a Fourier series
(harmonic balance or spectral method).

Lemma 5.2. In the case where G is smooth, the Jacobi matrix of

y 7−→ F (p, y) (5.48)

is invertible at p0 = (a, 0) with b1 = 0; where F is defined by (5.31), (5.37)

Proof. We get for ǫ = 0

x1 = a1cos(θ) + b1sin(θ) (5.49)

xj = ajcos(
ωj

ω1
θ) + bj

ω1

ωj
sin(

ωj

ω1
θ) (5.50)

∂x1
∂η

= 0,
∂x1
∂b1

= sin(θ) (5.51)

∂ẋ1
∂η

= 0,
∂ẋ1
∂b1

= cos(θ) (5.52)

so that for b1 = 0,

∂f1
∂η

= −a1cos(θ)
∂f1
∂b1

= −ηsin(θ) +
1

ω2
1

ΦT
1G

′(Φx)Φ1sin(θ) (5.53)

so that

∂F1

∂η
= 0

∂F1

∂b1
= −ηπ +

1

ω2
1

ΦT
1G

′(Φx)Φ1 π (5.54)

∂F2

∂η
= −a1π

∂F2

∂b1
= 0 (5.55)

det(
∂(F1, F2)

∂(η, b1)
6= 0 (5.56)

21



For other indexes

∂xj
∂aj

= cos(
ωj

ω1
θ),

∂xj
∂bj

=
ω1

ωj
sin(

ωj

ω1
θ) (5.57)

∂ẋj
∂aj

= −
ωj

ω1
θsin(

ωj

ω1
θ),

∂ẋj
∂bj

= cos(
ωj

ω1
θ) (5.58)

∂F2j−1

∂aj
=

∂xj
∂aj

(2π)− 1,
∂F2j−1

∂bj
=

∂xj
∂bj

(2π) (5.59)

∂F2j

∂aj
=

∂ẋj
∂aj

(2π),
∂F2j

∂bj
=

∂ẋj
∂bj

− 1 (5.60)

∂F2j−1

∂aj
= cos(2π

ωj

ω1
)− 1

∂F2j−1

∂bj
=

ω1

ωj
sin(2π

ωj

ω1
) (5.61)

∂F2j

∂aj
= −

ωj

ω1
sin(2π

ωj

ω1
)

∂F2j

∂bj
= cos(2π

ωj

ω1
)− 1 (5.62)

When
ωj

ω1
is not an integer for j > 1,

the determinant

det
∂(F2∗j−1, F2∗j)

∂(a′j+1
j , b′k+1

j )
6= 0 (5.63)

ans so the Jacobi of F is invertible.

Proposition 5.1. Equation (5.31) to (5.37) has a solution for ǫ small enough and this
solution may be computed with an iterative method.

Proof. We conclude the first part from the classical implicit function theorem; the solution
may then be approximated by a Newton method; it may be embedded in a continuation
process.

5.5 Strict estimator of F

Lemma 5.3. The function function E(p,y)=F(p,y)-H(p,y), satisfies

lip(E, y) ≤ ǫµ < +∞ (5.64)

at p0 = (a1, 0)
T with a1 arbitrary, (following the general lines of [DR09]) in other words,

H is a strict estimator of F uniformly in p close to p0.

5.5.1 Proof

The solution of (5.5) after change of variable θ = ωǫt, is solution of (5.11) and (5.12) or
(5.17), (5.18); it may be written

x1 =a1cos(θ) + b1sin(θ)− ǫ

∫ θ

0
sin((θ − s))f1(x(s), η, ǫ) ds (5.65)

xj =ajcos(
ωj

ω1
θ) + bj

ω1

ωj
sin(

ωj

ω1
θ)− ǫ

ω1

ωj

∫ θ

0
sin(

ωj

ω1
(θ − s))fj(x(s), η, ǫ) ds (5.66)
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and the solution of (5.7) after change of variable is solution of (5.21) and (5.22) with
h defined in (5.19), (5.20)

ξ1 = ajcos(θ) + bjsin(θ)− ǫ

∫ θ

0
sin(θ − s)h1(ξ(s), η, ǫ) ds (5.67)

ξj = ajcos(
ωj

ω1
θ) + bj

ω1

ωj
sin(

ωj

ω1
θ)− ǫ

ω1

ωj

∫ θ

0
sin(

ωj

ω1
(θ − s))hj(ξ(s), η, ǫ) ds (5.68)

and so

E1(p, y) =

∫ 2π

0
sin(s) [f1(x(s), η, ǫ) − h1(ξ(s), η, ǫ)] ds (5.69)

E2(p, y) =

∫ 2π

0
cos(s) [f1(x(s), η, ǫ) − h1(ξ(s), η, ǫ)] ds (5.70)

Ej(p, y) =xj(T )− ξj(T ) = −ǫ
ω1

ωj

∫ T

0
sin(

ωj

ω1
(T − s)) [fj(x(s), η, ǫ) − hj(ξ(s), η, ǫ)] ds

(5.71)

As the solution of a system of differential equations is Lipschitz with respect to the
initial conditions and with respect to time, we obtain the lemma from slight manipulations
as in the proof of lemma 4.5; absolute values are replaced by norms and we use the following
lemmas.

5.5.2 Some lemmas

Lemma 5.4. Assume that x is solution of (5.17) (5.18) with f and g Lipschitz with respect
to all variables;

‖g(x̌)− g(x)‖ ≤ k‖x̌− x‖ (5.72)

‖f(x̌, η̌, ǫ̌)− f(x, η, ǫ)‖ ≤ k (‖x̌− x‖+ |η̌ − η|+ |ǫ̌− ǫ|) (5.73)

then, x and F are Lipschitz with respect to y = (η, b) and p; more precisely assume
that the initial data are:

x(0) = a, x′(0) = b, (resp. x̌(0) = ǎ, x̌′(0) = b̌) (5.74)

then:

∀θ ∈ [0, 2π], ‖x̌(θ)− x(θ)‖ ≤ k(‖b̌ − b‖+ |η̌ − η|) and (5.75)

∀θ ∈ [0, 2π], ‖g(x̌(θ))− g(x(θ))‖ ≤ k(‖b̌− b‖+ |η̌ − η|) (5.76)

and we have (5.77)

‖f(x(θ, y̌), η̌, ǫ)− f(x(θ, y), η, ǫ)‖ ≤ k
(

‖b̌− b‖+ |η̌ − η|
)

(5.78)

‖F (p, y̌)− F (p, y)‖ ≤ k(‖b̌− b‖+ |η̌ − η|) (5.79)

Proof. The proof relies on the formula (5.65) , we get:

x̌1(θ)− x1(θ) = (b̌1 − b1)sin(θ)− ǫ

∫ θ

0
sin(θ − s) [f1(x̌, η̌, ǫ)− f1(x, η, ǫ)] ds (5.80)

‖x̌1(θ)− x1(θ)‖ ≤
[

‖b̌1 − b1‖+ 2πǫk|η̌ − η|
]

+ 2πǫk Sup
0≤s≤2π

‖x̌(s)− x(s)‖ (5.81)
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and from (5.66), we get

x̌j(θ)− xj(θ) =
ω1

ωj

[

(b̌j − bj)sin(
ωj

ω1
θ)− ǫ

∫ θ

0
sin(

ωj

ω1
(θ − s)) [f(x̌, η̌, ǫ)− f(x, η, ǫ)] ds

]

(5.82)

‖x̌j(θ)− xj(θ)‖ ≤
ω1

ωj

[

‖b̌j − bj‖+ 2πǫj|η̌ − η|+ 2πǫj Sup
0≤s≤2π

‖x̌(s)− x(s)‖

]

(5.83)

from which we get equation of (5.75) and we deduce from (5.73)

‖g(x(θ, y̌)− g(θ, y)‖ ≤ k(‖b̌− b‖+ |η̌ − η|) (5.84)

which is (5.76); we get

‖f(x(θ, y̌), η̌, ǫ)− f(x(θ, y), η, ǫ)| ≤ k
(

‖b̌− b‖+ |η̌ − h|
)

(5.85)

we deduce equations (5.79).

Lemma 5.5. Assume that x is solution of (5.17) (5.18) and ξ solution of (5.21), (5.22),
with the same initial conditions and with f and g Lipschitz with respect to all variables
and moreover that h is a strict estimator of f , i.e.:

For small ξ, ‖f(ξ, η, ǫ) − h(ξ, η, ǫ)‖ ≤ µ‖ξ‖ (5.86)

then
‖x(θ)− ξ(θ)‖ ≤ ǫµ c Sup

0≤s≤2π
(‖ξ‖) (5.87)

for θ ∈ [0, 2π]

Proof. The proof is quite similar to the 1 d.o.f. case of lemma 4.4

5.5.3 Implicit equation with the strict estimator H

In order to compute and to prove the existence of periodic solutions, we consider a con-
structive approach as suggested in the general lines of [DR09].

5.5.4 Iterative method

Solve

H(p, yk+1) = −E(p, yk) with p = [a1, ǫ]
T , (5.88)

yk+1 = [ηk+1, bk+1
1 , ak+1

2 , . . . , bk+1
n ]T (5.89)

In other words, set xk (resp. ξk) the solution of (5.17) (5.18) (resp. (5.21), (5.22)) for
the value y = yk; similarly set fk = f(xk, ηk, ǫ), hk = h(ξk, ηk, ǫ); we have to solve (5.7)
for ǫ small enough and with initial conditions (5.38) where the initial value a1 is prescribed
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and others are to be found as well as the frequency parameter η such that:

∫ 2π

0
sin(s)hk+1

1 = −

∫ 2π

0
sin(s)(fk

1 − hk1)ds (5.90)

∫ 2π

0
cos(s)hk+1

1 = −

∫ 2π

0
cos(s)(fk

1 − hk1)ds (5.91)

ξk+1
2 (2π) − ak+1

2 = −[xk2(2π) − ξk2 (2π)] (5.92)

... (5.93)

ξk+1
n (2π) − ak+1

n = −[xkn(2π)− ξkn(2π)] (5.94)

ξ̇k+1
n (2π) − bk+1

n = −[ẋk1(2π) − ξ̇kn(2π)] (5.95)

As H is a strict estimator of F , we may assume that for ǫ small enough, the right hand
side is as small as needed; we denote it α, β:

αk
1 =

∫ 2π

0
sin(s)(fk

1 − hk1)ds, βk
1 =

∫ 2π

0
cos(s)(fk

1 − hk1)ds, (5.96)

αk
j = xkj (2π) − ξkj (2π), βk

j = ẋkj (2π) − ξ̇kj (2π) (5.97)

Equations (5.90) to (5.95) with small right hand side denoted α, β are

∫ 2π

0
sin(s)hk+1

1 = −α1,

∫ 2π

0
cos(s)hk+1

1 = −β2, (5.98)

ξk+1
j (2π) − ak+1

j = −αk
j , ξ̇k+1

j (2π)− bk+1
j = −bkj (5.99)

Lemma 5.6. When the angular frequencies satisfy the property

ωj

ω1

is not an integer for j > 1,
the jacobian matrix of

y 7−→ H(p, y) (5.100)

defined in (5.42) to (5.47) is invertible at p0 = (a, 0) with b1 = 0

Proof. We get for ǫ = 0

ξ1 = a1cos(θ) + b1sin(θ) (5.101)

ξj = ajcos(
ωj

ω1
θ) + bj

ω1

ωj
sin(

ωj

ω1
θ) (5.102)

∂ξ1
∂η

= 0,
∂ξ1
∂b1

= sin(θ) (5.103)

∂ξ̇1
∂η

= 0,
∂ξ̇1
∂b1

= cos(θ) (5.104)

so that

∂h1
∂η

= −a1cos(θ)
∂h1
∂b1

= −ηsin(θ) +
1

ω2
1

ΦT
1 B

TE′ΛBΦ[sin(θ), 0, . . . , 0]T (5.105)
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so that

∂H1

∂η
= 0

∂H1

∂b1
= −ηπ +

1

ω2
1

ΦT
1 B

TE′ΛBΦ[1, 0...0]T π (5.106)

∂H2

∂η
= −aπ

∂H2

∂b1
= 0 (5.107)

det(
∂(H1,H2)

∂(η, b1)
6= 0 (5.108)

because for a suitable choice of Λ, we have ∂h1

∂b1
6= 0 ; the other derivatives are zero. For

other indexes

∂ξj
∂aj

= cos(
ωj

ω1
θ),

∂ξj
∂bj

=
ω1

ωj
sin(

ωj

ω1
θ) (5.109)

∂ξ̇j
∂aj

= −
ωj

ω1
θsin(

ωj

ω1
θ),

∂ξ̇j
∂bj

= cos(
ωj

ω1
θ) (5.110)

∂H2j−1

∂aj
=

∂ξj
∂aj

(2π)− 1,
∂H2j−1

∂bj
=

∂ξj
∂bj

(2π) (5.111)

∂H2j

∂aj
=

∂ξ̇j
∂aj

(2π),
∂H2j

∂bj
=

∂ξ̇j
∂bj

− 1 (5.112)

∂H2j−1

∂aj
= cos(2π

ωj

ω1
)− 1

∂H2j−1

∂bj
=

ω1

ωj
sin(2π

ωj

ω1
) (5.113)

∂H2j

∂aj
= −

ωj

ω1
sin(2π

ωj

ω1
)

∂H2j

∂bj
= cos(2π

ωj

ω1
)− 1 (5.114)

When
ωj

ω1
is not an integer for j > 1,

the determinant

det
∂(H2∗j−1,H2∗j)

∂(a′j+1
j , b′k+1

j )
6= 0 (5.115)

ans so the Jacobian of H is invertible.

By using the classical implicit theorem, we get

Lemma 5.7. equation (5.88) or (5.90) to (5.95) define a lipschitzian implicit function:

p = [a1, ǫ]
T , [α, β]T 7→ yk+1 = [T k+1, bk+1

1 , ak+1
2 , . . . , bk+1

n ]T (5.116)

5.6 Computation and existence of periodic solutions

Proposition 5.2. Equation (5.31) to (5.37) has a solution for ǫ small enough and this
solution may be computed with the iterative method (5.88).

Remark 5.3. The iterative method may be embeded in a continuation process by increasing
the value of ǫ
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Proof. The proof is now simple write the iterative method (5.88) for k and k − 1

H(p, yk+1) = −E(p, yk) (5.117)

H(p, yk) = −E(p, yk−1) (5.118)

and by substraction

H(p, yk+1)−H(p, yk) = E(p, yk−1)− E(p, yk) (5.119)

with previous lemma, there exists Λ

‖yk+1 − yk‖ ≤ Λ‖E(p, yk−1)− E(p, yk)‖ (5.120)

and as E is a strict estimator (lemma 5.64)

‖yk+1 − yk‖ ≤ ǫΛµ‖yk − yk−1‖ (5.121)

the proposition is proved

Proposition 5.3. Equation (5.17),(5.18) with f1, . . . fn given by (5.23),(5.24) has a 2π
periodic solution for ǫ small enough and it may be computed with the iterative process
(4.45); moreover, η, b are lipschitzian functions of p = (a1, ǫ)

Proof. The proof is similar to the one of Proposition 4.2

Remark 5.4. This result should be compared with Proposition 2.1 of [JR10]; in this paper
we have an explcit approximate value of the frequency which gives an approximation of
the solution in an interval [0, γǫ−1]; here we get the existence of a period which gives an
approximation of the solution on [0,∞]; but if this period is computed numerically, the
approximation of the solution will only remain valid on a finite interval to be determined.
The result of [JR10] may be viewed as a stability result: if the frequency is computed up
to the order ǫ2, the approximation of the solution remains valid in an interval [0, γǫ−1].

6 Conclusion

This approach seems to be the first one to provide a rigorous and constructive proof of
existence of periodic solutions of non smooth systems of differential equations arising in
structural mechanics.

Implementation of the algorithm with the harmonic balance principel is in progress.
It paves the way to reduced order modelling (see e.g. [TA06]) for vibrating structures

with non smooth non linearities such as contact with unilateral springs modeling bumpers.
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