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VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON

COMPACT MANIFOLDS∗

P. DELANOË†

Abstract. We consider the Monge optimal transport problem posed on compact manifolds
(possibly with boundary) when all data are smooth and the given measures, positive. If a diffeomor-
phism is stationary for the total cost, it was established that it must admit a potential function. If it
realizes a local minimum of the total cost, we show that the c-Hessian of its potential function must
be non-negative, positive if we further assume that the cost function c is non degenerate.
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1. Introduction and statement of results. The solution of Monge’s prob-
lem [Monge 1781] in optimal transportation theory, with a general cost function, has
been applied to many questions in various domains tentatively listed in the survey
paper [Guillen–McCann 2010], including in cosmology [Brenier et al 2003]. The book
[Villani 2009] offers a modern account on the theory (see also [Gangbo–McCann 1996]
and references therein).
In case data are smooth, manifolds compact, measures positive, maps one-to-one and
the solution of Monge’s problem unique, the question of the smoothness of that solu-
tion was addressed in the landmark paper [Ma–Trudinger–Wang 2005]. In that case,
restricting Monge’s problem to diffeomorphisms becomes natural. Doing so, the use
of differential geometry and the calculus of variations enables one to bypass the gen-
eral optimal transportation approach and figure out directly some basic features of
the solution map. Such a variational heuristics goes back to [Appell 1887] and was
elaborated stepwise in [Evans 1998, Urbas 1998, Brenier et al 2003, Trudinger 2007,
Delanoë 2009] (see also [Brenier et al 2003]). In the present note, we take a new step
in that elaboration.
Specifically, working henceforth in the C∞ category, we are given a couple of compact
connected diffeomorphic manifolds each equipped with a probability volume measure,
(M,µ) and (P,̟), and a cost function c : Ω ⊂ M × P → R defined in a domain Ω
projecting onto M and P by the canonical projections. Each manifold, either has no
boundary, or it is the closure of a domain contained in some larger manifold. We con-
sider the subset Diffµ,̟(Ω) of diffeomorphisms from M to P , pushing µ to ̟, with
graph lying in Ω (an obvious item missing in [Delanoë 2009]). The pushing condition
means for a Borel map ϕ : M → P that, for any continuous function h : P → R, the
following equality holds:

∫

P

h d̟ =

∫

M

(h ◦ ϕ) dµ,(1.1)

a property commonly denoted by ϕ#µ = ̟. The existence of diffeomorphisms pushing
µ to ̟ is well-known [Moser 1965, Banyaga 1974, Dacorogna–Moser 1990]. Setting

Ω̃ = {(p,m) ∈ P × M, (m, p) ∈ Ω}, one defines similarly the set Diff̟,µ(Ω̃). We

view Diffµ,̟(Ω) and Diff̟,µ(Ω̃) as manifolds respectively modeled on the Fréchet
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2 P. DELANOË

manifolds Diff̟(P ) := Diff̟,̟(P × P ) and Diffµ(M) (see details in [Delanoë 2009,

Ebin–Marsden 1970]). Finally, we consider the total cost functional

ϕ ∈ Diffµ,̟(Ω) → C(ϕ) =
∫

M

c(m,ϕ(m)) dµ,

and its counterpart ψ ∈ Diff̟,µ(Ω̃) → C̃(ψ) =
∫
P
c(ψ(p), p) d̟, which satisfy the

identity: C(ϕ) ≡ C̃(ϕ−1). In this setting, the restricted Monge problem consists natu-
rally in minimizing the functional C and the variational heuristics of [Delanoë 2009],
in writing down the Euler equation of that functional. It yields the following result:

Proposition 1.1. If ϕ ∈ Diffµ,̟(Ω) is stationary for C, so is ϕ−1 for C̃, and
there exists two functions f :M → R, f̃ : P → R, defined up to addition of constants,
such that each point of the graph of ϕ is stationary for the real function:

(m, p) ∈ Ω → c(m, p) + f(m) + f̃(p).

Let us call the function f (resp. f̃) so determined (up to constant addition),
the c-potential of the diffeomorphism ϕ (resp. ϕ−1). In [Delanoë 2009], we fur-
ther assumed on the cost function c the generating condition sometimes called (A1)
[Ma–Trudinger–Wang 2005] or bi-twist [Kim–McCann 2010], under which c-potentials
completely determine the diffeomorphisms which give rise to them. Let us recall it:
setting ΩP

m = {p ∈ P, (m, p) ∈ Ω}, ΩM
p = {m ∈ M, (m, p) ∈ Ω} and dM (resp. dP )

for the exterior derivative with respect to the argument in the manifold M (resp. P ),
we will say that c is generating if, for each (m0, p0) ∈ Ω, the maps

p ∈ ΩP
m0

→ −dMc(m0, p) and m ∈ ΩM
p0

→ −dP c(m, p0) are one-to-one.(1.2)

For the moment, we do not assume this condition and stress that it is not required
for the proof of Proposition 1.1, indeed solely based on the Helmholtz lemma. For
the reader’s convenience, let us indicate the argument (see [Delanoë 2009] for details).

We write δC = 0 with δC =

∫

M

dP c(m,ϕ(m))(δϕ(ϕ(m)) dµ, where δϕ stands for

a variation of the transporting diffeomorphism ϕ which keeps it on the manifold
Diffµ,̟(Ω), that is, a vector field of a special kind on P , evaluated at the image point
ϕ(m). Specifically, such a vector field V on P should be: first of all tangential to the
boundary of P , if any, so that its flow send P to itself (without crossing ∂P ); moreover,
its flow should preserve the volume measure ̟ or, equivalently, V should satisfy:
div̟ V = 0. In other words, the tangent space to Diffµ,̟(Ω) at ϕ is spanned by the
tangential vectors that write V ◦ϕ with V ∈ ker div̟. Here, the symbol div̟ denotes
the divergence operator defined by the identity:

∫
P
h div̟ V d̟ ≡

∫
P
dPh(V ) d̟

valid for each function h : P → R and each vector field V on P (tangential, as said1).
Recalling (1.1), we thus find:

∀V ∈ ker div̟,

∫

P

dP c(ϕ−1(p), p)(V (p)) d̟ = 0.

Arguing likewise on C̃, we further get:

∀U ∈ ker divµ,

∫

M

dMc(m,ϕ(m))(U(m)) dµ = 0.

1otherwise, a boundary integral should occur, of course
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The conclusion of Proposition 1.1 now readily follows from Helmholtz lemma, which
we recall:

Lemma 1.2 (Helmholtz). Let (N, ν) be a measured manifold as above. A 1-form
α on N satisfies:

∫
N
α(Z) dν = 0 for each vector field Z ∈ ker divν (tangential to ∂N

if ∂N 6= ∅) if and only if α is exact.

The variational heuristics presented so far is incomplete since no local minimum
condition is expressed yet for the total cost C. It is our aim in the present note to write
down that minimum condition and to derive from it further properties of minimizing
diffeomorphisms. Before stating our results, we require a notion of c-Hessian.

Definition 1.3. Let F : M → P be a map whose graph lies in Ω and h :M → R

a function related to F by the equation dMc(m,F (m)) + dh(m) = 0 on M . The
(c, F )-Hessian of h is the covariant symmetric 2-tensor on M , denoted by Hessc,F (f),
intrinsically defined, in any couple of source and target charts (x, y), by:

Hessc,F (h)(x0) :=
∂2

∂xi∂xj
[c(x, y0) + h(x)] at x = x0,

where, if x0 = x(m0), we have set y0 = y(F (m0)).

If ϕ ∈ Diffµ,̟(Ω) is stationary for the total cost C, Proposition 1.1 shows that
the couple (ϕ, f), with f the c-potential of ϕ, fulfills the assumption of Definition 1.3.
In that case, for simplicity, we will simply speak of the c-Hessian of f and denote it
by Hessc(f). We would define likewise the c-Hessian of the c-potential f̃ of ϕ−1 by
the local expression (stiking to the notations used in the preceding definition):

Hessc(f̃)(y0) :=
∂2

∂yi∂yj

[
c(x0, y) + f̃(y)

]
at y = y0,

where, if y0 = y(p0), x0 = x
(
ϕ−1(p0)

)
. We are in position to state our first result:

Theorem 1.4. Let ϕ ∈ Diffµ,̟(Ω) be stationary for the total cost C. The
following properties are equivalent:

(i) C admits a local minimum at ϕ;
(ii) the c-potential f of ϕ satisfies: ∀U ∈ ker divµ,

∫
M

Hessc(f)(U,U) dµ > 0;

(iii) the c-potential f̃ of ϕ−1 satisfies: ∀V ∈ ker div̟,
∫
P
Hessc(f̃)(V, V ) d̟ > 0.

Assuming (i), we will infer the pointwise non negativity of the c-Hessians from the
conclusions (ii)(iii) of Theorem 1.4, arguing by contradiction with suitable localized
divergence free vector fields. The resulting statement goes as follows:

Corollary 1.5. If the total cost C admits a local minimum at ϕ ∈ Diffµ,̟(Ω),
the c-Hessian of the c-potential of ϕ is non negative, and so is that of ϕ−1.

This corollary itself can be strengthened by making a non degeneracy assumption
on the cost function c, called condition (A2) in [Ma–Trudinger–Wang 2005], namely:

det(dMdP c) 6= 0 on Ω.(1.3)

Under that condition, the implicit function theorem provides, for each (m0, p0) ∈ Ω,
setting α0 = −dMc(m0, p0), neighborhoods U0 of p0 in P and W0 of (m0, α0) in T

∗M ,

and a map E
(m0,p0)
c : W0 → U0 such that:

α ≡ −dMc
(
m,E(m0,p0)

c (m,α)
)
.

Following [Kim–McCann 2010], maps like E
(m0,p0)
c may be called local c-exponential

maps. Observe that, for any (m1, p1) close enough to (m0, p0) in Ω such that, setting
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α1 = −dMc(m1, p1), the point (m1, α1) lies in W0, the maps E
(m0,p0)
c and E

(m1,p1)
c

coincide on W0 ∩ W1. If M is simply connected, one can thus extend uniquely the

map E
(m0,p0)
c to a neighborhood W(m0,α0) of a global section of T ∗M passing through

α0 at m0 and call it the (m0, p0)-determination of the c-exponential map on M .
With these notions at hand, we can state the announced strengthened corollary:

Corollary 1.6. If the non degeneracy condition (1.3) holds and C admits a local
minimum at ϕ ∈ Diffµ,̟(Ω), the c-Hessian of the c-potential f of ϕ must be positive
definite, and so must be that of ϕ−1; in particular, the local minimum of C must be
strict. Moreover, the Jacobian equation expressing that ϕ lies in Diffµ,̟(Ω), written
locally in terms of f via a local exponential map, reads as a Monge–Ampère equation
of elliptic type.

To understand the second part of the statement, one should be aware that, if the
pushing condition (1.1) is satisfied by a diffeomorphism ϕ :M → P , one may use the
change of variable p = ϕ(m) in the left-hand integral of (1.1) and infer pointwise, in
any couple (x, y) of source and target charts, keeping abusively the notation y = ϕ(x)
for the local expression of ϕ, the so-called Jacobian equation alluded to, namely:

d̟

dy
(ϕ(x))

∣∣∣∣det
(
∂ϕ

∂x

)
(x)

∣∣∣∣ =
dµ

dx
(x),(1.4)

where dµ
dx

stands for the Radon–Nikodym derivative of the push-forward measure x#µ

with respect to the Lebesgue measure dx of the chart x, and similarly for d̟
dy

.

Finally, let us record a uniqueness result easily seen to hold in case the cost func-
tion c is generating non degenerate. If so, all local c-exponential maps coincide with
the one (just denoted by Ec) globally defined by the generating condition. Summing
up the main facts obtained in this note, we can state the following:

Proposition 1.7. If the cost function satisfies (1.2)(1.3), there exists at most
one local minimizer ϕ ∈ Diffµ,̟(Ω) of the total cost functional C. If it exists, it should
write m 7→ ϕ(m) = Ec(m, df(m)) for some c-potential f such that Hessc(f) is positive
definite on M ; moreover, the local minimum C(ϕ) is strict.

Proof. Indeed, if ϕ ∈ Diffµ,̟(Ω) is such a minimizer, by Proposition 1.1 it
must admit a c-potential f : M → R solving the Monge–Ampère equation obtained
from (1.4) by setting ϕ(m) ≡ Ec(m, df(m)). Furthermore, from Corollary 1.6, the
c-Hessian of f must be positive definite, the local minimum, strict and the Monge–
Ampère equation, elliptic. Being so, the latter admits at most one solution f up to
addition of a constant, as a standard maximum principle argument shows

The next three sections contain respectively the proofs of Theorem 1.4 and of its
two corollaries.

2. Proof of Theorem 1.4. Let ϕ ∈ Diffµ,̟(Ω) be stationary for C and, for t a
small real parameter, let t 7→ ϕt ∈ Diffµ,̟(Ω) be an arbitrary path such that ϕ0 = ϕ.
We can uniquely write ϕt = ξt ◦ϕ with t 7→ ξt ∈ Diff̟(P ) such that ξ0 = the identity
of P . In particular, ξ̇0 is a tangential vector field on P lying in ker div̟ (setting as
usual ξ̇0(p) =

∂
∂t
ξt(p)|t=0). We will prove the equivalence (i) ⇐⇒ (ii) by establishing

the equality:

d2

dt2
C(ϕt)|t=0 =

∫

P

Hessc(f̃)(ξ̇0, ξ̇0) d̟.(2.1)

Using arbitrary source and target charts x, y, and the Einstein summation convention,

one routinely finds: d
dt
C(ϕt) =

∫
M

∂c
∂yi (x, ϕt(x))

∂ϕi
t

∂t
(x) dµ(x) where dµ(x) = dµ

dx
(x)dx,
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then the second variation expression:

d2

dt2
C(ϕt) =

∫

M

{
∂c

∂yi
(x, ϕt(x))

∂2ϕi
t

∂t2
(x) +

∂2c

∂yi∂yj
(x, ϕt(x))

∂ϕi
t

∂t
(x)

∂ϕi
t

∂t
(x)

}
dµ(x).

Here, to spare the unfamiliar reader, we did not use a global linear connection (on P )
to compute the second derivatives which occur in the integrand. Doing so, we must
be careful, as explained in the following remark.

Remark 1. Taken separately, the local scalar terms ∂c
∂yi (x, ϕt(x))

∂2ϕi
t

∂t2
(x) and

∂2c
∂yi∂yj (x, ϕt(x))

∂ϕi
t

∂t
(x)

∂ϕi
t

∂t
(x) are not invariant under a change of charts, unlike their

sum, indeed equal to the global real function: m ∈ M → ∂2

∂t2
c(m,ϕt(m)). Therefore

these terms cannot be integrated separately (unless the deformation ξt is supported
in the domain of a single chart of P , of course). Still, in each couple of source and

target charts, splitting the local expression ∂2

∂t2
c(x, ϕt(x)) of the global function into

the above non invariant terms can be done in a unique way, by using the canonical
flat connection of the P chart. Anytime we will have to integrate on a manifold a
global real function splitting uniquely into a sum of non invariant local terms, we will
stress that the integral should not be splitted by putting the sum between braces, as
done above. As long as they are written in the same charts, the addition of two such
sums {a1 + a2}+ {b1 + b2} may, of course, be written between a single pair of braces
{a1 + a2 + b1 + b2}.

Back to our proof, using ϕt = ξt ◦ ϕ, recalling (1.1) and setting t = 0, we infer:

d2

dt2
C(ϕt)|t=0 =

∫

P

{
ξ̈i0
∂c

∂yi
(ϕ−1(y), y) + ξ̇i0ξ̇

j
0

∂2c

∂yi∂yj
(ϕ−1(y), y)

}
d̟(y),(2.2)

where d̟(y) = d̟
dy

(y)dy and ξ̈i0 = ∂2

∂t2
ξit(y)|t=0. To proceed further, we note that the

integral
∫
P
f̃ (ξt(y)) d̟(y) is independent of t. Differentiating it twice with respect

to t at t = 0, we get:

0 =

∫

P

{
ξ̈i0
∂f̃

∂yi
(y) + ξ̇i0ξ̇

j
0

∂2f̃

∂yi∂yj
(y)

}
d̟(y).

Adding this vanishing integral to the right-hand side of (2.2), applying the last part
of Remark 1 and recalling the stationary point equation:

∂c

∂yi
(ϕ−1(y), y) +

∂f̃

∂yi
(y) ≡ 0,

derived at once from Proposition 1.1, we obtain (2.1) as desired.

A similar argument would yield:

d2

dt2
C̃(ϕ−1

t )|t=0 =

∫

M

Hessc(f)(ζ̇0, ζ̇0) dµ,

with the vector field ζ̇0 ∈ ker divµ obtained by writing ϕ−1
t = ζt ◦ ϕ−1 for a unique

path t 7→ ζt ∈ Diffµ(M). It would imply the other equivalence (i) ⇐⇒ (iii), since

C̃(ϕ−1) ≡ C(ϕ) is a local minimum of C̃ as well. The proof of Theorem 1.4 is complete.
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3. Proof of Corollary 1.5.

Strategy. Let ϕ ∈ Diffµ,̟(Ω) realize a local minimum of the total cost C and
let f : M → R denote its c-potential, as provided by Proposition 1.1. Arguing by
contradiction, we suppose the existence of a point m0 ∈ M such that the quadratic
form associated to the symmetric bilinear one Hessc(f)(m0) : Tm0

M×Tm0
M → R can

take negative values. We will contradict property (ii) of Theorem 1.4 by constructing
a vector field U ∈ ker divµ supported near m0 such that

∫
M

Hessc(f)(U,U) dµ < 0.
A similar argument would hold for ϕ−1, of course.
We will proceed stepwise, choosing a good chart at m0, constructing the vector field
U in that chart and evaluating the above integral.

Choice of a chart. We pick any chart y of P at ϕ(m0) but a special chart x of
M centered at m0, namely a chart which pushes the measure dµ to the canonical
Lebesgue measure dx. The existence of such µ-adapted charts, to call them so, is
well-known [Banyaga 1974, Dacorogna–Moser 1990] and timely, here, to transform
the divµ operator on M into the usual div operator of Rn (up to sign) that is, the
divergence operator associated to the measure dx (simply denoted by div below).
Since the orthogonal group O(n) preserves the measure dx, we may further choose
the chart x such that the matrix Hij(0) of Hessc(f)(m0) is diagonal, with eigenvalues
λ1 6 λ2 6 . . . 6 λn (each repeated with its multiplicity). Under our assumption:
λ1 < 0. Since the unimodular group SL(n,R) preserves the measure dx, we may
rescale the chart x in order to have: λ1 6 −3 and, ∀i ∈ {2, . . . , n}, λi 6

1
2 . Let

the chart x be fixed so and let x 7→ Hij(f)(x) denote the local expression of the map
m 7→ Hessc(f)(m). The inequality: ∀v ∈ R

n, Hij(f)(0)v
ivj 6 −3(v1)2+ 1

2

∑n
i=2(v

i)2,
combined with the continuity of the map (x, v) 7→ Hij(f)(x)v

ivj as (x, v) varies near
x = 0 with v of length 1 (say), implies the existence of a real ε > 0 such that:

∀(x, v) ∈ R
n × R

n, max
16i6n

|xi| 6 ε⇒ Hij(f)(x)v
ivj 6 −2(v1)2 +

n∑

i=2

(vi)2.(3.1)

Construction of a divergence free vector field. The vector field on R
n given by

w(x) = x1
∂

∂x2
− x2

∂

∂x1
satisfies div(w) = 0. The flow of w preserves any function

h : R
n → R factoring through a function H : [0,∞) × R

n−2 → R as: h(x) =
H(

√
(x1)2 + (x2)2, x3, . . . , xn). Any such function h thus satisfies div(hw) = 0.

Let us fix a cut-off function α : [0,∞) → [0, 1] equal to 1 on [0, ε/2], vanishing on
[ε/

√
2,∞), decreasing in-between, and consider the function h : Rn → R given by:

h(x) = α
(√

(x1)2 + (x2)2
) n∏

i=3

α
(
|xi|

)
.

We know that div(hw) = 0 and that the vector field hw is supported in the open box
Bn

ε =
{
x ∈ R

n,max16i6n |xi| < ε
}
. Since the chart x is µ-adapted, we may view hw

as the expression in that chart of a divµ free vector field U in M supported in the
inverse image x−1(Bn

ε ) ⊂M .

Calculation of an integral. Let us consider the integral
∫
M

Hessc(f)(U,U)dµ which
is equal to:

∫
Bn

ε

h2(x)Hij(f)(x)w
iwjdx. From (3.1), it is bounded above by:

(
2

∫
∞

0

α2(ρ)dρ

)n−2 ∫

B2
ε

α2
(√

(x1)2 + (x2)2
) (

−2(x2)2 + (x1)2
)
dx1dx2.
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Note that the function (x1, x2) → α
(√

(x1)2 + (x2)2
)
vanishes outside the Euclidean

ball of radius ε centered at 0; using polar coordinates (r, θ) in R
2 \ {0}, we thus find

that the last integral is equal to:

∫ ε

0

α2(r)r3dr ×
∫ 2π

0

(
cos2 θ − 2 sin2 θ

)
dθ ≡ −π

∫ ε

0

α2(r)r3dr.

We conclude that
∫
M

Hessc(f)(U,U)dµ is bounded above by a negative real, namely

by −π
(
2
∫
∞

0
α2(ρ)dρ

)n−2 ∫ ε

0
α2(r)r3dr, contradicting property (ii) of Theorem 1.4,

as desired.

4. Proof of Corollary 1.6. Let again ϕ ∈ Diffµ,̟(Ω) realize a local minimum
of the total cost C. Fix an arbitrary point m0 ∈ M and take a µ-adapted chart x of
M centered at m0 and a ̟-adapted chart y of P centered at p0 = ϕ(m0). From (1.3)

and the definition of E
(m0,p0)
c , the map x 7→ y = ϕ(x) is defined near x = 0 by the

equation:

∂f

∂xi
(x) +

(
∂c

∂xi
(x, y)

)

y=ϕ(x)

= 0.(4.1)

Differentiating the latter yields (sticking to the notation Hessc(f) = Hij(f)dx
idxj):

Hij(f)(x) = −
(

∂2c

∂yk∂xi
(x, y)

)

y=ϕ(x)

∂ϕk

∂xi
(x).

Taking determinants, recalling that the symmetric matrix Hij(f)(x) is non negative
(by Corollary 1.5) and using (1.4), we obtain a local Monge–Ampère equation satisfied
by f , namely:

det (Hij(f)(x)) =

∣∣∣∣∣det
(

∂2c

∂yk∂xi
(x, y)

)

y=ϕ(x)

∣∣∣∣∣ ,

where y = ϕ(x) is given by (4.1). From (1.3), the right-hand side of this equation
nowhere vanishes; so the matrix Hij(f)(x) must be positive definite. So must be the
c-Hessian of f throughout the manifold M , since the point m0 is arbitrary. Finally,
as well-known, the positive definiteness just obtained implies, indeed, the ellipticity
of the Monge–Ampère equation. A similar argument would hold for ϕ−1.
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Sci. Paris (1781).

[Moser 1965] J. Moser, On the volume elements on a manifold, Transac. Amer. Math. Soc., 120
(1965), pp. 286-294.

[Trudinger 2007] N. S. Trudinger, Optimal transportation and nonlinear partial differential equa-

tions (slides), 26th Brazilian Mathematical Colloquium, August 2007, presently download-
able at: http://maths.anu.edu.au/~neilt/RecentPapers.html

[Urbas 1998] J. Urbas, Mass transfer problems, Univ. Bonn Lecture Notes (1998).
[Villani 2009] C. Villani, Optimal Transport, Old and New, Grund. math. Wiss. 338, Springer–

Verlag berlin Heidelberg (2009).


