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Abstract

The concept of p-orthogonality between electronic states, which generalizes com-

mon orthogonality and strong orthogonality, provides a natural hierarchy for group

function methods such as the electronic mean field configuration interaction method.

In this letter, this theoretical concept is applied in numerical calculations for the

first time. The accuracy of the geminal mean field configuration interaction wave

functions of simple molecular systems is studied as the orthogonality constraint be-

tween the geminals relaxes from 1-orthogonality (that is strong orthogonality) to

2-orthogonality, to no orthogonality constraint at all.
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1 Introduction

The concept of p-orthogonality between electronic wave functions has been proposed for

the first time by S. Wilson [1]. One of the authors has rediscovered independently this

concept and has defined it in the more general context of quantum states, either pure or

mixed (i.e. ensemble) states, of systems of identical particles, either fermions or bosons

[2].

This letter presents the application of this concept to the simplest, non trivial, electronic

mean field configuration interaction (EMFCI) method that is the geminal mean field

configuration interaction (GMFCI) method or when iterated, the geminal self consistent

field (GSCF) method [3]. Our goal is to assess on simple atomic and molecular systems

for which full configuration interaction (CI) references are available, how the accuracy

of the GMFCI or GSCF methods is affected by imposing the p-orthogonality constraint

for p ∈ {1, 2}. To the best of our knowledge, it is the first numerical application of

p-orthogonality as such.

At the same time, the present study complements our previous work [4] (part II of this

series of papers) on guess geminals and demonstrates that the strongly orthogonal gemi-

nals with variationally optimized Hilbert subspaces [5] (called “antisymmetrized product

of singlet-type strongly orthogonal geminals”, APSSG, by Rassolov et al. or “restricted

singlet-type strongly orthogonal geminals”, RSSG, in the case of spin restricted calcula-

tions) is an extremely good guess for the EMFCI method.

The letter is organised as follow: We first recall the definition of p-orthogonality, then

we briefly introduce the EMFCI and GSCF methods with or without p-orthogonality

imposed between group functions. Next, we illustrate numerically the effect of this con-

straint on a few chosen examples. Finally, we conclude on the prospect of tuning the

p-orthogonality constraint to describe accurately the physics of a molecular system at

the least computational cost within a group function frame.
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2 p-orthogonality

An easy way to introduce p-orthogonality between two electronic states consists in con-

sidering the eigenfunctions associated to non zero eigenvalues of their respective pth-order

reduced density operators. Let us call these functions the “populated, natural, p-electron

functions”, each set span a vector space that we have termed the “p-internal space” of

the related electronic state. Another way to look at the p-internal space of an electronic

pure state which justifies our terminology is the following characterization: a function, Φ,

belongs to the p-internal space of an n-electron wave function if and only if there exists

an (n − p)-electron function such that its annihilation in the n-electron wave function

(in the second quantization sense) gives Φ. In other words, the p-internal space of an

n-electron wave function is the vector space of all the p-electron functions obtained by

annihilation of an (n− p)-electron function in the n-electron wave function.

For example, the 1-internal space, or simply “internal space” of a wave function Ψ,

denoted by, I1[Ψ], is the space spanned by the occupied, natural spinorbitals. The 2-

internal space, denoted by, I2[Ψ], is the space spanned by the occupied, natural geminals.

The n-internal space is the one-dimensional vector space spanned by the wave function

Ψ, C · Ψ. The p-internal space of a single configuration function (Slater determinant)

built over a set of n orthogonal spinorbitals, Ψ := φ1 ∧ . . . ∧ φn, is the
(

n
p

)

-dimensional

vector space spanned by the p-particle functions, φi1 ∧ . . .∧ φip , built over p spinorbitals

of Ψ.

Then, two electronic states of, say, n1 and n2 electrons respectively, are said p-orthogonal

with 1 ≤ p ≤ inf(n1, n2), if and only if their p-internal spaces are orthogonal. Let us

consider two pure states represented by wave functions Ψ1 and Ψ2, respectively. We see

immediately that if n1 = n2 = n, n-orthogonality is the usual orthogonality between

wave functions, since In[Ψi] = C ·Ψi, ∀i ∈ {1, 2}, so that

In[Ψ1] ⊥ I
n[Ψ2]⇐⇒ Ψ1 ⊥ Ψ2 ⇐⇒ 〈Ψ1|Ψ2〉 = 0.

At the other end, 1-orthogonality between Ψ1 and Ψ2 amounts to strong orthogonality
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[6–8].

An important property is that p-orthogonality implies q-orthogonality for all q ≥ p. So,

p-orthogonality provides us with a graded orthogonality concept for electronic states. It

discriminates between pairs of wave functions that are all orthogonal in the traditional

sense: Let φ1, . . . , φ2n be 2n orthonormal spinorbitals. For p > 0, the Slater determinants

Ψ1 := φ1∧. . .∧φn and Ψ2 := φ1∧. . .∧φn−p∧φn+1 . . .∧φn+p are (n−p+1)-orthogonal but

not (n−p)-orthogonal. Furthermore, the concept is well-defined for multiconfigurational

functions of different numbers of electrons: The pairs Ψ1 := φ1 ∧ φ2 ∧ φ3 + φ4 ∧ φ5 ∧ φ6

and Ψ2 := φ1 ∧ φ7 + φ2 ∧ φ8 are 2-orthogonal (it is impossible to obtain a function not

orthogonal to Ψ2 by annihilating a spinorbital in Ψ1) but not 1-orthogonal since both

φ1 and φ2 belongs to their respective internal spaces.

A remarkable fact that justifies the relevance of p-orthogonality to quantum chemistry,

is that this purely geometrical concept is related in a neat and straightforward manner

to the expression of matrix elements of quantum observables between antisymmetrized

products of electron group functions [1,2]. The stronger the p-orthogonality between

the factors of the antisymmetrized products, the simpler the combinatorics involved in

the matrix element expressions, and the lower their computational cost. So, imposing

p-orthogonality constraints to antisymmetrized products of electron group function for

increasing values of p, naturally leads one to consider a corresponding hierarchy of group

function approximation methods.

Note: in the literature, the term “group function” is usually employed for an antisym-

metrical product of electron group function of the form:

Ψ = Ψ1 ∧ · · · ∧Ψr , (1)

where Ψi is an ni-electron function and
∑

i ni = n. Here, we prefer to call “electron group

functions” or just “group functions” the factors Ψi of such antisymmetrized products.

An introduction to the Grassmann product (∧) formalism can be found in Ref. [9,10].
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3 p-orthogonally constrained EMFCI methods

In quantum chemistry, variational methods to solve the electronic Schrödinger equation

are usually classified into two classes: those which use orthogonal orbitals and those which

use non-orthogonal orbitals. In the first class, the most general is arguably the ORMAS

(occupation-restricted-multiple active spaces) method [11]. ORMAS-CI and ORMAS-

SCF encompass the traditional CI methods and multi-configuration self-consistent field

(MC-SCF) methods. In the second class, one finds methods based on valence-bond wave

functions, such as those implemented in the code TURTLE [12], and XMVB [13], or on

more general group function products as implemented in the code VB2000 [14]. A fairly

extensive bibiliography on early works using group function product wave functions has

been given in a previous article of this series [3], a few other relevant references are

[15–22]. More references on non-orthogonal methods can be found in Ref. [23]. Note also

a recently proposed method [24], which implements the idea of finding an optimal wave

function of a fixed length (see Remark 4.10 of Ref. [9]) that is the best sum of a fixed

number of Slater determinants with no orthogonality nor normalization restriction on

their spinorbitals.

An Electronic Mean Field Configuration Interaction (EMFCI) calculation is an n-electron

configuration interaction (CI) calculation, where the set of orthogonal basis functions

considered has a group function product structure of the form: (Ψ0
1 ∧ · · · ∧ Ψk

j ∧ · · · ∧

Ψ0
r)0≤k≤N . It can be regarded as a configuration interaction for the “active” group j in

the mean field of the (r − 1) “spectator” electron group wave functions Ψ0
i for i 6= j.

An Electronic Self-Consistent Field Configuration Interaction (ESCFCI) calculation for

a fixed set of electron numbers, (ni)1≤i≤r, is defined to be the variational method that

finds the “best” (with respect to the variational principle) n-electron wave functions

of the form given by Eq. (1). The best ground state can be obtained in principle by

successive EMFCI steps, provided that, at a given step where group j is active, each

spectator state Ψ0
i (for i 6= j) is chosen to be the group function corresponding to the

ground state of the last EMFCI step where group i was active.
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Instead of trying to achieve self-consistency with respect to the variation of the original

group functions, one can choose to perform an EMFCI step for another set of integers,

(n′
i)1≤i≤r′ with r′ < r, corresponding to a coarser partition of the electronic system, that

is a partition into larger electron groups such that each old group is wholly included into

one of the new groups.

In the original form of the EMFCI and ESCFCI methods, no orthogonality constraint

is imposed on the Ψi. In particular, in the simple case where for all i, ni = 2, both

antisymmetrized product of strongly orthogonal Geminals (APSG) (i.e. 1-orthogonal

group functions) and antisymmetrized geminal product (AGP) of extreme type, Ψ1 ∧

· · · ∧Ψ1, (where group functions are all equal, so not even 2-orthogonal), are considered

by the variational process. In this work, we study this simple case, where all the group

functions are geminals, with different p-orthogonality constraints.

We will consider two cases of p-orthogonality constraints:

- case 1: the active group, say group 1 without loss of generality, is p-orthogonal to every

spectator group functions, Ψ0
i , i > 1.

- case 2: the active group is p-orthogonal to every spectator group functions, and ev-

ery product of spectator group functions, Ψ0
i1
∧ · · · ∧ Ψ0

ik
, ∀k ∈ {1, · · · , r − 1}. Note

that, for geminal product wave functions and 2-orthogonality, it is sufficient to impose

2-orthogonality of the active group to every spectator group functions, Ψ0
i , i > 1, and

every product of pairs of spectator group functions, Ψ0
i1
∧Ψ0

i2
, i1, i2 > 1, see Appendix A.

In the case p = 1, if the spectator group functions Ψ0
i are themselves 1-orthogonal to

one another, the two cases are equivalent. However, in general, constraint 2 that we call

spectator product p-orthogonality (SPp-O) is a stronger requirement than constraint 1

called spectator function p-orthogonality (SFp-O).

Imposing the p-orthogonality constraint is close in spirit with the partial release of the

antisymmetry constraint in fermion wave functions [25–27]. It is well-known that there

is no need to antisymmetrize two group functions that are 1-orthogonal. More generally,
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energy expressions with antisymmetry limited to (p − 1) interchanges between group

functions (that is to say, expansions obtained by neglecting interchanges of more than

(p− 1) pairs of particles) are related to p-orthogonality in the sense that they are exact

for fully antisymmetrized functions built from p-orthogonal group functions.

In the following, the effect of SPp-O and SFp-O, with p ∈ {1, 2}, are evaluated for the

GMFCI and GSCF methods on some singlet molecules. We have limited our study to

molecular systems whose size is small enough so as to allow one to perform a full CI

calculation that can serve as a reference.

3.1 p-orthogonally constrained GMFCI

We have used linear chains of equidistant H nuclei to test the SP1-O≡ SF1-O, SP2-O and

SF2-O constraints on the GMFCI method. These systems are of interest in connection

to metallic hydrogen and are often used for benchmarking purposes [28]. The internuclei

distance between adjacent nuclei was set to 1 angström for all the systems, which is

close to the equilibrium value one usually obtains by optimizing their geometry. GMFCI

calculations were performed for different chain lengths and basis sets, see Tab. 1.

Two types of one-orthogonal geminal product functions were considered. The first one,

(row “step 0/ CHFO”) corresponds to the best GMFCI solution starting from guess,

singlet geminals built as paired spin-α, spin-β canonical Hartree-Fock orbitals. By “best”

we mean that the choice of the active group is the one that gives the lowest ground state

energy. More explicitly, an RHF calculation is first performed, and a wave function of

the form, ΨHF = ψα
1 ∧ ψ

β
1 ∧ · · · ∧ ψ

α
r ∧ ψ

β
r , (where the superscript α or β indicates

the spin of the HF spinorbitals), is obtained. Then, the r possible GMFCI calculations

with r − 1 canonical HF spectator geminals are performed and the wave function of

the form Ψstep0/CHFO = ψα
1 ∧ ψ

β
1 ∧ · · · ∧ gi ∧ · · · ∧ ψ

α
r ∧ ψ

β
r giving the lowest ground

state energy is selected. The corresponding energy is tabulated in row “step 0/CHFO”

of Tab. 1. Here gi :=
m
∑

b1,b2=1
cib1,b2

ψα
b1
∧ ψβ

b2
is the geminal obtained by a CI calculation

7



in an orthonormal basis set of the linear space spanned by the functions of the forms

ψα
1 ∧ψ

β
1 ∧· · ·∧ψ

α
j ∧ψ

β
j ∧· · ·∧ψ

α
r ∧ψ

β
r and ψα

1 ∧ψ
β
1 ∧· · ·∧

(

ψα
j ∧ ψ

β
k + ψα

k ∧ ψ
β
j

)

∧· · ·∧ψα
r ∧ψ

β
r .

Note that strong orthogonality is automatically enforced in such a GMFCI because any

geminal for the active group having an internal spectator spinorbital would give an r

geminal product configuration that is zero, since the spectator product function is a

Slater determinant.

The other type of one-orthogonal geminal product function referred to as SP1-O in Tab.

1, is the best possible singlet geminal product function for a given orbital basis set. By

“best” we mean that both the partitioning of the Hilbert space into r orthogonal Hilbert

subspaces, (sometimes called Arai spaces [29]), and the geminal coefficients have been

optimized to minimize the ground state energy. In other words, it is the RSSG solution

thoroughly studied by one of us [5,30].

Both types of one-orthogonal geminal product functions can serve as starting guess for

further SP2-O, SF2-O or unconstrained GMFCI. The comparison of rows “E0
step0/CHFOs”

and “E0
SP1−O” of Tab. 1 demonstrates clearly the superiority of the RSSGs energies. Fur-

thermore, SP2-O, SF2-O or unconstrained GMFCI calculations starting with Ψstep0/CHFO

not reported here, show that the magnitudes of the improvements with respect to

E0
step0/CHFOs are of the same order of magnitude as those with respect to E0

SP1−O reported

in rows “E0
SP2−O”, “E0

SF2−O” and “E0
GMFCI” of Tab. 1, which correspond to SP2-O, SF2-

O or unconstrained GMFCI calculations starting with ΨSP1−O. So, the advantage of the

RSSG wave function is preserved after a GMFCI calculation.

The discrepancy of GMFCI with respect to Full CI in the STO-3G basis set grows

linearly with the number of electron pairs, r, according to, ∆E ≃ 16 ∗ r − 10mH, for

r = 2, 3, 4. In contrast, it seems insensitive to the size of the basis set for H6. In all

calculations, the SF-2-orthogonality constraint was found essentially transparent. For

STO-3G calculations, the configurations it would eliminate are already eliminated by

the removal of quasi-linear dependencies. For larger basis sets, it does serve to eliminate

two CI coefficients from the GMFCI expansion, while the final energy is not affected.
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The SP-2-orthogonality constraint not only simplifies the matrix element calculation but

also reduces the number of configurations, as can be seen from the “SP2-O gem. nb.” row

of Tab. 1. However, the ground state energies obtained are the same as the unconstrained

calculations to sub-mHartree precision.

3.2 p-orthogonally constrained GSCF

The effect of orthogonality constraints on the GSCF method is illustrated in Tab. 2.

Note that SP2-orthogonality is not investigated because it is not preserved in the GSCF

algorithm implemented in this work which just consists in iterating GMFCI calculations:

Even if we start with a function Ψ0
1∧· · ·∧Ψ0

j ∧· · ·∧Ψ0
r such that each Ψ0

j is 2-orthogonal

to every other geminal Ψ0
i , and to every geminal pair product, Ψ0

i ∧ Ψ0
k, ∀i, k 6= j, (see

Appendix A); after a SP2-orthogonality constrained GMFCI step, where without loss of

generality we can assume that the active group is group 1, the resulting wave function,

ΨGMFCI
1 ∧Ψ0

2 ∧ · · · ∧Ψ0
r does not necessarily satisfy the same property. By construction,

ΨGMFCI
1 will be 2-orthogonal to every spectator geminal product, but for instance, Ψ0

2

has no reason be 2-orthogonal to, say, ΨGMFCI
1 ∧Ψ0

3. So, SP2-orthogonality can still be

enforced in successive GMFCI steps and usefully reduce the number of configurations,

but unfortunately, it cannot be taken advantage of to reduce significantly the matrix

element computation effort.

Tab. 2 shows again the advantage of geminal models over the HF ansatz, and the su-

periority of RSSG guesses over geminals built from canonical Hartree-Fock orbitals,

since the ground state energies are much lower with optimized Arai spaces (see the last

three molecules). The SF2-orthogonal calculations remain remarkably close to the un-

constrained result for GSCF, although not identical as for a single GMFCI step. The

GSCF are themselves remarkably close to the full CI results which tends to prove that

the absolute minima have been found although this cannot be ascertained. The differ-

ence between GSCF and Full CI, which is essentially due to the neglect in GSCF of the

triplet-triplet recoupled geminal product configurations, gives an idea of the weight of
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the latter in the wave funcion.

4 Conclusion

Standard guess geminals constructed from the HF canonical orbitals and used in previous

publications have been found clearly inferior to RSSG geminals, obtained by optimising

strongly orthogonal Hilbert subspaces for the different electron groups, in ground state

energy calculations. However, the ideas developed in [4] to rotate HF canonical orbitals

in order to improve excited electronic state calculations can be transposed to RSSG

optimized orbitals. Within each optimized Hilbert subspaces, orbitals can be rotated to

minimise the low lying excited states obtained by single excitation from the subspace.

The combination of such a technique with RSSG geminals would provide optimal guess

geminals for both ground and excited states.

The RSSG calculation providing guess geminals can be regarded as a GSCF calculation

with SF1-orthogonality enforced. Unconstrained GSCF calculations are very accurate,

and the SF2-orthogonality constraint is virtually transparent. However the present al-

gorithm that performs GSCF as an iterated GMFCI with no truncation applied to the

geminal basis set converges poorly, arguably because there are redundant degrees of

freedom in the parametrization of the wave function. The SF2-orthogonality constraint

hardly remedies the situation. The SP2-orthogonality constraint is much more efficient

in this respect, but has not been studied here because it is lost after the first iteration

with the present algorithm.

In fact, if one wants to adhere to the electronic mean field CI philosophy, one should aim

at performing only a few GMFCI steps and play with basis set truncation thresholds both

to prevent excited states from loosing their physical relevance and to save CPU time.

Then, even a single GMFCI step improves greatly over the HF calculation. Moreover,

starting from an SF1-orthogonality constrained GSCF (that is RSSG), and performing a

single GMFCI step with or without an SF2-orthogonality constraint, one can obtain an
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accurate wave function with released strong orthogonality restriction. Such a calculation

will be affordable even for large systems, if one uses basis set truncation thresholds

to limit the configuration space, (as used in part II of this series), and/or if one uses

the SP2-orthogonality constraint, which greatly simplifies the Hamiltonian and overlap

matrix calculation, and which has been shown to preserve the GMFCI accuracy to a

satisfactory level.

More generally, we hope that future works will demonstrate that EMFCI calculations

with p-orthogonality constraint schemes, adapted to a hierarchy of electron groups in

a molecule, in a manner reminiscent of [31] but with a partioning based on optimized

Arai spaces rather than orbitals, provide a good compromise between accuracy and

computational cost.
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Appendix A: SP2-O for geminal product functions

Here we prove that, in the case of a GMFCI calculation, it is sufficient to impose 2-

orthogonality of the active group to every spectator group functions and every product

of pairs of spectator group functions, to enforce the SP2-O constraint, that is to say, to

obtain an active group that is 2-orthogonal to every product of spectator group functions,

so, in particular, to the product of all the (r − 1) spectator group functions in the case

of an r electron pair system.

Lemma:

Assume that ∀i, j > 1, 〈Ψi|Ψ1〉 = 0 and Ψ1 is 2-orthogonal to Ψi ∧Ψj, where Ψ1, . . . ,Ψr

are r geminal functions then Ψ1 is 2-orthogonal to Ψk1
∧ · · · ∧ Ψks

, ∀{k1, · · · , ks} ⊆

{2, · · · , r}.

Proof: One has to show that Ψ1 is an external geminal of Ψk1
∧ · · · ∧Ψks

, that is to say,

in the second quantization language that its annihilation in |Ψk1
∧ · · · ∧Ψks

〉 is zero, or

equivalently, in the exterior algebra formalism [9], that its interior product, denoted by

the symbol ←֓ , is zero: Ψ1 ←֓ Ψk1
∧· · ·∧Ψks

= 0. For any 2(s−1)-electron wave function,

Φ, let us compute 〈Ψ1 ←֓ Ψk1
∧ · · · ∧ Ψks

|Φ〉. The Hopf algebra formalism allows us to

perform mechanically such a calculation (see part I of this series [3] for notation):

〈Ψ1 ←֓ Ψk1
∧ · · · ∧Ψks

|Φ〉 = 〈Ψk1
∧ · · · ∧Ψks

|Ψ1 ∧ Φ〉

= 〈X [s−1](Ψk1
⊗ · · · ⊗Ψks

)|〈X (Ψ1 ⊗ Φ)〉

= 〈Y ◦ X [s−1](Ψk1
⊗ · · · ⊗Ψks

)|Ψ1 ⊗ Φ〉

= 〈(X [s−1] ⊗X [s−1]) ◦ T (2,s) ◦ (Y(Ψk1
)⊗ · · · ⊗ Y(Ψks

))|Ψ1 ⊗ Φ〉

= 〈(X [s−1] ⊗X [s−1]) ◦ T (2,s) ◦





∑

i∈{k1,···,ks}

Y0,2(Ψk1
)⊗ · · · ⊗ Y2,0(Ψi)⊗ · · · ⊗ Y0,2(Ψks

)

+
∑

i<j∈{k1,···,ks}

Y0,2(Ψk1
)⊗ · · · ⊗ Y1,1(Ψi)⊗ · · · ⊗ Y1,1(Ψj)⊗ · · · ⊗ Y0,2(Ψks

)



 |Ψ1 ⊗ Φ〉.

Introducing the “hat” notation: (Ψk1
∧ · · · ∧ Ψks

)î means that Ψi is taken out of the
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product Ψk1
∧ · · · ∧Ψks

, and (Ψk1
∧ · · · ∧Ψks

)î,ĵ := ((Ψk1
∧ · · · ∧Ψks

)î)ĵ, we obtain,

〈Ψ1 ←֓ Ψk1
∧ · · · ∧Ψks

|Φ〉 =
∑

i∈{k1,···,ks}

〈Ψi|Ψ1〉〈(Ψk1
∧ · · · ∧Ψks

)î|Φ〉 −

∑

i<j∈{k1,···,ks}

∑

I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉〈(Ψk1
∧ · · · ∧Ψks

)î,ĵ ∧ Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ |Φ〉.

(2)

The first hypothesis of the lemma ensures that the first part of the right-hand-side of

Eq.(2) is zero. So, this equation simplifies, and it gives for s = 2 and any geminal Φ,

〈Ψ1 ←֓ Ψi ∧Ψj|Φ〉 =
∑

I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉〈Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ |Φ〉.

(3)

However, this expression is zero according to the second hypothesis of the lemma for any

Φ, so we obtain,

∑

I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ = 0.

(4)

For any i < j ∈ {k1, · · · , ks}, Eq.(4) can be bracketed by 〈(Ψk1
∧ · · · ∧ Ψks

)î,ĵ∧ on the

left and by an arbitrary 2(s − 1)-electron wave function, |Φ〉, on the right, it will still

be zero. It suffices to sum up over all i < j ∈ {k1, · · · , ks} to recover the second part

of the right-hand-side of Eq.(2), therefore, the latter is zero. Since we have seen that

the first part of the right-hand-side of Eq.(2) is also zero for all Φ, we conclude that

the interior product on the left-hand-side is zero. Therefore, Ψ1 is 2-orthogonal to the

geminal product.
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Appendix B: Practical implementation of orthogonality constraints

The construction of the configuration space of a GMFCI step is by default as follows:

First, a singlet geminal basis set for the active group is generated. At the initial stage, it

is a full CI singlet geminal basis set of size m(m+1)
2

, where m is the number of orbitals, for

general guess geminals. However, when singlet-paired, canonical Hartree-Fock orbitals

are used as guess geminals, the geminals containing spectator orbitals are removed. Or,

if some GMFCI steps have already been performed for the active group considered, the

configuration space is spanned by the possibly truncated geminal set obtained in the last

step where that group was active.

Suppose without loss of generality that the active group is group 1 and denote this set

(gj
1)j∈{1,···,M}. Then, one builds the MXM -overlap matrix for the set, (gj

1 ∧ Ψ0
2 ∧ · · · ∧

Ψ0
r)j∈{1,···,M}, and the set is filtered and orthonormalized. More precisely, the configura-

tions whose squared norm is smaller than the linear dependency tolerance, are filtered

out. Next they are Schmidt orthogonalized in turn and their new squared norm is again

checked against the linear dependency tolerance. If it is smaller, the configuration is

filtered out, if it is larger, the configuration is retained and normalized.

SF2-orthogonality

If SF2-orthogonality is imposed, then before the filtering and orthonormalization of the

set (gj
1 ∧ Ψ0

2 ∧ · · · ∧ Ψ0
r)j∈{1,···,M} as described above, the set (gj

1)j∈{1,···,M} is Schmidt

orthogonalized with respect to the normalized set of spectator geminals, that is to say

the spectator geminals are projected out orthogonally from the gj
1’s.
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SP2-orthogonality

If SP2-orthogonality is imposed, then before the filtering and orthonormalization of the

set (gj
1 ∧ Ψ0

2 ∧ · · · ∧ Ψ0
r)j∈{1,···,M} as described above, the set (gj

1)j∈{1,···,M} is Schmidt

orthogonalized with respect to the normalized set of spectator geminals plus natural

geminals of each product of pairs of spectator geminals whose population (eigenvalue of

the second order reduced density matrix) is above a given threshold (called the “internal

geminal threshold”). This is necessary and sufficient according to the lemma of Appendix

A to ensure SP2-orthogonality with respect to a geminal product spectator wave function.

Remark: Penotti’s techniques [23] to impose some orthogonality constraints to sets of or-

bitals in variational calculations, could be profitably transposed to geminal sets, if in the

future a quadratically-convergent algorithm involving energy derivatives is implemented

to perform GSCF calculations.
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H6 STO-3G H6 6-31G H6 VTZ H8 STO-3G H10 STO-3G

ld 10−5 10−5 10−5 10−4 10−4

E0
RHF -3.135532 -3.227128 -3.233347 -4.174370 -5.214069

E0
step0/CHFOs -3.159021 -3.246555 -3.253214 -4.195118 -5.232660

E0
SP1−O -3.205983 -3.294840 -3.302411 -4.262012 -5.318586

E0
SP2−O -3.214018 -3.301916 -3.310028 -4.268768 -5.325339

SP2-O gem. nb. 13 60 144 18 23

E0
SF2−O -3.214108 -3.302039 -3.310146 -4.269070 -5.325612

SF2-O gem. nb. 17 76 169 30 47

E0
GMFCI -3.214108 -3.302039 -3.310146 -4.269070 -5.325612

GMFCI gem. nb. 17 78 171 30 47

E0
FullCI -3.236066 -3.326551 -3.335807 -4.307572 -5.379955

Table 1

GMFCI ground state energies (in Hartree) of H-chains with different orthogonality constraints.

Adjacent H nuclei are separated by 1 angström. The line E0
step0/CHFOs gives the best step 0

energy for guess geminals built from canonical HF orbital, (the geminals are 1-orthogonal).

E0
SP1−O is the APSG result with spin-restricted geminals and optimized Hilbert subspaces

(aka RSSG). E0
SP2−O, E0

SF2−O and E0
GMFCI are respectively the best first GMFCI step after

RSSG, with 2-orthogonality between the active group geminals and the product of the spectator

geminals, with 2-orthogonality between the active group geminals and the spectator geminals,

and with no orthogonality constraint. The threshold on geminal population to decide whether

a given natural geminal was considered internal or not, was 10−8. Results were found fairly

insensitive to the value of linear dependency threshold from ld = 10−2 to ld = 10−5, however,

they are less accurate for ld = 10−1 and numerical instabilities may occur for ld < 10−5 (or

ld < 10−4 for the largest systems). Note for comparison that the GSCF energy converged

towards −3.231555 Hartree for the H6 STO-3G calculation, (with no guarantee that it is the

absolute minimum). See main text for acronyms.
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LiH Be Li2 BeH2 BH Be2

E0
RHF -7.862002 -14.351880 -14.638725 -15.559405 -24.752780 -28.698990

E0
step0/CHFOs -7.882164 -14.403329 -14.666525 -15.570531 -24.778657 -28.738672

E0
SF1−O -7.882203 -14.403630 -14.666584 -15.588630 -24.807908 -28.781789

E0
SF2−O -7.882368 -14.403654 -14.667090 -15.594703 -24.809920 -28.803080

E0
GSCF -7.882372 -14.403655 -14.667114 -15.594715 -24.809938 -28.803212

E0
FullCI -7.882392 -14.403655 -14.667340 -15.594861 -24.809945 -28.804345

Table 2

GSCF ground state energies in Hartree at ”experimental” geometry (rLi−H = 1.5957, rLi−Li =

2.673, rBe−H = 1.340, rB−H = 1.2324, rBe−Be = 2.460 in angström) for the STO-3G basis

set. The line E0
step0/CHFOs, and E0

SF2−O, are described in Tab. 1, E0
SF1−O is the equivalent to

E0
SP1−O of Tab. 1. E0

GSCF is an upper bound after a large number of iterations of the GSCF

energy: since second derivatives are not calculated, it is not possible to ascertain that the

algorithm reaches a minimum, not to mention the absolute minimum. A GSCF calculation is

stopped when a GMFCI step does not lower the energy by more than a given threshold, chosen

to be 10−9 Hartree (or 10−8 for Be and Be2), for all possible active groups. A truncation

threshold for quasi-linear dependency of geminal products of 10−6 has been used, as well as

RSSG initial guess, except for LiH where canonical HF geminals were used.
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