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Abstract

We study some spring mass models for a structure having a unilateral spring of small
rigidity ε. We obtain and justify an asymptotic expansion with the method of strained
coordinates with new tools to handle such defects, including a non negligible cumulative
effect over a long time: Tε ∼ ε−1 as usual; or, for a new critical case, we can only expect:
Tε ∼ ε−1/2. We check numerically these results and present a purely numerical algorithm
to compute “Non linear Normal Modes” (NNM); this algorithm provides results close to the
asymptotic expansions but enables to compute NNM even when ǫ becomes larger.
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eral spring, approximate nonlinear normal mode.
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1 Introduction

For spring mass models, the presence of a small piecewise linear rigidity can model a small
defect which implies unilateral reactions on the structure. So, the nonlinear and piecewise
linear function u+ = max(0, u) plays a key role in this paper. For nondestructive testing we
study a singular nonlinear effect for large time by asymptotic expansion of the vibrations.
New features and comparisons with classical cases of smooth perturbations are given, for
instance, with the classical Duffing equation: ü + u + εu3 = 0 and the non classical case:
ü + u + εu+ = 0. Indeed, piecewise linearity is singular: nonlinear and Lipschitz but not
differentiable. We give some new results to validate such asymptotic expansions. Further-
more, these tools are also valid for a more general non linearity. A nonlinear crack approach
for elastic waves can be found in [11]. Another approach in the framework of non-smooth
analysis can be found in [2, 4, 19].
For short time, a linearization procedure is enough to compute a good approximation. But
for large time, nonlinear cumulative effects drastically alter the nature of the solution. We
will consider the classical method of strained coordinates to compute asymptotic expansions.
The idea goes further back to Stokes, who in 1847 calculated periodic solutions for a weakly
nonlinear wave propagation problem, see [15, 16, 17, 18] for more details and references
therein. Subsequent authors have generally referred to this as the Poincaré method or the
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Lindstedt method. It is a simple and efficient method which gives us approximate nonlinear
normal modes with 1 or more degrees of freedom.
In section 2 we present the method on an explicit case with an internal Lipschitz force. We
focus on an equation with one degree of freedom with expansions valid for time of order ε−1

or, more surprisingly, ε−1/2 for a degenerate contact.
Section 3 contains a tool to expand (u + εv)+ and some accurate estimate for the remain-
der. This is a new key point to validate the method of strained coordinates with unilateral
contact.
In Section 4, we extend previous results to systems with N degrees of freedom, first, with
the same accuracy for approximate nonlinear normal modes, then, with less accuracy with
all modes. We check numerically these results and present a purely numerical algorithm to
compute “Non linear normal Modes” (NNM) in the sense of Rosenberg [22]; see [1] for two
methods for the computation of NNM; see [9] for a computation of non linear normal mode
with unilateral contact and [14] for a synthesis on non linear normal modes; this algorithm
provides results close to the asymptotic expansions but enables to compute NNM even when
ǫ becomes larger.
In Section 5, we briefly explain why we only perform expansions with even periodic functions
to compute the nonlinear frequency shift.
Section 6 is an appendix containing some technical proofs and results.

2 One degree of freedom

2.1 Explicit angular frequency

We consider a one degree of freedom spring-mass system (see figure 1): one spring is classical
linear and attached to the mass and to a rigid wall, the second is still linear attached to a
rigid wall but has a unilateral contact with the mass; this is to be considered as a damaged
spring. The force acting on the mass is k1u + k2u+ where u is the displacement of the
mass, k1, the rigidity of the undamaged spring and k2, the rigidity of the damaged unilateral
spring. We notice that the term

u+ = max(0, u).

is Lipschitz but not differentiable. Assuming that k2 = εk1 and dividing by the value of the
mass we can consider the equation:

ü+ ω2
0u+ εu+ = 0, (1)

where ω0 a positive constant. This case has a constant energy E, where

Figure 1: Two springs, on the right it has only a unilateral contact.

2E = u̇2 + ω2
0u

2 + ε(u+)2.

Therefore, the level sets of E(u, u̇) will be made of two half ellipses. Indeed, for u < 0 the
level set is an half ellipse, and for u > 0 is another half ellipse. Any solution u(t) is confined
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to a closed level curve of E(u, u̇) and is necessarily a periodic function of t.
More precisely, a non trivial solution (E > 0) is on the half ellipse: u̇2 + ω2

0u = 2E, in the
phase plane during the time TC = π/ω0, and on the half ellipse u̇2 + (ω2

0 + ε)u = 2E during
the time TE = π/

√
ω2

0 + ε. The period P (ε) is then

P (ε) = (1 +
(
1 + ε/ω2

0

)−1/2
)π/ω0, and the exact angular frequency is:

ω(ε) = 2ω0(1 +
(
1 + ε/ω2

0

)−1/2
)−1

= ω0 +
ε

(4ω0)
− ε2

(8ω3
0)

+ O(ε3).
(2)

Let us compare with the angular frequency for Duffing equation where the nonlinear term is
u3:

ü+ ω2
0u+ εu3 = 0, (3)

which depends on the amplitude a0 of the solution ( see for example [15, 16, 17, 18]):

ωD(ε) = ω0 +
3

8ω2
0

a2
0ε−

15

256ω4
0

a4
0ε

2 + O(ε3).

2.2 The method of strained coordinates

Now, we compute, with the method of strained coordinates, ωε, an approximation of the
exact angular frequency ω(ε) which is smooth with respect to ε by exact formula (2):

ω(ε) = ωε + O(ε3).

We expose this case completely to use the same method of strained coordinates later when
we will not have such an explicit formula.
Let us define the new time and rewrite equation (1) with the new time

s = ωεt, uε(t) = vε(s), (4)

ω2
εv

′′
ε (s) + ω2

0vε(s) + ε(vε(s))+ = 0, (5)

To simplify the exposition and the computations, we take following initial conditions for uε

uε(0) = a0 > 0, u̇ε(0) = 0, (6)

i.e. vε(0) = a0 and v′ε(0) = 0. Similar computations are valid for negative a0, see Proposition
2.1 below. With more general data, i.e. when u̇ε(0) 6= 0, computations are more complicate
and give the same angular frequency ωε, see section 5.
In new time s, we use the following ansatz

vε(s) = v0(s) + εv1(s) + ε2rε(s). (7)

and the following notations:

ωε = ω0 + εω1 + ε2ω2, ω2
ε = α0 + εα1 + ε2α2 + O(ε3) (8)

α0 = ω2
0 , α1 = 2ω0ω1, α2 = ω2

1 + 2ω0ω2, (9)

where ω1, ω2 or α1, α2 are unknown.
We will also use the natural expansion, (u + εv)+ = u+ + εH(u)v + · · · , where H is the
Heaviside function, equal to 1 if u > 0 and else 0. This expansion is validated in Lemma 3.1
below.
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Now, replacing this ansatz in (5) we obtain differential equations and initial data for v0, v1, rε;
set

L(v) = −α0(v
′′ + v) (10)

L(v0) = 0, v0(0) = a0, v
′
0(0) = 0, (11)

L(v1) = (v0)+ + α1v
′′
0 , v1(0) = 0, v′1(0) = 0, (12)

L(rε) = H(v0)v1 + α2v
′′
0 + α1v

′′
1 +Rε(s), rε(0) = 0, r′ε(0) = 0. (13)

We now compute, α1, v1 and then α2. We have v0(s) = a0 cos(s). A key point in the method
of strained coordinates is to keep bounded v1 and rε for large time by a choice of α1 for u1

and α2 for rε. For this purpose, we avoid resonant or secular term in the right-hand-side of
equations (12), (13). Let us first focus on α1. Notice that, v0(s) = a0 cos(s) and a0 > 0, so

(v0)+ = a0

(
cos s

2
+

| cos s|
2

)
.

| cos(s)| has no term with frequencies ±1, since there are only even frequencies. Thus ((v0)+−
α1v0) = a0 cos(s)(1/2 − α1) + a0| cos(s)|/2 has no secular term if and only if α1 = 1/2, so
ω1 = 1/(4ω0). Now, v1 satisfies:

−ω2
0(v

′′
1 + v1) = a0| cos s|/2, v1(0) = 0, v′1(0) = 0.

To remove secular term in the equation (13) we have to obtain the Fourier expansion for
H(v0) and v1. Some computations yield:

| cos(s)| =
2

π
− 4

π

+∞∑

k=1

(−1)k

4k2 − 1
cos(2ks), (14)

v1(s) =
−a0

πω2
0

(
1 − 2

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos(2ks)

)
−A cos(s), (15)

H(v0) =
1

2
+

2

π

+∞∑

k=1

(−1)j

2j + 1
cos((2j + 1)s), (16)

where A =
−a0

πω2
0

(
1 − 2

+∞∑

k=1

(−1)k

(4k2 − 1)2

)
.

To remove secular term of order one in (13), it suffices to take α2 such that:

0 =

∫ 2π

0

[H(v0(s))v1(s) + α2v
′′
0 (s) + α1v

′′
1 (s)] � v0(s)ds (17)

For Duffing equation, see [15, 16, 17], the source term involves only few complex exponentials
and the calculus of α2 is explicit. For general smooth source term, Fourier coefficients decay
very fast. Here, we have an infinite set of frequencies for v1 and H(v0), with only a small
algebraic rate of decay for Fourier coefficients. So, numerical computations need to compute
a large number of Fourier coefficients. For our first simple example, we can compute explicitly
α2. After lengthy and tedious computations involving numerical series, we have from (17)
and (14), (15), (16) to evaluate exactly the following numerical series:

α2 = − 2

(πω0)2



1 − 1

9
+

+∞∑

j=1

(2j + 1)−1(4j2 − 1)−2 − (4(j + 1)2 − 1)−2





= −3(4ω0)
−2,
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Figure 2: v1, log10

( |ûε|
max |ûε|

)

thus ω2 = −(2ω0)
−3 as we have yet obtained in (2).

When a0 = 1 we obtain in figure 2 first modes of the infinite Fourier spectra for

v0(ωεt) + εv1(ωεt) ≃ uε(t) :

Indeed we have for negative or positive a0 the following result.

Proposition 2.1 Let uε be the solution of (1) with the initial data:

uε(0) = a0 + εa1, u̇ε(0) = 0,

then there exists γ > 0, such that, for all t < Tε = γε−1, we have the following expansion:

uε(t) = v0(ωεt) + εv1(ωεt) + O(ε2),

v0(ωεt) = a0 cos(ωεt),

v1(ωεt) =
−|a0|
πω2

0

(
1 − 2

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos(2kωεt)

)
+ (a1 −A) cos(ωεt),

ωε = ω0 +
1

4ω0
ε− 1

(2ω0)3
ε2,

where A =
−|a0|
πω2

0

(
1 − 2

+∞∑

k=1

(−1)k

(4k2 − 1)2

)
.

In the Proposition 2.1, with the method of strained coordinates, we recover an asymptotic
expansion for the exact angular frequency ω(ε) = ω0 +ω1ε+ω2ε

2 +O(ε3) and for the exact
solution uε(t). The term v1 is explicitly given by its Fourier expansion. Notice also that ω2

is not so easy to compute. It needs to compute a numerical series.
The technical proof of the Proposition 2.1 is postponed to the appendix.
Examples from Proposition 2.1 have angular frequency independent of the amplitude. Equa-
tion (1) is homogeneous . Indeed, it is a special case, as we can see in the non homogeneous
following cases. In these cases, we assume that the spring is either not in contact with the
mass at rest (b > 0) or with a prestress at rest (b < 0).
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Proposition 2.2 (Nonlinear dependence of angular frequency )
Let b be a real number and let uε be the solution of:

ü+ ω2
0u+ εa(u− b)+ = 0, uε(0) = a0 + εa1, u̇ε(0) = 0.

If |a0| > |b| then there exists γ > 0, such that, for t ∈ [0, Tε], with Tε =
γ

ε
, we have the

following expansion in C2([0, Tε],R):

uε(t) = v0(ωεt) + εv1(ωεt) + O(ε2) with

v0(s) = a0 cos(s),

v1(s) =

+∞∑

k=1

dk cos(ks),

d0 = −a|a0|
πω2

0

(
sin(β) − b

|a0|
β

)
where β = arccos

(
b

a0

)
∈ [0, π],

dk =
−a|a0|

πω2
0(1 − k2)

(
sin((k + 1)β)

k + 1
+

sin((k − 1)β)

k − 1
− 2b sin(kβ)

|a0|k

)
, k ≥ 2,

d1 = a1 −A where A =
∑

k 6=1

dk,

ωε = ω0 + εω1 + ε2ω2,

ω1 =
a

2πω0

(
sin(2β)

2
+ β − 2b sin(β)

|a0|

)
,

ω2 =
ω1d1

a0
− a

ω0πa0

∫ π

0

H(a0 cos(s) − b)v1(s) cos(s)ds.

Notice that if |a0| < |b|, there is no interaction with the weak unilateral spring. Thus the
linearized solution is the exact solution.
Proof : There are two similar cases, a0 positive or negative.
First case: assume a0 > 0. With the previous notations, the method of strained coordinates
yields the following equations:

v′′0 + v0 = 0, v0(0) = a0, v̇0(0) = 0 so v0(s) = a0 cos(s),

−α0(v
′′
1 + v1) = a(v0 − b)+ − α1v0 = aa0(cos(s) − b/a0)+ − α1a0 cos(s),

−α0(r
′′
ε + rε) = aH(v0 − b)v1 − α2v0 − α1v1 +Rε.

After some computations the Fourier expansion of (cos(s) − c)+ for |c| < 1 is:

(cos(s) − c)+ =
+∞∑

k=0

ck cos(ks), (18)

c0 =
sin(β) − cβ

π
where β = arccos (c) ∈ [0, π], (19)

c1 =
1

π

(
sin(2β)

2
+ β − 2c sin(β)

)
, (20)

ck =
1

π

(
sin((k + 1)β)

k + 1
+

sin((k − 1)β)

k − 1
− 2c sin(kβ)

k

)
, k ≥ 2. (21)

The non secular condition

∫ π

0

(a(v0−b)+−α1v0) cos(s)ds = 0, with c = b/a0 yields α1 = ac1.

Now, we can compute ω1 = α1/(2ω0) and v1 with a cosines expansion: v1(s) =
∑

k

dk cos(ks)

6



with dk = −aa0

α0

ck
1 − k2

for k 6= 1. The coefficient d1 is then obtained with the initial data

v1(0) = a1, v̇1(0) = 0.
α2, is obtained with the non secular condition for rε:

0 =
1

π

∫ π

0

(aH(v0 − b)v1 − α2v0 − α1v1) cos(s)ds. This condition is rewritten as follow

α2 =
2ω0ω1d1

a0
− 2a

πa0

∫ π

0

H(a0 cos(s) − b)v1(s) cos(s)ds, which gives ω2 since ω2 =
α2−ω2

1

2ω0
.

Second case: when a0 = −|a0| < 0, by a similar way, we obtain a similar expansion, except
that (v0(s) − b)+ = |a0|(− cos(s) − b/a0)+. And we only need the Fourier expansion of

(− cos(s) − c)+ =
∑

k

c̃k cos(ks),

c̃0 = − sin(β) + cβ

π
,

c̃1 = − 1

π

(
sin(2β)

2
+ β + 2c sin(β)

)
,

c̃k = − 1

π

(
sin((k + 1)β)

k + 1
+

sin((k − 1)β)

k − 1
+

2c sin(kβ)

k

)
, k ≥ 2.

�

When |a0| = |b|, we have another asymptotic expansion only valid for time of order 1√
ε

when the unilateral spring interacts with the mass.

Proposition 2.3 (The critical case )
Let b be a real number, b 6= 0, and consider, the solution uε of:

ü+ ω2
0u+ εa(u− b)+ = 0, uε(0) = a0 + εa1, u̇ε(0) = 0.

If |a0| = |b| then we have

uε(t) = (a0 + εa1) cos(ω0t) + O(ε2),

for t ≤ Tε =

{ γ√
ε

if |a0 + εa1| > |b| where γ > 0,

+∞ else.

The method of strained coordinates gives us the linear approximation for uε(t), with s = t,
i.e. ωε = 1. If |uε(0)| < |b|, the exact solution is the solution of the linear problem ü+ω2

0u = 0.
Otherwise, if |uε(0)| > |b|, since, |b| is the maximum of v0(s) = a0 cos(s), a new phenomenon
appears, during each period, |uε(t)| > |b| on interval of time of order

√
ε instead of ε. Then

Tε is smaller than in Proposition 2.1.
To explain this phenomenon, we give precise estimates of the remainder when we expand
(v0 + εv1 + ε2rε)+ in the next section, see Lemmas 3.1 and 3.2 below.

3 Expansion of (u + εv)+

We give some useful lemmas to perform asymptotic expansions and to estimate precisely the
remainder for the piecewise linear map u→ u+ = max(0, u).

Lemma 3.1 [Asymptotic expansion for (u+ εv)+ ]
Let be T > 0, M > 0, u, v two real valued functions defined on I = [0, T ],

Jε = {t ∈ I, |u(t)| ≤ εM},

µε(T ) the measure of the set Jε and H be the Heaviside step function, then

(u+ εv)+ = (u)+ + εH(u)v + εχε(u, v), with H(u) =

{
1 if u > 0
0 elsewhere

,
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and χε(u, v) is a non negative piecewise linear function and 1-Lipschitz with respect to v,
which satisfies for all ε,
if |v(t)| ≤M for any t ∈ I:

|χε(u, v)| ≤ |v| ≤M,

∫ T

0

|χε(u(t), v(t))| dt ≤Mµε(T ). (22)

The point in inequality (22) is the remainder εχε is only of order ε in L∞ but of order εµε

in L1. In general, µε is not better than a constant, take for instance u ≡ 0. Fortunately, it
is proved below that µε is often of order ε, and for some critical cases of order

√
ε.

Proof : Equality (22) defines χε and can be rewritten as follow:

χε(u, v) =
(u + εv)+ − u+ − εH(u)v

ε
. (23)

So, χε is non negative since u → u+ is a convex function. We also easily see that the map
(u, v) → χε(u, v) is piecewise linear, continuous except on the line u = 0 where χε has a jump
−v. This jump comes from the Heaviside step function. An explicit computations gives us
the simple and useful formula:

0 ≤ εχε(u, v) =

{
|u+ εv| if |u+ εv| < |εv|

0 elsewhere
. (24)

We then have immediately 0 ≤ χε(u, v) ≤ |v|. Let u be fixed, then v → χε(u, v) is one
Lipschitz with respect to v. Furthermore, the support of χε is included in Jε, which concludes
the proof. �

We now investigate the size of µε(T ), see [3, 10] for similar results about µε(T ) and other
applications.
With notations from Lemma 3.1 we have.

Lemma 3.2 (Order of µε(T )) Let u be a smooth periodic function, M be a positive con-
stant and µε(T ) the measure of the set {t ∈ I, |u(t)| ≤ εM}.
If u has only simple roots on I = [0, T ] then for some positive C,

µε(T ) ≤ Cε× T.

More generally, if u has also double roots then

µε(T ) ≤ C
√
ε× T.

The measure of such set Jε implies many applications in averaging lemmas, for a character-
ization of µε in a multidimensional framework see [3, 10].
Notice that any non zero solution u(t) of any linear homogeneous second order ordinary
differential equation has always simple zeros, thus for any constant c the map t → u(t) − c
has at most double roots.

Proof : First assume u only has simple roots on a period [0, P ], and let Z = {t0 ∈
[0, P ], u(t0) = 0}. The set Z is discrete since u has only simple roots which implies that
roots of u are isolated. Thus Z is a finite subset of [0, P ]: Z = {t1, t2, · · · , tN}. We can
choose an open neighborhood Vj of each tj such that u is a diffeomorphism on Vj with
derivative |u̇| > |u̇(tj)|/2. On the compact set K = [0, P ] − ∪Vj , u never vanishes, then

min
t∈K

|u(t)| = ε0 > 0. Thus, we have for all εM < ε0, the length of Jε in Vj is |Vj∩Jε| ≤
4εM

|u̇(tj)|
.

As µε is additive (µε(P + t) = µε(P ) + µε(t)), its growth is linear. Thus, for the case with
simple roots, we get µε(T ) = O(εT ).
For the general case with double roots, on each small neighborhood of tj : Vj , we have with

a Taylor expansion, |u(tj + s)| ≥ dj |s|l, with 1 ≤ l ≤ 2, dj > 0, so, |Vj ∩ Jε| ≤ 2(εM/dj)
1/l,

then µε(P ) = O(
√
ε),which is enough to conclude the proof. �
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4 Several degrees of freedom

Now, we investigate the case with N mass. We use, the method of strained coordinates in
three cases. We present the formal computations for each expansion. The mathematical
proofs are postponed in the Appendix.
In subsection 4.1, the initial condition is near an eigenvector such that the approximate
solution stays periodic. We gives such initial condition near an eigenvector in subsection 4.2
to get an approximate nonlinear normal mode up to the order ε2. Finally, in subsection 4.4,
all modes are excited. An extension of the method of strained coordinates is still possible
but only at the first order with less accuracy.
The system studied is the following:

MÜ +KU + ε(AU −B)+ = 0, where, for each component,

[(AU −B)+]k =




N∑

j=1

akjuj − bk





+

, M is a diagonal N ×N mass matrix with positive

terms on the diagonal, K is the stiffness matrix which is symmetric definite positive. It is
also possible to add many terms ε(AU − B)+ modeling small defects. For a such system,
endowed with a natural convex energy for the linearized part, we can control the ε-Lipschitz
last term for ε small enough up to large time, so for ε << 1 the solutions remain bounded
for time of the order ε−1.
To simplify the exposition, we deal with the following diagonalized system for the linear part,
keeping the same notations, except for the positive diagonal matrix Λ:

Ü + Λ2U = −ε(AU −B)+. (25)

In fact, with a linear change of variables, we have in the right hand side of the previous
equation (25) a linear combinations of terms ε(AU −B)+.

4.1 Initial condition near an eigenvector,

second order approximation

For the system (25), we take an initial condition near an eigenmode of the linearized system
denoted for instance by index 1 .

{
uε

1(0) = a0 + εa1, u̇ε
1(0) = 0,

uε
k(0) = 0 + εak, u̇ε

k(0) = 0, for k 6= 1.

We impose a2, · · · , aN later to have a periodic approximation, but a1 is a free constant as
a0. It is a key point to apply the method of strained coordinates.
We use the same time s = ωεt for each component and the following notations.

ωε = ω0 + εω1 + ε2ω2, ω0 = λ1,
(ωε)

2 = α0 + εα1 + ε2α2 + O(ε3), α0 = ω2
0 = λ2

1,
α1 = 2ω0ω1, α2 = ω2

1 + 2ω0ω2,
uε

j(t) = vε
j (s) = v0

j (s) + εv1
j (s) + ε2rε

j (s), j = 1, · · · , N.

Replacing, this ansatz in the System (25) we have in variable s,

(ωε)
2(vε

k)′′ + λ2
kv

ε
k = −ε




N∑

j=1

akjv
ε
j (s) − bk





+

,
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and then performing the expansion for all k ∈ {1, · · · , N},

Lkv
0
k = α0(v

0
k)′′ + λ2

kv
0
k = 0,

−Lkv
1
k =




N∑

j=1

akjv
0
j − bk





+

+ α1(v
0
k)′′,

−Lkr
ε
k = H




N∑

j=1

akjv
0
j − bk








N∑

j=1

akjv
1
j



+ α2(v
0
k)′′ + α1(v

1
k)′′ +Rε

k.

First we have v0
1(s) = a0 cos(s).

Equations for v0
k, for all k 6= 1, with zero initial data give us v0

k = 0.
In equation for v1

1 , we remove the secular term in the right hand side,

−α0((v
1
1)′′ + v1

1) =
(
a11v

0
1 − b1

)
+

+ α1(v
0
1)′′ = r.h.s. v1

1(0) = a1, (v1
1)′(0) = 0.

The orthogonality of the r.h.s with cos(s) leads to define α1. For instance, if b1 = 0, we have

as in Proposition 2.2, α1 =
a11

2
and ω1 =

a11

4λ1
.

Now, α1 is fixed, so v1
1 is a well defined even 2π periodic function.

Then, for k 6= 1, we can compute v1
k with the simplified equation,

α0(v
1
k)′′ + λ2

kv
1
k = −

(
ak1v

0
1 − bk

)
+
. (26)

Let φ1
k be the unique 2π periodic solution of equation (26). Such function exists and is

unique if λk /∈ λ1Z. Furthermore φ1
k is an even function as the right hand side of equation

(26). Let v1
k be φ1

k, i.e. v1
k(0) = ak = φ1

k(0) and (v1
k)′(0) = 0 for all k 6= 1.

The term rε
1, with null initial data, has a simplified equation since v0

k ≡ 0 for all k 6= 1,

−L1r
ε
1 = H

(
a11v

0
1 − b1

)



N∑

j=1

a1jv
1
j



+ α2(v
0
1)′′ + α1(v

1
1)′′ +Rε

1.

We now can compute numerically α2 to avoid secular term in the right hand side, Rε
1 ex-

cepted, with the following condition,

0 =

∫ π

0

[
H
(
a11v

0
1 − b1

)
(

N∑

k=1

a1kv
1
k

)
+ α2(v

0
1)′′ + α1(v

1
1)′′
]
· cos(s)ds.

Rewriting this condition, we obtain an equation for α2 in Theorem 4.1 below, which gives
ω2 as in the Proposition 2.2.
For each k 6= 1, λk and λ1 are Z independent. So rε

k stays bounded for large time since there
is no resonance of the order one at the first order in equations, −Lkr

ε
k = (· · · ) + Rε

k. This
is the technical part of the proof to validate rigorously and to find the time of validity of
such asymptotic expansion. The complete proof to bound (rε

1, · · · , rε
N ) for large time is to

be found in the Appendix.
We now state our result with previous notations.

Theorem 4.1 The following expansion is valid on (0, Tε), with Tε → +∞ when ε → 0
under assumption λk and λ1 are Z independent for each k 6= 1,

{
uε

1(t) = v0
1(ωεt) + εv1

1(ωεt) + O(ε2),
uε

k(t) = 0 + εv1
k(ωεt) + O(ε2), k 6= 1,

(27)
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where v0
1(s), α1, ω1, v

1
1(s), v

1
k(s), φ1

k, α2, ω2 are defined successively as follows, with differ-

ential operators Lk = λ2
1

d2

ds2
+ λ2

k,

v0
1(s) = a0 cos(s), (28)

α1 =
2

a0π

∫ π

0

(a11v
0
1(s) − b1)+ cos(s)ds, (29)

ω1 =
α1

2ω0
, (30)

−L1v
1
1 =

(
a11v

0
1 − b1

)
+

+ α1(v
0
1)

′′, v1
1(0) = a1, (v1

1)′(0) = 0, (31)

−Lkv
1
k =

(
ak1v

0
1 − bk

)
+
, v1

k(0) = ak := φ1
k(0), (v1

k)′(0) = 0, for k 6= 1, (32)

φ1
k is the unique 2π periodic solution of (32) for all k 6= 1, (33)

α2 =



 2

a0π

∫ π

0




H(a11v
0
1(s) − b1)



a11v
1
1 +

N∑

k 6=1

a1kφ
1
k








 cos(s)ds



− α1, (34)

ω2 =
α2 − ω2

1

2ω0
. (35)

Furthermore, if (aj1v
0
1 − bj) has got only simple roots for all j = 1, · · · , N ,

then Tε is of the order ε−1,
else Tε is of the order ε−1/2.

In the theorem φ1
k is classically obtained by a Fourier series. We give some indication of its

initial condition in the next subsection 4.2.

4.2 Approximate non linear normal mode

The special initial conditions of the previous subsection can be explicited in order to find
a solution where all the components are in phase at the same frequency. Indeed we shall
obtain an approximate curve of initial conditions for which the solution is periodic up to the

order ε for a time of the order
1

ε
: this is up to the approximation a non linear normal mode

in the sense of Rosenberg [22]; see [9] for a computation of non linear normal mode with
unilateral contact and [14] for a synthesis on non linear normal modes.

Theorem 4.2 For the system (25), we take an initial condition close to an eigenmode of
the linearized system denoted for instance by index 1 .

{
uε

1(0) = a0 + εa1, u̇ε
1(0) = 0,

uε
k(0) = 0 + εak, u̇ε

k(0) = 0, for k 6= 1.

the results of the previous theorem are still valid for Tε =
γ

ε
but now we are looking for

ak = v1
k(0) = in (32).

Moreover for the cases detailed below, the solution is periodic with angular frequency ωε up
to the order ε and for 0 ≤ t ≤ Tε

1. assume bk = 0, for k 6= 1 with the initial condition defined with

ak =
ak1a0

2(λ2
1 − λ2

k)
− |ak1a0|

λ2
kπ

+
ak1a0

2

+∞∑

l=1

(−1)l

(4l2λ2
1 − λ2

k)(4l2 − 1)
(36)

2. assume 0 < bk

|ak1a0| < 1, and a0ak1 < 0 for k 6= 1 then for the initial condition defined

with

ak = a0ak1

[
1

λ2
1 − λ2

k

− bk
λ2

kak1a0
−

+∞∑

l=1

cl
l2λ2

1 − λ2
k

]
(37)

11



where cl are defined in (18) with c = − bk

ak1a0

3. assume 0 < |bk|
|ak1a0| < 1, and a0ak1 > 0 for k 6= 1 then for the initial condition defined

with

ak = a0ak1

[
+∞∑

l=1

cl
l2λ2

1 − λ2
k

]
(38)

where cl are defined in (18) with c = bk

ak1a0

Remark 4.1 The other cases are less interesting but may solved similarly.

Proof : The principle of the proof is simple; v1
k is solution of the differential equation (32)

with v1
k(0) = ak and ak has to be determined in order that the function v1

k has an angular
frequency equal to one. It is elementary that the solution of (32) is

v1
k = A cos

(
λk

λ1
s

)
+B sin

(
λk

λ1
s

)
+ φ1

k(s) (39)

where φ1
k is a particular solution associated to the right hand side which is of angular fre-

quency equal to 1; note that B = 0 as the initial velocity is null; we can get a function of
angular frequency equal to 1 by setting ak = φk(0); this condition may be written explicitly
with formulas (18) which provides the expansion in Fourier series; formulas (36), (37), (38)
are then derived easily.

1. for bk = 0 for k 6= 1, (32) is written:

− Lkv
1
k = ak1a0

cos(s)

2
+ |ak1a0|

cos(s)

2
(40)

we use formula (14) to get the particular solution

φ1
k = ak1a0

cos(s)

2(λ2
1 − λ2

k)
− |ak1a0|

λ2
kπ

+
|ak1a0|

2

+∞∑

l=1

(−1)l

4l2λ2
1 − λ2

k1

cos(2ls)

4l2 − 1
(41)

from which (36) is deduced.

2. for 0 < bk

|ak1a0| < 1, and a0ak1 < 0 for k 6= 1 (32) is written:

−Lkv
1
k = −ak1a0

(
−cos(s) +

bk
ak1a0

)

+

or (42)

−Lkv
1
k = −ak1a0

[(
−cos(s) +

bk
ak1a0

)
+

(
cos(s) − bk

ak1a0

)

+

]
we use (22) to obtain

(43)

φ1
k = −ak1a0

[
(

−cos(s)
2(λ2

1 − λ2
k)

− bk
λ2

kak1a0
) +

+∞∑

l=1

clcos(ls)

l2λ2
1 − λ2

k

]
where cl is defined with

(44)

β = arccos(
bk

ak1a0
) which defines cl in (22) with c =

−bk
ak1a0

(45)

3. for 0 < bk

|ak1a0| < 1, and a0ak1 > 0 for k 6= 1 (32) is written:

−Lkv
1
k = ak1a0

(
cos(s) − bk

ak1a0

)

+

from which (46)

φ1
k = a0ak1

+∞∑

l=1

clcos(ls)

l2λ2
1 − λ2

k

where cl is defined with (47)

β = arccos(
bk

ak1a0
) which defines cl in (22) with c =

−bk
ak1a0

(48)
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4.3 Numerical results of NNM

4.3.1 Using numerically Lindstedt-Poincaré expansions

Here we use the previous results and compute numerically a solution of system (25) using
the approximation (27)

uε(t) = v0(ωεt) + εv1(ωεt) +O(ε2)

with the initial conditions of theorem 4.2. The first term v0 is easy to obtain; for the second
term v1 an explicit formula is in principle possible using Fourier series such as for one degree
of freedom but it is cumbersome so we choose to compute v1 by solving numerically (32) with
a step by step algorithm; we use as a black-box the routine ODE of SCILAB [25] to solve
equations of theorem 4.1 after computing by numerical integration α1. We show numerical
results for a system of the type:

MẌ +KX + εF (X) = 0 (49)

we still denote λ2
j the eigenvalues and φj the eigenvectors of the usual generalized eigenvalue

problem

Kφj − λ2
jMφj = 0 with (50)

tφkMφj = δkj (51)

We set:

X =
∑

j

ujφj = φu (52)

In this basis, the system may be written componentwise:

ük + λ2
kuk +t φkF (φu) = 0 (53)

For a local non linearity in the system (49), written in the basis of the eigenvectors, we do
not obtain a system precisely of the form (25); so we illustrate it with the non linearity:

F (X) = Mφ1(X1 − β1) = Mφ1(
∑

j

ujφj1 − β1)+ (54)

where we denote by φ1 any normalized eigenvector of 50; then the system (49) is written:

ük + λ2
kuk + (

∑

k

δk1φj1uj − δk1β1)+ (55)

so that A and B of (25) are:

akj = δk1φj1 bk = δk1β1

We find in figure 3 a numerical example of the Linstedt-Poincaré approximation for 5
degrees of freedom with ε = 0.063 and with an energy of 0.03002. The left figure shows
the 5 components of the solution with respect to time; the right figure, the solution in the
configuration space: absissa component 1 and ordinate components 2 to 5; these lines are
rectilinear like in the linear case but the non symmetry may be particularly noticed on the
smallest component which corresponds to the mode where the non linearity is active.
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Lind−Poincare, eps=0.063,  Tmaxeps=3.2717
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Figure 3: Lindstedt-Poincaré, energy=0.03, 5 dof; left: components with respect to time; right:
in configuration space

4.3.2 Using optimization routines

We find also in figure 4.3.2 a numerical example with the same energy of 0.03002; it is
computed with a purely numerical method described below. We notice that the solution is
quite similar in both cases.

The numerical expansions of the previous subsection gives valid results for ε small enough;
in many practical cases such as [7], ε may be quite large; in this case, it is natural to try
to solve numerically the following equations with respect to the period T and the initial
condition X(0).

X(0) = X(T ), Ẋ(0) = Ẋ(T ) E(X) = e (56)

In other words, we look for a periodic solution of prescribed energy; this last condition is
to ensure to obtain an isolated local solution: the previous expansions show that in general,
the period of the solution depends on its amplitude prescribed here by its energy. To try
to solve these equations with a black-box routine for nonlinear equations such as “fsolve”
routine of SCILAB [25](an implementation of a modification of Powell hybrid method which
goes back to [20]) in general fails to converge. Even in case of convergence, we should address
the question of link of this solution with normal modes of the linearized system.

So we prescribe that e = cε and for ε→ 0, the solution is tangent to a linear eigenmode.
In the case where all the eigenvalues of the linear system are simple, we define N (the number
of degrees of freedom) non linear normal modes for which, it is reasonable to conjecture that
they correspond to isolated solutions of (56) at least for small ε if we enforce for example
Ẋ(0) = 0.

Algorithm This definition of the solution of (56) tangent to a prescribed linear eigenmode
provides a simple way of numerical approximation: using a continuation method coupled with
a routine for solving a system of non linear equations. Define:

F(ε,X0, T ) = [X(T ) −X0, E(X) − cε] (57)

where X is a numerical solution of the differential system (58)

MẌ +KX + εF (X) = 0 (59)

X(0) = X0, Ẋ(0) = X1 (60)

14



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

esp=0.063  lam1=0.111 energie=0.030 Tper=3.2728 Tmax=65.456

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

esp=0.063  lam1=0.111 energie=0.0300003

Figure 4: Continuation and Powell hybrid, energy=0.03, 5 dof; left:fourier transform ; right: in
configuration space

choose a small initial value of ε and an increment δ
choose an eigenvector φj

X0(0) = Aεφj , X1(0) = Bελjφj

with E(X0(0), X1(0)) = cε

for iter=1:itermax
ε = ε+ δ

with X0(iter − 1) as a first approximation, solve for X0(iter),

F(ε,X0, T ) = 0 (61)

if ||F(ε,X0, T )|| > tolerance then ε = ε− δ, δ = δ/2
endif

endfor

This algorithm may be improved by using not only the solution associated to the previous
value of ε to solve

F(ε,X0, T ) = 0 (62)

but also the derivative of the solution with respect to X0, T .

Numerical results These results are obtained by solving the differential equation with
a step by step numerical approximation of the routine ode of Scilab without prescribing the
algorithm. As we are looking for a periodic solution, this numerical approximation may be
certainly improved in precision and computing time by using an harmonic balance algorithm.
In figure 5, 6, the same example with 5 degrees of freedom and energy equal 0.123 and 0.201
are displayed.

On the left of figure 5 we find the decimal logarithm of the absolute value of the Fourier
transform of the solution; the Fourier transform is computed with the fast fourier transform
with the routine fft of Scilab; we notice the frequency zero due to the non symmetry of the
solution and multiples of the basic frequency; no other frequency appears; on the right the
five components are plotted with respect to time; we still notice the non symmetry.
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On the left of figure 6 we find the solution in the configuration space and on the right
the five components are plotted with respect to time; we still notice the non symmetry.

In figure 7 we find results with 20 degrees of freedom, ε = 0.272 and energy of 0.129; the
NNM is computed by starting with an eigenvector associated to the largest eigenvalue . We
see on the left in the configuration space that the components are in phase and on the right,
the Fourier transform shows zero frequencies and multiple of the basic frequency.
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Figure 5: energy=0.123, 5 dof; left:fourier transform ; right: with respect to time
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Figure 6: energy=0.2, 5 dof; left: configuration space; right:with respect to time

In figure 8 the energy is 0.29 and the NNM is computed by starting with an eigenvector
associated to the smallest eigenvalue; we notice on the left, the solution in the configuration
space: at zero each dof has a discontinuity in slope which is clear.

In figure 9, the shape of the NNM is displayed on the left for the NNM starting from
the eigenvector associated to the smallest eigenvalue and on the right for the NNM starting
from the second smallest eigenvalue. We notice that the shape is quite similar to the shape
of the linear mode.

In figure 10, the NNM is computed by starting at an eigenvector associated to the second
smalest eigenvalue. We notice that the first NNM is more asymmetric than the second one;
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Figure 7: energy=0.129, 20 dof; left:in configuration space; right: fourier transform

on the left, the discontinuity of slope is smaller than for the first NNM.
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Figure 8: energy=0.29, 5 dof; left: configuration space; right:fft

4.4 First order asymptotic expansion

In this subsection, we do not particularize the initial data on one eigenmode. We adapt the
method of strained coordinates since all modes are excited. We loose one order of accuracy
compared to previous results since each mode does not stay periodic and becomes almost-
periodic.
More precisely, the method of strained coordinates is used for each normal component, with
the following initial data

uε
k(0) = ak, u̇ε

k(0) = 0, k = 1, · · · , N.

Let us define N new times sk = λε
kt and the following ansatz,

λε
k = λ0

k + ελ1
k, λ0

k = λk,
uε

k(t) = vε
k(λε

kt) = vε
k(sk) = v0

k(sk) + εrε
k(sk).
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Figure 9: 20 dof; left:energy 0.29 mode 1; right: energy 0.28, mode 2
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Figure 10: energy=0.28, 5 dof; left: configuration space; right:fft

The function v0
k are easily obtained by the linearized equation. Indeed, the only measured

nonlinear effect for large time is given by (λ1
k)N

k=1. To obtain these N unknowns, we replace
the previous ansatz in the system (25),

(λε
k)2(vε

k)′′(sk) + λ2
kvk(sk) = −ε




N∑

j=1

akjv
ε
j

(
λε

j

λε
k

sk

)
− bk





+

.

The right hand side is written in variable sk instead of sj . Performing the expansion with
respect to epsilon powers yields

Lkv
0
k = (λ0

k)2(v0
k)′′(sk) + λ2

kv
0
k(sk) = 0, (63)

−Lkr
ε
k(sk) =




N∑

j=1

akjv
0
j

(
λ0

j

λ0
k

sk

)
− bk





+

+ 2λkλ
1
k(v0

k)′′ +Rε
k. (64)
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Noting that replacing vε
j (sj) by v0

j

(
λ0

j

λ0
k

sk

)
in (64) implies a secular term of the order εt,

since sj =
λ0

j

λ0
k

sk +O(εt), the functions v0
j are smooth and the map S → S+ is one-Lipschitz.

These new kind of errors O(εt) are contained in the remainder of each right hand side:

Rε
k(t) = O(εt) + O(ε|rε|), |rε| =

√√√√
N∑

k=1

(rε
k)2. (65)

If bk = 0, we identify the secular term with the Lemma 6.5 below and the relation S+ =
S/2 + |S|/2. Then, we remove the resonant term in the source term for the remainder rε

k,

which gives us λ1
k =

akk

4λk
.

If bk 6= 0, we compute λ1
k numerically with the following orthogonality condition to cos(s)

written in the framework of almost periodic functions,

0 = lim
T→∞

1

T

∫ T

0








N∑

j=1

akjv
0
j

(
λ0

j

λ0
k

sk

)
− bk





+

+ 2λkλ
1
k(v0

k)′′



 · cos(s)ds.

The accuracy of the asymptotic expansion depends on the behavior of the solution φ =
(φ1, · · · , φN ) of the N following decoupled linear equations with right coefficients λ1

k to
avoid resonance

− Lkφk(sk) =




N∑

j=1

akjv
0
j

(
λ0

j

λ0
k

sk

)
− bk





+

+ 2λkλ
1
k(v0

k)′′. (66)

Furthermore each function rε
k depends on all times sj , j = 1, · · · , N and becomes almost-

periodic, i.e. rε
k = rε

k(s1, · · · , sN ). Thus the method of strained coordinates, only working
for periodic functions, fails to be continued.
Nevertheless, we obtain the following result proved in the Appendix.

Theorem 4.3 (All modes)
If λ1, · · · , λN are Z independent, then, for any Tε = o(ε−1), i.e. such that

lim
ε→0

Tε = +∞, and lim
ε→0

ε× Tε = 0,

we have for all k = 1, · · · , N ,

lim
ε→0

‖uε
k(t) − v0

k (λε
k t) ‖W 2,∞(0,Tε) = 0

where λε
k = λk + ελ1

k, v
0
k(s) = ak cos(s), and λ1

k is defined by:

λ1
k =

1

2λka0
lim

T→+∞

1

T

∫ T

0




N∑

j=1

akjv
0
j

(
λ0

j

λ0
k

sk

)
− bk





+

cos(s)ds.

Furthermore, if bk = 0, the previous integral yields: λ1
k =

akk

4λk
.

Notice that accuracy and large time are weaker than these obtained in Theorem 4.1. It is
due to the inevitable accumulation of the spectrum near the resonance and the various times
using in the expansion. On the other side we have the following direct improvement from
the Theorem 4.1:

Remark 4.2 (Polarisation) If only one mode are excited, for instance the number 1, i.e.
a1 6= 0, ak = 0 for all k 6= 1, then we have the estimate for all t ∈ [0, ε−1]:

uε
1(t) = v0

1 (λε
1 t) +O(ε).

uε
k(t) = 0 +O(ε) for all k 6= 1.
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5 Expansions with even periodic functions

Fourier expansion involving only cosines are used throughout this paper. There is never
sinus. In this short section we explain why it is simple to work with even periodic functions
and we give some hints to work with more general initial data.

First, we want to work only with co-sinus to avoid two secular terms. If we return to
equation (12): −α0(v

′′
1 + v1) = (v0)+ + α1v

′′
0 . A priory, we have two secular terms in the

right hand side, one with cos(s) and another with sin(s). Only one parameter α1 seems not
enough to delete all secular terms.
Otherwise, if v0 ∈ R, u, S are 2π periodic even functions, g ∈ C0(R,R) such that

0 =

∫ 2π

0

eis(S(s) + g(u(s)))ds then the solution of

v′′ + v = S(s) + g(u), v(0) = v0, v
′(0) = 0,

is necessarily a 2π periodic even function. Since we only work with 2π periodic even functions
we have always at most one secular term proportional to cos(s).

We now investigate the case involving not necessarily even periodic functions. In general,
u̇ε

0 6= 0 and uε is the solution of

üε + uε + εf(uε) = 0, uε(0) = uε
0, u̇ε(0) = u̇ε

0.

By the energy 2E = u̇2 + u2 + εF (u), where F ′ = 2f and F (0) = 0, we know that uε is
periodic for ε small enough, for instance with an implicit function theorem see [28] also valid
for Lipschitz function [4] in our case. Denote by τε the first time such that u̇ε(t) = 0. Such
time exists thanks to the periodicity of uε. Now, let Uε defined by Uε(t) = uε(t+ τε). Uε is
the solution of

Üε + Uε + εf(Uε) = 0, Uε(0) = Uε
0 = uε(τε), U̇ε(0) = 0.

The initial data Uε
0 depends on the initial position and initial velocity of uε through the

energy, (Uε
0 )2 + εF (Uε

0 ) = (uε
0)

2 + (u̇ε
0)

2 + εF (uε
0). For instance, if uε

0 and u̇0
ε are positive

then Uε
0 is positive and

Uε
0 =

√

(uε
0)

2 + (u̇ε
0)

2 + ε(F (uε
0) − F

(√
(uε

0)
2 + (u̇ε

0)
2

)
+ O(ε2) .

We can apply the method of strained coordinates for Uε only with even periodic functions:
Uε(t) = v0(ωεt) + εv1(ωεt) + O(ε2). The expansion obtained for uε by Uε, with φε = −ωετε
is:

uε(t) = v0(ωεt+ φε) + εv1(ωεt+ φε) + O(ε2),

which is a good ansatz in general for uε, where v0 and v1 are even 2π−periodic functions. The
method of strained coordinates becomes to find the following unknowns φ0, ω1, φ1, ω2, φ2

such that

ωε = ω0 + εω1 + ε2ω2 + · · · ,
φε = φ0 + εφ1 + ε2φ2 + · · · .

Indeed, we have two parameters to delete two secular terms at each step. If one is only
interested by the nonlinear frequency shift, it is simpler to work only with cosines.

Otherwise, if f is an odd function, we can work only with odd periodic function. It is
often the case in literature when occurs a cubic non-linearity. See for instance [16, 17, 18]
for the Duffing equation, the Rayleigh equation or the Korteweg-de Vries equation.
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6 Appendix: technical proofs

We give some useful results about energy estimates and almost periodic functions in subsec-
tion 6.1. Next we complete the proofs for each previous asymptotic expansions in subsection
6.2. The point is to bound the remainder for large time in each expansion.

6.1 Useful lemmas

The following Lemma is useful to prove an expansion for large time with non smooth non-
linearity.

Lemma 6.3 [Bounds for large time ]
Let wε be a solution of

{
w′′

ε + wε = S(s) + fε(s) + εgε(s, wε),
wε(0) = 0, w′

ε(0) = 0.
(67)

If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants :

1. S(s) is a 2π-periodic function orthogonal to e±is, and |S(s)| ≤M for all s,

2. |fε| ≤M and for all T ,

∫ T

0

|fε(s)|ds ≤ CεT (resp. C
√
εT ),

3. for all R > 0: MR = sup
ε∈(0,1),s>0,R>|u|

|gε(s, u)| <∞,

that is to say that gε(s, u) is locally bounded with respect to u
independently from ε ∈ (0, 1) and s ∈ (0,+∞),

then, there exists ε0 > 0 and γ > 0 such that, for 0 < ε < ε0, wε is uniformly bounded in

W 2,∞ (0, Tε), where Tε =
γ

ε
(resp.

γ√
ε
).

Notice that fε and gε are not necessarily continuous. Indeed this a case for our asymptotic
expansion, see Lemme 3.1 and its applications throughout the paper. But in previous sections
the right hand side is globally continuous, i.e. S + fε + εgε(., wε) is continuous, so, in this
case, wε is C2.

Proof of the Lemma 6.3: First we remove the non resonant periodic source term which is
independent of ε. Second, we get L∞ bound for wε and w′

ε with an energy estimate. Third,
with equation (67), we get an uniform estimate for w′′

ε in L∞(0, Tε) and the W 2,∞ regularity.
Step 1: remove S
It suffices to write wε = w1 + wε

2 where w1 solves the linear problem:

w′′
1 + w1 = S(s), w1(0) = 0, w′

1(0) = 0. (68)

w1 and w′
1 are uniformly bounded in L∞(0,+∞) since there is no resonance.

More precisely, w1 = F (s) + A cos(s) + B cos(s), where F is 2π periodic. F is obtained by
Fourier expansion without harmonic n = ±1 since S is never resonant:

F (s) =
∑

n6=±1

cn
1 − n2

eins with S(s) =
∑

n6=±1

cne
ins.

F is uniformly bounded, with Cauchy-Schwartz inequality set C2
0 =

∑

n6=±1

|n2 − 1|−2, we

obtain:

‖F‖L∞ ≤
∑

n6=±1

|cn|
|n2 − 1| ≤ C0‖S‖L2(0,2π) ≤ C0‖S‖L∞(0,2π).
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Similarly, set D2
0 =

∑

n6=±1

n2|n2 − 1|−2, we have ‖F ′‖L∞ ≤ D0‖S‖L∞(0,2π).

Furthermore, 0 = w1(0) = F (0) +A, and 0 = (w1)
′(0) = F ′(0) +B, then, A and B are well

defined. w,
1 is also bounded, i.e. there exists M1 > 0 such that ‖w1‖W 1,∞(0,+∞) ≤M1.

Notice that from equation (68), w1 belongs in W 2,∞.

Then we get an equation similar to (67) for wε
2 with S ≡ 0 and the same assumption for the

same fε and the new gε: gε(s, w) = gε(s, w1 + w).

{
(wε

2)
′′ + (wε

2) = fε(s) + εgε(s, w
ε
2),

(wε
2)(0) = 0, (wε

2)
′(0) = 0.

(69)

Step 2: energy estimate
Second, we get an energy estimate for wε

2. We fix R > 0 such that R is greater than the
uniform bound M1 obtained for w1

ε , R = M1 + ρ with ρ > 0. Let us define

2E(s) = ((wε
2)

′(s))2 + (wε
2)(s)

2, E(s) = sup
0<τ<s

E(τ),

and Tε be the first time T > 0 such that 2E(T ) ≥ ρ2, i.e. ρ estimates the size of (wε
2) and

(wε
2)

′.
Multiplying the differential equation (69) by (wε

2)
′, we have for all s < T < Tε(ρ) the

following inequalities since sup
0<τ<s

|(wε
2)

′(τ)| ≤
√

2E(s), and

∫ T

0

|fε(s)|ds ≤ CεT ,

E(s) =

∫ s

0

fε(τ)(w
ε
2)

′(τ)dτ + ε

∫ s

0

gε(τ, (w
ε
2)(τ))(w

ε
2)′(τ)dτ,

≤ Cεs

√
2E(s) + εsMR

√
2E(s),

E(T ) ≤ CεT

√
2E(T ) + εTMR

√
2E(T ),

εT ≥

√
E(T )/2

MR + C
.

Notice that if 2E(T ) < ρ2 for all T > 0 then Tε = +∞. The critical case is when Tε is

finite and E(T ) approaches ρ2/2 when T goes to Tε(ρ). Thus we have Tε ≥ ρ

2ε(MR + C)

and E(t) ≤ ρ2

2 for t ≤ Tε = γ
ε with γ = ρ

2(MR+C .

The proof is similar when

∫ s

0

|fε(τ)|dτ ≤ C
√
εT then Tε ≥ ρ

2
√
ε(
√
εMR + C)

. �

For completeness, we state a similar and straightforward version of Lemma 6.3 useful for
systems.

Lemma 6.4 [Bounds for large time for systems ]
Let wε = (wε

1, · · · , wε
N ) be the solution of the following system:

{
(λ1)

2(wε
k)′′ + (λk)2wε

k = Sk(s) + fε
k(s) + εgε

k(s;wε),
wε

k(0) = 0, (wε
k)′(0) = 0, k = 1, · · · , N. (70)

If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants :

1. non resonance conditions with Sk(s) are 2π-periodic functions and |Sk(s)| ≤M ,

(a) S1(s) is orthogonal to e±is, i.e.

∫ 2π

0

S1(s)e
±isds = 0,

(b) λk, λ1 are Z independent for all k 6= 1,

22



2. |fε
k | ≤M and for all T ,

∫ T

0

|fε(s)|ds ≤ CεT or C
√
εT ,

3. for all R > 0: MR = max
k

sup
ε∈(0,1),s>0,w2

1
+···+w2

N
<R2

|gε
k(s;u)| <∞,

then, there exists ε0 > 0 and γ > 0 such that, for 0 < ε < ε0, wε is uniformly bounded in

W 2,∞ (0, Tε), where Tε =
γ

ε
or

γ√
ε
.

Proof : First we remove source terms Sk independent of ε setting wε
k = wk,1 + wε

k,2 where
wk,1 is the solution of

λ2
1w

′′
k,1 + λ2

kwk,1 = Sk, wk,1(0) = 0, w′
k,1(0) = 0.

As in the proof of Lemma 6.3, w1,1 belongs in W 2,∞ thanks to the non-resonance condition
1.(a). For k 6= 1, there is no resonance since λk

λ1
/∈ Z, i.e. the non-resonance condition 1.(b),

thus a similar expansion also yields wk,1 belongs in W 2,∞(R,R).

Now wε
k,2 are solutions of the following system for k = 1, · · · , N

{
λ2

1(w
ε
k,2)

′′ + λ2
k(wε

k,2) = fε
k(s) + εgε

k(s;wε
2),

(wε
k,2)(0) = 0, (wε

k,2)
′(0) = 0,

with wε = w1 + wε
2, w

ε
2 = (· · · , wε

k,2, · · · ) and gε
k(s; · · · , wk, · · · ) = gε

k(s; · · · , wk,1 + wk, · · · ).
The end of the proof of Lemma 6.4 is a straightforward generalization of the the proof of

Lemma 6.3 with the energy: 2E(w1, · · · , wN ) =

N∑

k=1

(
(λ1)

2(ẇk)2 + (λk)2w2
k

)
. �

For systems, we also have to work with linear combination of periodic functions with
different periods and nonlinear function of such sum. So we work with the adherence in
L∞(R,C) of span{eiλt, λ ∈ R}, namely the set of almost periodic functions C0

ap(R,C), and
the Hilbert space of almost-periodic function is L2

ap(R,C), see [6], with the scalar product

〈u, v〉 = lim
T→+∞

1

T

∫ T

0

u(t)v(t)dt.

We give an useful Lemma about the spectrum of |u| for u ∈ C0
ap(R,R). Let us recall

definitions for the Fourier coefficients of u associated to frequency λ: cλ[u] and its spectrum:
Sp [u],

cλ[u] =
〈
u, eiλt

〉
= lim

T→+∞

1

T

∫ T

0

u(t)e−iλtdt, Sp [u] = {λ ∈ R, cλ[u] 6= 0}. (71)

Lemma 6.5 [Property of the spectrum of |u| ]
If u ∈ C0

ap(R,R), and if u has got a finite spectrum:
Sp [u] ⊂ {±λ1, · · · ,±λN}, with (λ1, · · · , λN ) being Z-independent, such that 0 /∈ Sp [u],
then λk /∈ Sp [ |u| ] for all k.

Proof : The result is quite obvious for u2. We first prove the result for f(u2) where f is
smooth. Then, we conclude by approximating |u| by a smooth sequence fn(u2) =

√
1/n+ u2,

and using the L∞ stability of the spectrum.
Let E be the set of all Z linear combinations of elements of S2 = {0,±λ±kj , k, j = 1, · · ·N},
where

λ±kj = λk ± λj .

Thus Sp [f(u2)] is a subset of E since Sp [u2] ⊂ S2.
Notice that λ±jk = ±λ±kj , λ−kk = 0, λ+

kk = 2λk = λ+
kj + λ−kj .
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Choosing k = 1 for instance, so λ1 6= 0, it suffices to prove that λ1 /∈ E.
Assume the converse, i.e., λ1 ∈ E. Then, for k < j, there exists some integers (c±kj)k<j) such
that:

λ1 =
∑

k<j

(c+kjλ
+
kj + c−kjλ

−
kj).

Therefore, defining c±jk by ±c±kj for k < j, we have:

λ1 = λ1

∑

j 6=1

(c+1j + c−1j) + λ2

∑

j 6=2

(c+2j + c−2j) + · · · + λN

∑

j 6=1

(c+k=Nj + c−Nj).

Using the Z-independence, with dkj = c+kj + c−kj for k 6= j and dkk = 0, we have following

system: 1 = D1 =
∑

j

d1j , 0 = Dk =
∑

j

dkj , for all k > 1.

Summing up, the N − 1 last equations in
Z

2Z
, and using the fact: djk ≡ dkj modulo 2, we

have: 0 ≡
N∑

k=2

Dk ≡
N∑

j=2

d1j +2
∑

k<j

dkj ≡
N∑

j=2

d1j , then D1 ≡ 0, i.e. D1 is even. It’s impossible

since D1 = 1. So λ1 /∈ E and the proof is complete. �

6.2 Bounds for the remainders

Now, we prove each asymptotic expansion given in previous sections, i.e. we bound each
remainders with energy estimates up to a large time.

Proof of Proposition 2.1 : First we give the outline of the proof.
Notice that all these computations only involve the function cos. Then, the only way to have
a secular term in equations defining v1 and v2 is a cos(s) in the right-hand side. So, the good
choice of α1 and α2, is enough to remove secular term with cos(s). Now, it suffices to control
rε for large time. A computation shows that the remainder Rε of equation (13) satisfies:
|Rε(s)| ≤ Cε(1 + |rε(s)|) + |χε|(v0, v1 + εrε).
Then, rε is like wε in Lemma 6.3, and the term fε comes from χε which is estimated by
Lemmas 3.1, 3.2.
More precisely, an exact computation of Rε in equation (13) leads to

Rε = χε(v0, v1 + εrε) + εH(v0)rε + εαε
3v

′′
ε ,

where αε
3 is a real constant, bounded uniformly for all ε ∈ [0, 1] such that

(ωε)
2 = α0 + εα1 + ε2α2 + ε3αε

3. From (23) we also have

χε(v0, v1 + εrε)

=
(v0 + εv1 + ε2rε)+ − [(v0)+ +H(v0)(εv1 + ε2rε)]

ε

= (v0+εv1)+−[(v0)++εH(v0)v1]
ε + (v0+εv1+ε2rε)+−(v0+εv1)+

ε − εH(v0)rε

= χε(v0, v1) − εH(v0)rε + εg̃ε(s, rε),

since u→ (u)+ is 1-Lipschitz

g̃ε(s, rε) =
(v0 + εv1 + ε2rε)+ − (v0 + εv1)+

ε
,

|g̃ε(s, rε)| ≤ |rε|.

So, with vε = v0 + εv1 + ε2rε, we can rewrite Rε as follow

Rε = χε(v0, v1) + εg̃ε(s, rε) + εαε
3v

′′
ε .
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Now, we can rewrite equation (13) in the following way

−α0(r
′′
ε + rε) = S(s) + fε(s) + εgε(s, rε),

S = α2v
′′
0 + α1v

′′
1 +H(v0)v1,

fε = χε(v0, v1) + εαε
3(v0” + εv1”),

gε = g̃ε + ε2αε
3rε,

which allow us to conclude with Lemma 6.3. �

The proof for other propositions 2.2, 2.3 in section 2 are similar.
We now complete the proof for the asymptotic expansions for systems given in section 4.

Proof of Theorem 4.1 : As in the proof of Proposition 2.1, the same technique of proof
is used component by component for Theorems 4.1, with similar energy estimates we can
conclude with the Lemma 6.4 for system to control all rε

k.
More precisely a complete computation of the remainder gives us:

Rε
k = χε(ak1v

0
1 − bk,

∑

j

akj [v
1
kj + εrε

j ]) + εH(ak1v
0
1 − bk)

∑

j

akjr
ε
j + εαε

3(v
ε
k)′′,

with notation of the proof of Proposition 2.1 and vε
k = v0

k + εv1
k + ε2rε

k. Let u, v, w be three
functions, as previously, we have:

χε(u, v + εw) + εH(u)w = χε(u, v) + ε−1((u + εv + ε2w)+ − (u+ εv)+),

and, since w → w+ is 1-Lipschitz:

|ε−1((u + εv + ε2w)+ − (u+ εv)+)| ≤ ε|w|.

Now, we can rewrite Rε
k as follow:

Rε
k = χε(ak1v

0
1 − bk,

∑

j

akjv
1
kj) + εgε

k(s, rε
1, · · · , rε

N ) + εαε
3(v

ε
k)′′,

where gε
k is defined by

gε
k(s, rε

1, · · · , rε
N ) = ε−1{(V ε

k + ε2
∑

j

akjr
ε
j )+ − (V ε

k )+},

V ε
k = ak1v

0
k − bk + ε

∑

j

akjv
1
kj ,

Notice that gε
k satisfies |gε

k(s, rε
1, · · · , rε

N )| ≤
∑

j

|akj ||rε
j |.

A key ingredient is the energy 2E =
∑

k

(α0(r
′
k)2 + λ2

kr
2
k) for the homogeneous system:

Lkrk = 0, k = 1, · · · , N and the for the inhomogeneous system:

−Lkrk = Sε
k(s) + fε

k(s) + εgk(s, rε
1, · · · , rε

N ),

for k = 1, · · · , N , with

Sk = H(ak1v
0
1 − bk)

N∑

j=1

akjv
1
j + α2v

0
k” + α1v

1
k”,

and α1, α2 are well chosen to avoid secular term when k = 1. Thus, all Sk are 2π periodic.
S1 is not resonant with L1. The λk are Z independent. We can apply Lemma 6.4 which is
enough to conclude the proof. �
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Proof of Theorem 4.3 : The proof follows two steps. First the solution for linear equations
(66) are bounded by o(t). Second, energy estimates are used to bound rε.
At the end we prove remark 4.2.
Notice that we do not use Lemmas 3.1, 3.2. Indeed, we have no term with χε. We only
use that functions u+ and v0

k are Lipschitz, the Lemma 6.5 to identify resonant terms when
bk = 0 and an energy estimate. But, since all modes are excited, the accuracy is weaker than
the precision obtained in Theorem 4.1, as in [24].

Step 1: the N problems (66) involves decoupled equations rewritten as follow with ω > 0,

φ′′(s) + ω2φ(s) = S(s) ∈ C0
ap(R,R), ±ω /∈ Sp[S].

There is no resonance since ±ω are not in the spectrum of S. But, Sp[S] is dense in R.
Indeed λ1, · · · , λN are Z independent. In general, we cannot expect that φ is bounded on
the real line, see [6], but φ is less than O(s) for large time. We can compute explicitly φ

φ(s) = A cos(ωs) +B sin(ωs) + ψ(s),

ωψ(s) =

∫ s

0

S(σ) sin(ω(s− σ))dσ

= sin(ωs)

∫ s

0

S(σ) cos(ωσ)dσ − cos(ωs)

∫ s

0

S(σ) sin(ωσ)dσ.

The condition ±ω /∈ Sp[S] is lim
s→+∞

s−1

∫ s

0

S(σ) exp(±iωσ)dσ = 0. That is to say
∫ s

0

S(σ) exp(±iωσ)dσ = o(s) when s→ +∞, thus ψ and φ are negligible compared to s for

large time.

Step 2: Let us decompose the remainder in the following way rε
k = φk +wε

k. From equation
(65) and the previous bound for φk we have in variable t instead of sk for convenience

Lkw
ε
k(t) = O(εt) + (O(εφk) + O(ε|wε|)) = O(εt) + O(ε|wε|), )

since φk(t) = o(t). Now, we remove the first part of the right hand side with wε
k = w̃ε

k + zε
k

and w̃ε
k is solution of Lkw̃

ε
k = O(εt). Classical energy estimates (or explicit computations as

for φ) yields to w̃ε
k(t) = O(εt2). Thus there exists a constant C1 > 0 such that zε

k satisfies

|Lkz
ε
k| ≤ C(ε2t2 + ε|zε|).

Multiplying each inequality by |(zε
k)′|, summing up with respect to k, integrating on [0, T ],

by Cauchy-Schwarz inequality, with D = 2C(min(λk) + min(λk)2) we get

E(T ) =

N∑

k=1

(
λ2

1((z
ε
k)′)2 + λ2

k(zε
k)2
)

≤ 2Cε2T 2

∫ T

0

N∑

k=1

|(zε
k)′|(t)dt+ 2Cε

∫ T

0

|(zε)′ · zε|dt

≤ Dε2T 2.5

√∫ T

0

E(t)dt+Dε

∫ T

0

E(t)dt.

Let Y (T ) be

∫ T

0

E(t)dt, thus Y (0) = 0 and for all t ∈ [O, T ],

E(t) = Y ′(t) ≤ Dε2T 2.5
√
Y (t) +DεY (t).
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Since

∫ Y

0

dy

A
√
y + y

= 2 ln

(
1 +

√
y

A

)
we obtain

√
Y (T ) ≤ εT 2.5 exp(DεT ) and then

E(T ) ≤ 2Dε3T 5 exp(DεT ).

Finally rε
k = φk + w̃ε

k + zε
k = o(T ) + O(εT 2) + O(ε1.5T 2.5 exp(DεT )), so for any Tε = o(ε−1)

we have in W 1,∞(0, Tε) for all T ≤ Tε

εrε(T ) = o(εTε) + O(ε2T 2
ε ) + O(ε2.5T 2.5

ε ),

which is enough to have the convergence in W 1,∞(0, Tε). Furthermore rε
k satisfies the second

order differential equation (64) which is enough to get the convergence in W 2,∞.

About remark 4.2: From Theorem 4.3, this result its obvious. Let us explain why we cannot
go further up to the order ε2.

Unfortunately Sk is not periodic since v1
j is quasi-periodic for j 6= 1. Indeed, the following

initial conditions

v1
k(0) = 0, (v1

k)′(0) = 0, k 6= 1,

yields to a quasi-periodic function, sum of two periodic functions with different periods 2π
and 2πλ1/λk, thus a globally bounded function

v1
k(s) = φ1

k(s) − φ1
k(0) cos

(
λk

λ1
s

)
.

So we cannot apply Lemma 6.4.
Let us decompose Sk = Pk +Qk for k 6= 2 where Pk is periodic and Qk is almost-periodic

Qk(s) = −H(ak1v
0
1(s) − bk)

N∑

j=1

akjφ
1
j (0) cos

(
λj

λ1
s

)
.

Let wk be a solution of −Lkwk = Qk then Sp[wk] ∈
⋃

j

{
±λj

λ1
+ Z

}
, so the spectrum of wk

is discrete and there is resonance in the N − 1 equations, −Lkr
ε
k = Sk + · · · , k 6= 1 and the

expansion does not still valid for time of the order ε−1. �
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