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Abstract

The vibrational energy levels of Fluoroform have been computed with and without
the kinetic coupling terms of the Eckart-Watson Hamiltonian by using the vibra-
tional mean field configuration interaction method. The results are well-converged as
demonstrated by a comparison with those obtained with other variational methods
when kinetic coupling is omitted. It is found that kinetic coupling is not negligeable
for this system. The wave number difference with and without kinetic coupling is
37 cm−1 for the ν1 (CH-streching) fundamental transition and can be larger than
60 cm−1 in the ν1-ν4 (HCF bending) overtones.
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1 Introduction

The quantum dynamics of the CH overtones of fluoroform CF3H has been
studied experimentally [1] as well as theoretically [2–4] in order to charac-
terize the intramolecular vibrational-energy redistribution (IVR) that follows
excitation of the CH stretching mode. The vibrational degrees-of-freedom of
the system can be partitioned into, on one hand, the CH stretching mode
(ν1-mode in spectroscopic notation) and the doubly degenerate FCH bending
mode (ν4-mode) which constitute the “chromophore” of the molecule, since the
bright states correspond to excitation to these modes, and, on the other hand,
the rest of the modes that constitutes the “bath” in which the chromophore
is immersed. The theoretical description of the system is complicated because
strong Fermi resonances couple states within the chromophore and because
a network of anharmonic interactions connect the chromophore bright states
with dark states of the bath. Moreover the presence of a light atom suggests
that kinetic coupling is far from being negligible. So, describing the vibrational
energy level pattern of such a system is quite challenging.

A correct understanding of the spectroscopy, dynamics and reactivity of such
a molecule requires an accurate representation of the molecular quantum
eigenstates. This in turn requires a reliable method to solve the molecular
Schrödinger equation, and in particular, after decoupling of the internal de-
grees of freedom, an efficient method to solve the vibrational Schrödinger equa-
tion. Perturbative methods are not well suited for molecular systems with a
high density of states or presenting resonances, and one has to turn oneself
towards variational approaches.

One such approach, is the vibrational mean field configuration interaction
(VMFCI) method [5–7] implemented in the CONVIV code that has been used
in the present work. This flexible method has been shown to converge funda-
mental frequencies of C2H4O, an hepta-atomic system [8] presenting strong
resonances. Similar accuracy is out-of-reach of the traditional vibrational self-
consistent field (VSCF) [9,10]/ vibrational configuration interaction (VCI)
(with virtuals from ground state VSCF calculations [11]) approach.

Another necessary condition for obtaining accurate vibrational quantum states,
is to employ a good quality vibrational Hamiltonian, that is to say, within the
Born-Oppenheimer approximation, a good quality potential energy function,
and the relevant rotation-vibration kinetic couplings. We have used in this
study on fluoroform the potential energy surface (PES) function of Maynard
et al. [2], which has been used in many previous works, and can serve as a
reference. The PES of Ramesh and Siebert [16] will be used in a forthcoming
study.
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None of the previous studies on fluoroform using the Maynard et al. PES has
taken into account the rotation-vibration kinetic couplings. The purpose of the
present work is to show to which extend these kinetic couplings in rectilinear
coordinates affect the vibrational energy levels.

The letter is organized as follows: First the VMFCI method is briefly outlined
and the results obtained without kinetic couplings are compared with other
methods for the same PES, in order to assess the convergence of the calculated
wave numbers. Then, we show how the kinetic coupling terms of the Eckart-
Watson Hamiltonian affect these wave numbers. Finally, we conclude on the
importance of adding kinetic couplings terms in the fluoroform vibrational
Hamiltonian.

2 CF3H vibrational states calculation

2.1 The VMFCI method for solving the vibrational Schrödinger equation

Let us briefly sketch out the VMFCI method. The main idea behind it consists
in calculating contracted basis sets for groups of degrees of freedom in order to
obtain an all-degree basis set of managable size which captures the physics and
can be used for performing a VCI calculation. However, in contrast with the
usual contracted VCI approach [12–15] a mean field term is added to the group
Hamiltonians and it has been demonstrated that it is the key of the success
of the method of contraction [8]. In fact, the VMFCI approach contains the
VSCF/VCI method as particular case, but it is much more general, as it al-
lows one to perform successive contracted VCI for arbitrarily selected “active”
degrees of freedom in the mean field of the other degrees called “spectator”
degrees.

More precisely, at each VMFCI step, one starts with a partition, P , of the
nvib vibrational degrees of freedom of an oscillator system into nP subsets
I1, I2, · · · , InP

, of respectively k1, k2, · · ·, knP
degrees:

P = (I1, I2, · · · , InP
)

= ({i11, i
1
2, · · · , i

1
k1
}, {i21, i

2
2, · · · , i

2
k2
}, · · · , {inP

1 , inP
2 , · · · , inP

knP
}), (1)

and defines another partition, S, coarser than or equal to P , that is to say:

S = (J1, J2, · · · , JnS
), with nS ≤ nP ,
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and ∀j ∈ {1, · · · , nP}, ∃k ∈ {1, · · · , nS} such that, Ij ⊆ Jk. (2)

The subsets Jk are referred to as “contractions” whose components are the
Ij’s such that Ij ⊆ Jk. The number of components in Jk is denoted by lk.

Assuming that:

(1) The vibrational Hamiltonian can be expanded in a factorized form:

Hvib = h0 +
nP∑

j1=1

hj1(Ij1) +
∑

1≤j1<j2≤nP

hj1,j2(Ij1)hj1,j2(Ij2)

+ · · · + h1,2,···,nP
(I1)h1,2,···,nP

(I2) · · ·h1,2,···,nP
(InP

) (3)

where hj1,j2,···,jk
(Ijl

) denotes a vibrational operator which only depends upon
operators acting on the degrees in subset Ijl

,

(2) We have nP basis sets of vibrational wave functions, {φm
Ij

(q
i
j
1

, · · · , q
i
j

kj

)}m∈{1,dj},

with 1 ≤ j ≤ nP , spanning the Hilbert subspaces of dimension dj, of physical
interest for the groups of degrees of freedom in the Ij’s,

the VMFCI calculation for that step consists in defining for each contraction,
Jk, the mean field Hamiltonian obtained by averaging the vibrational Hamil-
tonian in the mean field of the other contractions Jl 6= Jk and by diagonalizing
it in a basis set of product functions,

ΦM
Jk

=
∏

Ij⊆Jk

φ
mj

Ij
(q

i
j
1

, · · · , q
i
j

kj

), (4)

where the superlabel M stands for the sequence of indices mj of the component
functions. That is to say, one first builds a partial Hamiltonian by gathering
all the terms of Hvib that involve exclusively operators acting on the Ij ⊆ Jk,

Hk = h0 +
∑

j1 such that, Ij1
⊆Jk

hj1(Ij1)

+
∑

j1<j2 such that, Ij1
,Ij2

⊆Jk

hj1,j2(Ij1)hj1,j2(Ij2) + · · ·

+
∑

j1<···<jlk
such that, Ij1

,···,Ijlk
⊆Jk

hj1,···,jlk
(Ij1) · · ·hj1,···,jlk

(Ijlk
), (5)

(where the last sum reduces in fact to only one term). Then, one averages
Hvib − Hk over a given state, that we have chosen to be, in this work, the
product of the ground state functions,

∏
Ij*Jk

φ0
Ij

(q
i
j
1

, · · · , q
i
j

kj

), of all the com-
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ponents of the spectator contractions. We obtain the mean-field Hamiltonian
:

Hk + 〈
∏

Ij*Jk

φ0
Ij

(q
i
j
1

, · · · , q
i
j

kj

)|Hvib − Hk|
∏

Ij*Jk

φ0
Ij

(q
i
j
1

, · · · , q
i
j

kj

)〉. (6)

This Hamiltonian is diagonalized in the basis set of all product functions of
Eq.(4), or in a subset of the latter obtained by selecting the product func-
tions such that the sum of the energies of their components is below a given
threshold. Additionally, extra threshold can be applied to the energy of any
component.

2.2 CF3H rectilinear coordinate vibrational Hamiltonians

Fluoroform belongs to the C3v symmetry point group. It has nine vibrational
degrees of freedom and six normal modes. According to spectroscopic labelling,
ν1 to ν3 (A1 symmetry) correspond to CH stretching (Q1), CF3 symmetric
stretching (Q2) and CF3 symmetric deformation (Q3) respectively, and ν4

to ν6 (E symmetry) correspond to FCH bending (Q4a, Q4b), CF3 asymmetric
stretching (Q5a, Q5b) and CF3 asymmetric deformation (Q6a, Q6b) respectively.

The Hamiltonians used in this study can be expressed as

Hvib =
6b∑

k=1

P 2
k + P1.(αP2 + βP3) + V (Q1, . . . , Q6b) + W (Q1, P1, . . . , Q6b, P6b).

(7)

In this expression, V is the Born-Oppenheimer PES term. The PES used in this
study has been calculated by Maynard et al. [2]. It is expressed in rectilinear
coordinates, and uses a local coordinate description of the CH stretching and
a normal coordinate description for the other modes. The 3D chromophore
(Q1,Q4a,Q4b) is described by a 14th-order Taylor expansion while a fourth-
order expansion is used for the other modes and intermode couplings. The
resulting Born-Oppenheimer potential operator contains 467 terms, that have
the form of a product of powers of the coordinates. In addition, the pure, local
mode dimension is described by a Morse potential term. So, the potential is
expanded as a sum of product terms as in equation (3), and is amenable
to effective VMFCI calculations. This PES has been computed at the (6-
311G∗∗/MP2) level of theory and the chromophore part was improved by using
a more accurate method (cc-PVTZ/CEPA-1). The PES has been estimated
[4] to be sufficiently accurate up to 9500 cm−1 excitation energy in the bath
modes and up to 15000 cm−1 for the chromophore.
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In eq.(7), the Pk are the conjugate momenta of the Qk. Because, the local
mode Q1 is close to, but not exactly equal to the corresponding normal mode,
a first order corrective term, coupling P1 to the two other A1-modes conjugate
momenta appears in the Maynard et al. Hamiltonian [2].

The last term in eq.(7) is the (J = 0)-Watson-Eckart Hamiltonian rotation-
vibration kinetic coupling term,

W (Q1, P1, . . . , Q6b, P6b) =
1

2

∑

αβ

µαβπαπβ −
1

8

∑

α

µαα, (8)

where π is the so-called “Coriolis coupling operator” and µ is the 3×3 matrix
derived from the inertia tensor. Rigorously speaking, the coordinates and con-
jugate momenta appearing in the latter two operators should be the rectilinear
normal ones. However, since W is only a corrective term and since the pro-
jection of the local mode coordinate on the normal CH-stretch coordinate is
close to one (α and β small in eq.(7)), the difference between the local and the
normal CH-mode has been neglected in W . This zeroth-order approximation
is indeed consistent with the use of a first order approximation in the second
term of eq.(7).

In practice, the W term used in this study has been obtained by expanding
the µ-matrix in power of the Qk,

µ =
+∞∑

n=0

(
1

2
)n(n + 1) ×

∑

k1,...,kn

I−1
e ak1

I−1
e . . . akn

I−1
e Qk1

. . . Qkn
(9)

where I−1
e is the inverse of the inertia tensor I(Q1, . . . , Q6b) at equilibrium and

(ak)k are the derivatives of the latter with respect to the normal coordinates at
the equilibrium geometry (assuming that it is also the Eckart frame reference
geometry, as is common practice),

ak = (
∂I

∂Qk

)0. (10)

Previous studies using the Maynard et al. Hamiltonian have neglected W .
This correspond to setting µ = 0. We call “order X” those calculations that
use this (µ = 0)-Hamiltonian. Other calculations performed in this work have
been obtained by truncating the expansion (9) at a given order, say n, and
are called “order n” calculations.
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2.3 Selection of the VMFCI contraction scheme

The VMFCI contraction scheme selected in this study starts as usual [7] with
minimal symmetry preserving (MSP) steps which consist in contracting the
degenerate modes together and only them, and which, as the name indicates,
prevent artefactual symmetry breaking to occur. This is in contrast with the
VSCF method which usually lift artefactually the degeneracy [17]. For fluoro-
form, MSP-VMFCI wavefunctions have the product form,

φ1(Q1)φ2(Q2)φ3(Q3)φ4(Q4a, Q4b)φ5(Q5a, Q5b)φ6(Q6a, Q6b). (11)

The MSP partition has been iterated 6 times untill self-consistency was achieved
to machine (double) precision, which means that a MSP vibrational self-
consistent field configuration interaction calculation (MSP-VSCFCI) has been
performed.

Next, for selecting the contraction scheme of the MSP-VSCFCI basis set, we
have calculated the ZPE value for all different two-mode contractions. They
are reported in Table 1, the contractions being ordered by increasing ZPE
values. Clearly, the most efficient contraction in terms of ZPE lowering is the
{ν1-ν2} contraction, whose ZPE lowering (19 cm−1 ) is an order of magnitude
larger than the next one in the list (2 cm−1 ), in spite of the fact that only
two degrees of freedom are involved, whereas other contractions can involve
up to three or four degrees. So, on this ground, we have decided to contract
modes {ν1-ν2} straight after the MSP-VSCFCI.

Since in this study, we focus on the {ν1-ν4} chromophore and since resonances
between modes ν1 and ν4 excited states do not necessarily show up with the
ZPE lowering criterium, we have actually opted for the ternary contraction
{ν1-ν2-ν4} which lowers the ZPE by 22 cm−1 . We have not considered larger
contraction than this 4-degrees contraction, because it would have been less
computer effective given the limited RAM space of our computer: The integral
file loaded in RAM at the next VMFCI step would require too drastic an
energy truncation threshold to fit in.

Iterating the VMFCI(ν1-ν2-ν4) step once has been found to be sufficient to
achieve self-consistency. Finally, the VSCFCI(ν1-ν2-ν4) has been followed by
several all-degree VCIs differing from their truncation thresholds in the last
step.
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2.4 Convergence of the VMFCI calculations

Table 2 reports the results obtained with the VMFCI contraction scheme
described above for different truncation schemes at the last step. These calcu-
lations have been perfomed with the Hamiltonian, Eq. (7), and no rotation-
vibration kinetic coupling (W = 0). We have neglected the Eckart-Watson
term, Eq. (8), to be able to compare our results with those obtained in other
studies [2–4] where the same Hamiltonian was used.

The first column of Tab. 2 provides the assignement of the vibrational states in
terms of harmonic functions or Morse potential eigenstates of highest weight
as reported in previous studies [3,4]. However, these basis functions are highly
mixed due to the presence of resonances as seen from the expansion of excited
states such as 4ν4, ν1 + 2ν4 and 2ν2 (see Tab.V of [3] and Tab. 3). In our
VSCFCI(ν1-ν2-ν4) and VCI calculations, it is more natural to assign states in
terms of the MSP-VSCFCI basis functions. Using the MSP-VSCFCI functions
of highest weight, we find the same labelling for the vibrational states than
that of Tab. 2 except for the excited states 4ν4 and ν1+2ν4 which are inverted,
moreover the ν1 + 2ν4 VSCFCI(ν1-ν2-ν4)-eigenfunction has in fact its highest
weight on the 2ν1 MSP-VSCFCI basis function (see Tab. 3).

The second column of Table 2 reports the harmonic approximation frequen-
cies (modes ν2 to ν6) and for mode ν1 the Morse potential approximation.
All VMFCI calculations start with a MSP-VSCFCI calculation using a basis
set of harmonic oscillator (HO) functions with quantum numbers less than
60,40,40,40,40,60, respectively, for the vibrational modes ν1,ν2,ν3,ν4,ν5,ν6, re-
spectively. (Integrals of the Morse potential function between HO wave func-
tions are calculated analytically in our code CONVIV by using the formulas
of Ref. [18].) The results are reported in the third column and show large
deviations with respect to the Harmonic/Morse approximation due to the an-
harmonicity of the system.

The next column correspond to the subsequent VSCFCI(ν1-ν2-ν4) with trun-
cation of the product basis set on the sum of the energies at 24000 cm−1 . In
this calculation, the basis sets of the other modes have also been truncated at
24000 cm−1 for practical purposes, but this has no influence on the end results.
We observe again large deviations for the contracted modes with respect to
the MSP-VSCFCI results. In particular, the chromophore overtones change
by more than 100 cm−1 for the 2ν1 and by as much as 300 cm−1 for the 4ν4.
This fully justifies a posteriori the inclusion of mode ν4 in the contraction.

The VCI results (fifth column) have been obtained with a truncation on the
sum of the energies at 10200 cm−1 and a truncation on the energy of mode ν6

at 6000 cm−1 . The total number of basis functions is 67092 and the VMFCI
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scheme reads in rather self-explanatory notation (defined explicitly in ref. [7]),
MSP-VSCFCI(60,40,40,40,40,60)/VSCFCI(ν1-ν2-ν4;24000)/VCI(*,*,*,6000|10200)

(No truncation on a given contraction component is indicated by a “*” sym-
bol.)

These results are to be compared with those reported in the last column ob-
tained with the multi-configuration time dependent Hartree-Fock (MCTDH)
approach ([4] and[19] for wave numbers below 3049 cm−1 ), which is also a
variational method. These MCTDH wave numbers are very close to the wave
operator sorting algorithm (WASO) wave numbers [3] not reported here. We
see that the VCI and MCTDH ZPE are the same to the hundredth of cm−1 and
that all tabulated VCI wave numbers are within 1 cm−1 of the MCTDH ones.
In the bottom part of the spectrum, they are within the tenth of cm−1 of the
MCTDH ones. This good agreement allows us to be confident in the reliabil-
ity of our VMFCI scheme for the assessment of the rectilinear coordinates,
rotation-vibration kinetic couplings which have not been considered in previ-
ous variational studies so far. The evaluation of these couplings will be the
topics of the next section.

The effect of the VCI truncation thresholds on the tabulated wave numbers
are investigated in Table 4. The two middle columns correspond to the same
threshold of 10000 cm−1 on the sum of the components function energies in
product basis functions. In addition, a threshold of 6000 cm−1 is applied on
the ν6-component function energy in the calculation presented in the second
column. This reduces the basis set size by 2312 basis function. However, the
tabulated wave numbers are identical in the two columns except for 4ν4 where
they differ by 0.1 cm−1 . So, including excited ν6 MSP-VSCFCI basis function
is not crucial for the eigenstates of interest and the use of a threshold on the
ν6-component function energy is justified in Tab.2.

Columns 1, 2 and 4 of Tab. 4 shows the convergence pattern with respect
to the threshold on the sum of the component energies. The bottom of the
spectrum is already well converged with a threshlod of 9800 cm−1 and less than
53000 basis functions. Only the three levels of the chromophore 2ν1-polyad
are not yet converged. The threshold at 10000 cm−1 adds 6722 basis functions
and improves the polyad wave numbers significantly if the calculation with
the 10200 cm−1 threshold serves as a reference. On the basis of the wave
number convergence pattern, one can reasonably expect to have reached the
cm−1 accuracy with the latter calculation.
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3 Effect of the rectilinear coordinate rotation-vibration kinetic cou-

pling

Vibrational levels computed at different orders of µ-matrix expansion are re-
ported in Table 5. Order X corresponds to column 3 of Tab. 4. The results
for the other orders of µ-matrix expansion have been obtained with the same
contraction-truncation scheme. It is clear that the (W = 0)-Hamiltonian is
not satisfactory because some fundamental frequencies are away from those of
order 1 by more than the 1 cm−1 . The largest errors are observed for the ν2

fundamental wave number (≈ 16 cm−1 ) and for ν1 (≈ 37 cm−1 ). For higher
excited states, the discrepancies grow even larger: ≈ 56 cm−1 for 4ν4, ≈ 62
cm−1 for ν1 + 2ν4, and ≈ 58 cm−1 for 2ν1.

In contrast, the results show that Order 0 is sufficient to take into account
the kinetic coupling effect. The difference between Order 0 and Order 1 is
equal to less than the tenth of cm−1 for all vibrational levels, (the errors of
0.1 cm−1 appearing in the table are due to round off of the last digits).

The inclusion of the kinetic coupling can bring some vibrational frequencies
closer to the experimental ones [20] like for mode ν2 but this is not general.
This hints to the fact that a better description of the PES is required to
improve the agreement with the experimental data.

4 Conclusion

In this study, we have performed large variational calculations of the vibra-
tional eigenstates of fluoroform by using an efficient vibrational Schrödinger
equation solver, the VMFCI method. The accuracy of the eigenstates obtained
have been checked against MCTDH results. Then, we have investigated the
importance of the rotation-vibration kinetic coupling in rectilinear coordinates
on the spectrum calculation. We have shown that it is not negligeable, how-
ever a zero order expansion of the µ-matrix is sufficient to account for the
coupling.

A natural follow-up to the present work will be the evaluation of the influence
of the rotation-vibration kinetic coupling terms on intramolecular vibrational
energy redistribution in highly excited fluoroform.
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127 (2007) 164115-164124.

[9] J. M. Bowman, J. Chem. Phys 68 (1978) 608.

[10] G. D. Carney, L. L. Sprandel and C. W. Kern in “Advances in Chemical
Physics”, Vol. 37, I. Prigogine and S.A. Rice, Eds., (Wiley, New York, 1978),
pp. 305-379.

[11] K. M. Christoffel, J. M. Bowman, Chem. Phys. Lett. 85 (1982) 220.

[12] C. L. Chen, B. Maessen, and M. Wolfsberg, J. Chem. Phys 83 (1985) 1795.

[13] J. Tennyson, Comp. Phys. Rep. 4 (1986) 1.

[14] S. Carter and N. C. Handy, Comp. Phys. Rep. 5 (1986) 15.
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ν1-ν2 ν1-ν4 ν1-ν3 ν1-ν6 ν4-ν5 ν4-ν6 ν2-ν4 ν2-ν3

5648.68 5665.31 5665.70 5665.92 5666.77 5667.13 5667.23 5667.38

ν3-ν5 ν3-ν6 ν5-ν6 ν3-ν4 ν1-ν5 ν2-ν6 ν2-ν5

5667.44 5667.48 5667.57 5667.59 5667.60 5667.60 5667.60

Table 1
Zero point energy in cm−1 after a MSP-VSCFCI(60,40,40,40,40,60) calculation fol-
lowed by two-mode contractions. The ZPE are arranged in increasing order. For
comparison, the MSP-VSCFCI ZPE is 5667.61 cm−1 . The product basis functions
for the two-mode contractions have been truncated at 11400 cm−1 on the sum of
the component energies.
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assign. Morse/HO MSP-VSCFCI VSCFCI(ν1 − ν2 − ν4) VCI MCTDH a

ZPE 5701.83 5667.61 5645.61 5638.54 5638.54

ν6 518.2 509.4 509.4 507.0 507.0

ν3 724.3 712.9 712.9 703.7 703.7

ν2 1203.6 1200.9 1167.9 1157.8 1157.8

ν5 1206.0 1190.3 1190.0 1175.8 1175.8

ν4 1431.0 1416.6 1407.4 1396.2 1396.2

2ν4 2861.9 2862.6 2777.2 2750.0 2749.7

ν1 3069.6 3014.0 3057.4 3048.9 3048.7

4ν4 5723.9 5789.3 5489.9 5435.1 5436

ν1 + 2ν4 5931.5 5876.6 5804.6 5758.0 5759

2ν1 6013.8 5899.3 6009.3 5988.2 5989

Table 2
Energies in cm−1 of the vibrational fundamental transitions and of the overtones of
the (ν1−ν4)-chromophore calculated at different VMFCI levels (see text for details)
and with the MCTDH algorithm. The tabulated energies of the 2ν4,ν1 + 2ν4,4ν4

bands are those of their non degenerate levels.

a Ref. [4], and [19] for wave numbers below 3049 cm−1
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VSCFCI(ν1 − ν2 − ν4) |ΦMSP
4ν4

> |ΦMSP
ν1+2ν4

> |ΦMSP
2ν1

>

4ν4 5489.9 0.39 0.46 0.06

ν1 + 2ν4 5804.6 0.38 0.10 0.46

2ν1 6009.3 0.15 0.37 0.42

Table 3
Projection weights of contracted VSCFCI(ν1 − ν2 − ν4) eigenfunctions of Tab. 2 on
relevant MSP basis functions.
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assign. VMFCI(9800) VMFCI(10000) VMFCI(⋆)(10000) VMFCI(10200)

52964 bf. 59686 bf. 61998 bf. 67092 bf.

ZPE 5638.54 5638.54 5638.54 5638.54

ν6 507.0 507.0 507.0 507.0

ν3 703.7 703.7 703.7 703.7

ν2 1157.8 1157.8 1157.8 1157.8

ν5 1175.8 1175.8 1175.8 1175.8

ν4 1396.3 1396.3 1396.3 1396.2

2ν4 2750.1 2750.0 2750.0 2750.0

ν1 3049.0 3048.9 3048.9 3048.9

4ν4 5439.8 5436.4 5436.3 5435.1

ν1 + 2ν4 5761.5 5759.7 5759.7 5758.0

2ν1 5989.5 5990.2 5990.2 5988.2

Table 4
Convergence of vibrational levels with different VCI basis set trunca-
tion scheme. VMFCI actually stands for the contraction scheme: MSP-
VSCFCI(60,40,40,40,40,60)/VSCFCI(ν1-ν2-ν4;24000)/VCI, and the value in paren-
thesis is the threshold in cm−1 applied to the sum of the energies of the product
function components for the VCI. For all calculations, a truncation at 6000 cm−1 was
applied to the energy of mode ν6 component except for VMFCI(⋆)(10000). “bf.”
stands for basis functions.
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assign. Ord X Ord 0 Ord 1 Expt b

ZPE 5638.54 5652.28 5652.28 -

ν6 507.0 507.1 507.1 507.8

ν3 703.7 703.6 703.6 700.1

ν2 1157.8 1141.6 1141.7 1141.5

ν5 1175.8 1176.5 1176.5 1158.3

ν4 1396.3 1398.4 1398.5 1377.5

2ν4 2750.0 2768.2 2768.2 2710.2

ν1 3048.9 3086.1 3086.1 3035.5

4ν4 5436.3 5492.0 5492.1 5337

ν1 + 2ν4 5759.7 5821.5 5821.6 5710.4

2ν1 5990.2 6048.3 6048.4 5959.4

Table 5
Energies in cm−1 of fluoroform vibrational states calculated at different order of µ-
matrix expansion (Order X corresponds to setting µ = 0). The tabulated values are
obtained from a VCI at the last step with a truncation on the sum of the energies
of product function components at 10000 cm−1 and are expected to be converged
to the cm−1 precision.

b Ref. [20]
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