Observation-Based Noise Calibration: An Efficient Dynamics for the Ensemble Kalman Filter - INRIA - Institut National de Recherche en Informatique et en Automatique
Chapitre D'ouvrage Année : 2023

Observation-Based Noise Calibration: An Efficient Dynamics for the Ensemble Kalman Filter

Résumé

Abstract We investigate the calibration of the stochastic noise in order to guide the realizations towards the observational data used for the assimilation. This is done in the context of the stochastic parametrization under Location Uncertainty (LU) and data assimilation. The new methodology is rigorously justified by the use of the Girsanov theorem, and yields significant improvements in the experiments carried out on the Surface Quasi Geostrophic (SQG) model, when applied to Ensemble Kalman filters. The particular test case studied here shows improvements of the peak MSE from 85% to 93%.
Fichier principal
Vignette du fichier
978-3-031-18988-3_4.pdf (455.17 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03910764 , version 1 (23-01-2023)

Identifiants

Citer

Benjamin Dufée, Etienne Mémin, Dan Crisan. Observation-Based Noise Calibration: An Efficient Dynamics for the Ensemble Kalman Filter. Stochastic Transport in Upper Ocean Dynamics, 10, Springer International Publishing, pp.43-56, 2023, Mathematics of Planet Earth, ⟨10.1007/978-3-031-18988-3_4⟩. ⟨hal-03910764⟩
433 Consultations
94 Téléchargements

Altmetric

Partager

More