On group and loop spheres - Analyse
Pré-Publication, Document De Travail Année : 2024

On group and loop spheres

Wolfgang Bertram
  • Fonction : Auteur
  • PersonId : 1023128

Résumé

We investigate the problem of defining group or loop structures on spheres, where by "sphere" we mean the level set q(x) = c of a general K-valued quadratic form q, for an invertible scalar c. When K is a field and q non-degenerate, then this corresponds to the classical theory of composition algebras; in particular, for K = R and positive definite forms, we obtain the sequence of the four real division algebras R, C, H (quaternions), O (octonions). Our theory is more general, allowing that K is merely a ring, and the form q possibly degenerate. To achieve this goal, we give a more geometric formulation, replacing the theory of binary composition algebras by ternary algebraic structures, thus defining categories of group spherical and of Moufang spherical spaces. In particular, we develop a theory of ternary Moufang loops, and show how it is related to the Albert-Cayley-Dickson construction and to generalized ternary octonion algebras. At the bottom, a starting point of the whole theory is the (elementary) result that every 2-dimensional quadratic space carries a canonical structure of commutative group spherical space.
Fichier principal
Vignette du fichier
SphereGroupLoop2.pdf (608.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04747480 , version 1 (22-10-2024)

Identifiants

  • HAL Id : hal-04747480 , version 1

Citer

Wolfgang Bertram. On group and loop spheres. 2024. ⟨hal-04747480⟩
0 Consultations
0 Téléchargements

Partager

More