Complex moments of class numbers with fundamental unit restrictions - Analyse
Pré-Publication, Document De Travail Année : 2024

Complex moments of class numbers with fundamental unit restrictions

Jérémy Dousselin

Résumé

We explore the distribution of class numbers $h(d)$ of indefinite binary quadratic forms, for discriminants $d$ such that the corresponding fundamental unit $\varepsilon_d$ is lower than $d^{1/2+\alpha}$, where $0<\alpha<1/2$. To do so we find an asymptotic formula for $z^{th}$-moments of such $h(d)$'s, over $d\leq x$, uniformly for a complex number $z$ in a range of the form $|z|\leq(\log x)^{1+o(1)}$, $\Re(z)\geq -1$. This is achieved by constructing a probabilistic random model for these values, which we will use to obtain estimates for the distribution function of $h(d)$ over our family. As another application, we give an asymptotic formula for the number of $d$'s such that $h(d)\leq H$ and $\varepsilon_d\leq d^{1/2+\alpha}$ where $H$ is a large real number.
Fichier principal
Vignette du fichier
2408.01401v1.pdf (485.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04667983 , version 1 (05-08-2024)

Licence

Identifiants

Citer

Jérémy Dousselin. Complex moments of class numbers with fundamental unit restrictions. 2024. ⟨hal-04667983⟩
65 Consultations
22 Téléchargements

Altmetric

Partager

More