Article Dans Une Revue European Journal of Nuclear Medicine and Molecular Imaging Année : 2021

The added value of PSMA PET/MR radiomics for prostate cancer staging

Résumé

Purpose To evaluate the performance of combined PET and multiparametric MRI (mpMRI) radiomics for the group-wise prediction of postsurgical Gleason scores (psGSs) in primary prostate cancer (PCa) patients. Methods Patients with PCa, who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI followed by radical prostatectomy, were included in this retrospective analysis (n = 101). Patients were grouped by psGS in three categories: ISUP grades 1-3, ISUP grade 4, and ISUP grade 5. mpMRI images included T1-weighted, T2-weighted, and apparent diffusion coefficient (ADC) map. Whole-prostate segmentations were performed on each modality, and image biomarker standardization initiative (IBSI)compliant radiomic features were extracted. Nine support vector machine (SVM) models were trained: four single-modality radiomic models (PET, T1w, T2w, ADC); three PET + MRI double-modality models (PET + T1w, PET + T2w, PET + ADC), and two baseline models (one with patient data, one image-based) for comparison. A sixfold stratified cross-validation was performed, and balanced accuracies (bAcc) of the predictions of the best-performing models were reported and compared through Student's t-tests. The predictions of the best-performing model were compared against biopsy GS (bGS). Results All radiomic models outperformed the baseline models. The best-performing (mean ± stdv [%]) single-modality model was the ADC model (76 ± 6%), although not significantly better (p > 0.05) than other single-modality models (T1w: 72 ± 3%, T2w: 73 ± 2%; PET: 75 ± 5%). The overall best-performing model combined PET + ADC radiomics (82 ± 5%). It significantly outperformed most other double-modality (PET + T1w: 74 ± 5%, p = 0.026; PET + T2w: 71 ± 4%, p = 0.003) and single-modality models (PET: p = 0.042; T1w: p = 0.002; T2w: p = 0.003), except the ADC-only model (p = 0.138). In this initial cohort, the PET + ADC model outperformed bGS overall (82.5% vs 72.4%) in the prediction of psGS. Conclusion All single-and double-modality models outperformed the baseline models, showing their potential in the prediction of GS, even with an unbalanced cohort. The best-performing model included PET + ADC radiomics, suggesting a complementary value of PSMA-PET and ADC radiomics.
Fichier principal
Vignette du fichier
s00259-021-05430-z.pdf (1.58 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04888068 , version 1 (15-01-2025)

Identifiants

Citer

Esteban Lucas Solari, Andrei Gafita, Sylvia Schachoff, Borjana Bogdanović, Alberto Villagrán Asiares, et al.. The added value of PSMA PET/MR radiomics for prostate cancer staging. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49 (2), pp.527 - 538. ⟨10.1007/s00259-021-05430-z⟩. ⟨hal-04888068⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More